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Abstract. When designing an open system, there might be no im-
plementation available for certain components at verification time. For
such systems, verification has to be based on assumptions on the un-
derspecified components. When component assumptions are expressed
in Hennessy-Milner logic (HML), the state space of open systems can be
naturally represented with modal transition systems (MTS), a graphical
specification language equiexpressive with HML. Having an explicit state
space representation supports state space exploration based verification
techniques. Besides, it enables proof reuse and facilitates visualization for
the user guiding the verification process in interactive verification. As an
intuitive representation of system behavior, it aids debugging when proof
generation fails in automatic verification.

However, HML is not expressive enough to capture temporal assump-
tions. For this purpose, we extend MTSs to represent the state space
of open systems where component assumptions are specified in modal
μ-calculus. We present a two-phase construction from process algebraic
open system descriptions to such state space representations. The first
phase deals with component assumptions, and is essentially a maximal
model construction for the modal μ-calculus. In the second phase, the
models obtained are combined according to the structure of the open
system to form the complete state space. The construction is sound and
complete for systems with a single unknown component and sound for
those without dynamic process creation. For establishing open system
properties based on the representation, we present a proof system which
is sound and complete for prime formulae.

1 Introduction

In an open system, certain components can join the system after it has been put
in operation. For example, applications can be loaded on a smart card after the
card has been issued (see e.g. [SGH04]). Since the implementations of certain
components are not yet available, the verification of the system has to be based
on behavioural assumptions on such components. Security protocols can be ver-
ified in this manner, for instance by treating an unpredictable attacker as an
unknown component of the system [1].
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Modal transition systems (MTS) were introduced by Larsen as a graphical
specification language [2]. Certain kinds of properties are easier to express graph-
ically than in temporal logics. Each MTS specifies a set of processes as an interval
determined by necessary and admissable transitions. MTSs are equiexpressive
with Hennessy-Milner logic (HML), i.e. an HML formula can be characterized
by an MTS and vice versa. As a result, MTSs provide a natural representation
of the state space of open systems when assumptions on the behavior of the
not-yet-available components are specified in HML. When the assumptions are
temporal properties, however, MTSs are not expressive enough for this purpose.
In [3], we extend MTSs to represent the state space of open systems when the
component assumptions are written in the modal μ-calculus [4]. This logic adds
the expressive power of least and greatest fixed point recursion to HML. Besides
the must (necessary) and may (admissable) transitions of MTS, our notion,
extended modal transition system (EMTS) has sets of states (instead of single
states) as targets to transitions - an extension which is needed for dealing with
disjunctive assumptions, and well-foundedness constraints to handle least fixed
point assumptions.

Having a way to capture the state space of an open system explicitly can be
useful in various phases of the development of open systems. In the modeling
phase, this formalism can be used as an alternative means of graphical spec-
ification of open system behavior. In interactive verification, an explicit state
space representation facilitates visualization of the system behaviour, assisting
the user in guiding the proof. This visualization facility is beneficial in automatic
verification when the automatic proof construction fails and an understanding
of the open system behaviour becomes necessary for debugging. Furthermore,
computing the whole state space enables proof reuse when the same system is
to be checked for several properties.

In this paper, we address the problem of constructing an explicit state space
representation from an open system description and verifying open system prop-
erties based on this representation. In a process algebraic setting, the behaviour
of an open system can be specified by an open process term with assumptions
(OTA). An OTA consists of a process term equipped with a list of behavioral
assumptions on the free variables of the term. We offer a two-phase construction
that, under given restrictions, automatically extracts an EMTS from an OTA.
The first phase in the construction corresponds to a maximal model construction
for each component assumption. For the fixed point cases, a powerset construc-
tion is used that is similar to the one used in the Büchi automata constructions
of [5] and [6]. In the second phase, the maximal models are composed according
to the structure of the open system. The construction is sound (resp. complete)
if the set of systems denoted by the OTA is a subset (resp. superset) of the
denotation of the resulting EMTS. We show soundness of the construction for
systems without dynamic process creation, and soundness and completeness for
systems with a single unknown component. Finally, we present a proof system
for showing open system properties based on EMTSs. The proof system is sound
and complete for prime formulae, a prime formula being one that logically im-
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plies one of the disjuncts whenever it logically implies a disjunction. The relative
simplicity of the proof system and its use is an indication of the adequateness of
EMTSs for open system state space representation.

Related Work. In this strand of research, our work follows earlier work on using
maximal model constructions for modular verification for various fragments of
the μ-calculus: for ACTL by Grumberg and Long [7], ACTL* by Kupferman and
Vardi [8], and the fragment without least fixed points and diamond modalities
by Sprenger et al [9]. In automata based approaches (see for instance [10, 6, 11]),
various structures like alternating tree automata, Büchi and Rabin automata
have been employed for capturing temporal properties. Although expressively
powerful, we argue that these structures do not provide an intuitive representa-
tion of the state space for branching-time logics.

Proof system based methods have previously been suggested for the interactive
verification of open systems [12, 13] where modal μ-calculus is used to express
the temporal assumptions on components as well as the desired property of the
system. These interactive methods explore the state space implicitly as much as
it is necessary for the particular verification task. In contrast to these methods,
we separate the tasks of constructing a finite representation of the state space of
an open system from the task of verifying its properties. This separation provides
a state visualization facility to the user guiding the interactive proof, and offers
greater possibilities for proof reuse.

Organization. The paper is organized as follows. In section 2, we make the syntax
of OTAs precise by a brief account of the logic used in behavioral assumptions
and the process algebra used to define the process term. Section 3 is a summary of
important definitions related to the notion of EMTS. We present the translation
from OTA to EMTS in Section 4, and provide correctness results. In Section 5,
we give a proof system for showing open system properties of EMTSs. The last
section presents conclusions and identifies directions for future work.

2 Specifying Open Systems Behaviour

A system, the behaviour of which is parameterized on the behaviour of certain
components, is conveniently represented as a pair Γ � E, where E is an open
process-algebraic term, and Γ is a list of assertions of the shape X : Φ where X
is a process variable free in E and Φ is a closed formula in a process logic.

In the present study, we work with the class of Basic Parallel Processes
(BPP)[14]. The terms of BPP are generated by:

E ::= 0 | X | a.E | E + E | E ‖ E | fixX.E

where X ranges over a set of process variables ProcVar and a over a finite set of
actions A. We assume that ProcVar is partitioned into assumption process vari-
ables AssProcVar used in assertions, and recursion process variables RecProcVar
bound by fix. A term E is called linear if every assumption process variable oc-
curs in E at most once. The operational semantics of closed process terms (called
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processes and ranged over by t) is standard, where the operator ‖ signifies merge
composition. Closed process terms give rise to labeled transition systems (LTS)
through this standard semantics.

As a process logic for specifying behavioural assumptions of components, as
well as for specifying system properties to be verified, we consider the modal
μ-calculus [4]. Its formulas are generated by:

Φ ::= tt | ff | Z | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | [a] Φ | 〈a〉Φ | νZ.Φ | μZ.Φ

where Z ranges over a set of propositional variables PropVar. The semantics of
the μ-calculus is standard and given in terms of its denotation on some LTS
T =(ST , A, −→T ). The denotation of a modal μ-calculus formula Φ, written
||Φ||TV , is a subset of the set of states of T , where V : PropV ar → ST is a
valuation that maps propositional variables to states of T . As usual, we write
t |=T

V Φ whenever t ∈ ||Φ||TV . In the sequel, we omit the subscript V when Φ is a
closed formula.

We say that an OTA Γ � E is guarded when the term E and all modal μ-
calculus formula Φ in Γ are guarded. Similarly, we say an OTA is linear when
the term it contains is linear.

The behaviour specified by an open term with assumptions is given with
respect to a LTS T that is closed under the transition rules and is closed under
substitution of processes for assumption process variables in subterms of the
OTA. The denotation of an OTA is then the set of all processes obtained by
substituting each assumption process variable in the term by a process from T
satisfying the respective assumptions.

Definition 1 (OTA Denotation). Let Γ � E be an OTA, T be an LTS, and
ρR : RecProcVar → ST be a recursion environment. The denotation of Γ � E
relative to T and ρR is defined as:

�Γ � E�ρR � {EρRρA | ∀(X : Φ) ∈ Γ. ρA(X) |=T Φ}
where ρA : AssProcVar → ST ranges over assumption environments.

Example. Consider an operating system in the form of a concurrent server that
spawns off Handler processes each time it receives a request. These processes run
system calls for handling the given requests to produce a result (modeled by the

action out). Handler is defined as Handler
def
= In ‖ out.0 where In

def
= in.In.

Although it is possible to communicate with request handlers through the at-
tached channel (modeled by the action in), they do not react to further input.
A property one would like to prove of such a server is that it stabilizes when-
ever it stops receiving new requests. Eventual stabilization can be formalized
in the modal μ-calculus as stab Δ= νX.μY. [in]X ∧

[
out

]
Y . We can reduce this

verification task to proving that the open system modeled by the OTA

X : stab � X ‖ Handler

which consists of Handler and any stabilizing process X , eventually stabilizes.
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3 Extended Modal Transition Systems

In [3], we proposed Extended Modal Transition Systems (EMTS) as an explicit
state space representation for open systems with temporal assumptions, with
an extensional representation for the well-foundedness constraints. In this sec-
tion, we summarize the main definitions, and propose a concrete representa-
tion of well-foundedness constraints. The notion of EMTS is based on Larsen’s
Modal Transition Systems [2]. Kripke Modal Transition Systems (KMTS) have
been first introduced by Huth et. al. [15], and later refined by Grumberg and
Shoham [16] for representing state space abstractions in an abstraction refine-
ment framework. EMTS is similar to KMTS with a constraint added to deal
with termination assumptions.

In addition to may and must transitions for dealing with modalities, EMTSs
include sets of states (instead of single states) as targets to transitions to capture
disjunctive assumptions, and a set of prohibited infinite runs defined through a
coloring function to represent termination assumptions.

Definition 2 (EMTS). An extended modal transition system is a structure

E = (SE , A, −→�
E , −→�

E , c)

where (i) SE is a set of abstract states, (ii) A is a set of actions, (iii) −→�
E ,−→�

E
⊆ SE × A × 2SE are may and must transition relations, and (iv) c : SE → N

k is
a coloring function for some k ∈ N.

May transitions of an EMTS show possible behaviours of the closed systems
represented, while must transitions specify behaviour shared by all these closed
systems. A run (or may–run) of E is a possibly infinite sequence of transitions

ρE = s0
a0−→E s1

a1−→E s2
a2−→E . . . where for every i ≥ 0, si

ai

−→�
E S for

some S such that si+1 ∈ S. Must–runs are defined similarly. We distinguish

between two kinds of a-derivatives of a state s: ∂�
a (s) � {S | s

a

−→�
E S} and

∂�
a (s) � {S | s

a

−→�
E S}.

The coloring function c specifies a set WE of prohibited infinite runs, which
plays a similar role to fairness constraints of e.g. [7], by means of a parity accep-
tance condition (cf. [17, 10]). The function c is extended to infinite runs so that
c(ρE) = (c(s0)(1) · c(s1)(1) . . . , . . . , c(s0)(k) · c(s1)(k) . . .) is a k-tuple of infinite
words where c(s)(j) denotes the jth component of c(s). Let inf (c(ρE)(i)) denote
the set of infinitely occurring colors in the ith word of this tuple. Then the run
ρE is prohibited, ρE ∈ WE , if and only if max (inf (c(ρE)(i))) is odd for some
1 ≤ i ≤ k, i.e. the greatest number that occurs infinitely often in one of these k
infinite words is odd.

Next, we define a simulation relation between the states of an EMTS as a
form of mixed fair simulation (cf. e.g. [7, 18]).

Definition 3 (Simulation). R ⊆ SE × SE is a simulation relation between the
states of E if whenever s1Rs2 and a ∈ A:
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1. if s1
a

−→�
E S1, then there is a S2 such that s2

a

−→�
E S2 and for each s′1 ∈ S1,

there exists a s′2 ∈ S2 such that s′1Rs′2;

2. if s2
a

−→�
E S2, then there is a S1 such that s1

a

−→�
E S1 and for each s′1 ∈ S1,

there exists a s′2 ∈ S2 such that s′1Rs′2;
3. if the run ρs2 = s2

a1−→E s1
2

a2−→E s2
2

a3−→E . . . is in WE then every infinite
run ρs1 = s1

a1−→E s1
1

a2−→E s2
1

a3−→E . . . such that si
1R si

2 for all i ≥ 1 is also
in WE .

We say that abstract state s2 simulates abstract state s1, denoted s1 
 s2, if
there is a simulation relation R such that s1Rs2. Simulation can be generalized
to two different EMTSs E1 and E2 in the natural way.

Labeled transition systems can be viewed as a special kind of EMTS, where:
−→�

E =−→�
E , the target sets of the transition relation are singleton sets of states,

and the set of prohibited runs W is empty. We give the meaning of an abstract
state relative to a given LTS, as the set of concrete LTS states simulated by the
abstract state.

Definition 4 (Denotation). Let E be an EMTS, and let T be an LTS. The
denotation of abstract state s ∈ SE is the set �s�T � {t ∈ ST | t 
 s}. This
notion is lifted to sets of abstract states S′ ⊆ SE in the natural way: �S′�T �⋃

{�s�T | s ∈ S′}.

In the rest of the paper, we shall assume that EMTSs obey the following consis-

tency restrictions: −→�
E ⊆−→�

E , s
a

−→�
E S implies S is non-empty, and W does

not contain runs corresponding to infinite must–runs of the EMTS. The mean-
ing of abstract states would not be altered if the targets of may transitions were
restricted to singletons, but we prefer the targets of both kinds of transitions to
be sets of states for reasons of uniformity.

In section 5, we present a proof system for proving properties of abstract
states. For this purpose, we define when an abstract state s satisfies a modal
μ-calculus formula Φ. The global nature of the set W in EMTSs makes it cum-
bersome to define the denotation of a fixed point formula compositionally as a
set of abstract states. We therefore give an indirect definition of satisfaction, by
means of the denotation �s�T of a state s.

Definition 5 (Satisfaction). Let E be an EMTS, s ∈ SE be an abstract state
of E and Φ be a modal μ-calculus property. Then s satisfies Φ under valuation
V : PropVar → 2SE , denoted s |=E

V Φ, if and only if for any LTS T �s�T |=T
V Φ

where valuation V : PropVar → 2ST is induced by V as V(Z) Δ=
⋃

{�s�T | s ∈
V(Z)}.

Example. The state space of the open system introduced in the previous sec-
tion is captured by the EMTS in Figure 1. For any labeled transition system
T , the processes simulated by the state s1 are those denoted by the open term
X : stab � X ‖ Handler. The EMTS consists of six abstract states, each state
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Fig. 1. EMTS for X : stab � X ‖ Handler

denoting the set of processes which it simulates. For instance, states s5 and s6
in the example denote all processes which can engage in arbitrary interleavings
of in and out actions, but so that in has to be enabled throughout while out has
not. Infinite runs stabilizing on out actions are prohibited by the coloring of s3
and s6. A proof of eventual stabilization of the system using this representation
can be found in [19].

4 From OTA to EMTS

In this section, we address the problem of providing an explicit state space
representation for a given open term Γ � E, by means of an EMTS E . While
it is tempting to define −→�

E and −→�
E through transition rules, the global

nature of the well-foundedness constraints suggests that a direct construction
would be more convenient for automatic construction. We propose a two-phase
construction ε that translates an open term Γ�E to an EMTS, denoted ε(Γ�E).
In the first phase, an EMTS is constructed for each underspecified component.
This part is essentially a maximal model construction as developed by Grumberg
and Long for ACTL [7], extended to ACTL* by Kupferman and Vardi [8], and
applied by Sprenger et al to the fragment of the modal μ-calculus without least
fixed points and diamond modalities [9]. For the construction of the fixed point
cases, we adapt a powerset construction used earlier to convert fragments of the
modal μ-calculus to Büchi automata which was introduced by Dam [5] for linear
time μ-calculus and extended by Kaivola [6] to the Π2 fragment. The second
phase consists of combining the EMTSs produced in the first step according to
the structure of the term E. We then show the correctness of the construction by
relating the set of states simulated by the constructed EMTS to the denotation
of the given OTA.
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4.1 Maximal Model Construction

We define the function ε which maps modal μ-calculus formulas to triples of the
shape (E , S, λ), where E = (SE , A, −→�

E , −→�
E , c) is an EMTS, S ⊆ SE is a set

of start states of E , and λ : SE → 2PropV ar is a labeling function.
The function is defined inductively on the structure of Φ as shown in Table 1.

The meaning of open formulae that arises in intermediate steps are given by
the valuation which assigns the whole set of processes ST to each propositional
variable. Essentially, the particular valuation used does not play a role in the
final EMTS, since the properties used as assumptions of an OTA are closed.

In the definition, let ε(Φ1) be ((SE1 , A, −→�
E1

, −→�
E1

, c1), S1, λ1) and ε(Φ2) be
((SE2 , A, −→�

E2
, −→�

E2
, c2), S2, λ2) where SE1 and SE2 are disjoint sets. The new

state snew is not in SE1 and a and a′ are actions in A. The coloring functions
c1 : SE1 → N

k1 and c2 : SE2 → N
k2 color the states of E1 and E2 with integer

tuples of length k1 and k2 respectively.
For a set S, S |� denotes the largest transition-closed set contained in S such

that there is no element s ∈ S |� with the empty set as the target to a must

transition, that is, there is no s such that for some a ∈ A, s
a

−→�
E ∅ and each

state s is reachable from some start state.
In what follows, we explain the various cases of the construction. The EMTS

for formula tt consists of the single state stt with may transitions to itself for
every action, while the EMTS for ff is the empty EMTS. The EMTS for a
propositional variable consists of a single start state with may transitions to stt
for each action.

The states of the EMTS for the conjunction of two formulas is the cross
product of the states of the EMTSs constructed for each conjunct, excluding
pairs with incompatible capabilities. If a state s1, which has a must transition
for an action a to some set S1, is producted with a state s2 that has multiple may
transitions for a, then the product state has a must a-transition to the product
of S1 with the set of all may-successors of s2. The color of a state of ε(Φ1 ∧ Φ2)
is the concatenation of the colors of the paired states. In the case of disjunction,
the set of start states of ε(Φ1 ∨ Φ2) is the union of the start states of ε(Φ1) and
ε(Φ2) which reflects the union of their denotation. The color of a state is given
by padding with 0’s from either the left or right.

For the modal cases, a new state snew is set as the start state. The EMTS for
ε([a] Φ) has a single may transition for a, which is to the set of initial states of
ε(Φ). This is to ensure all simulated processes satisfy Φ after engaging in an a.
Additionally, there is a may transition to stt for all other actions. The EMTS for
ε(〈a〉Φ) includes a must transition for a from this start state to the start states
of ε(Φ), along with may transitions for all actions to stt forcing the simulated
processes to have an a transition to some process satisfying Φ and allowing any
other transitions besides.

The construction for fixed point formulae is a powerset construction, which is
similar to the constructions given in [5] and [6] for the purpose of constructing
Büchi Automata for linear time and the alternation-depth class Π2 fragments
of the μ-calculus, respectively. The states of ε(σZ.Φ) consist of sets of states of
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Table 1. Maximal Model Construction

– ε(tt) Δ= (({stt}, A, −→�
E , ∅, {stt �→ 0}), {stt}, {stt �→ ∅})

where stt

a

−→�
E {stt} for all a ∈ A.

– ε(ff)Δ= ((∅, A, ∅, ∅, ∅), ∅, ∅)

– ε(Z)Δ=(({snew, stt}, A, −→�
E , ∅, {stt �→ 0, snew �→ 0}), {snew}, {snew �→ {Z}, stt �→ ∅})

where snew

a

−→�
E {stt} and stt

a

−→�
E {stt} for all a ∈ A.

– ε(Φ1 ∧ Φ2)
Δ=(((SE1 × SE2)|�, A, −→�

E , −→�
E , W ), (SE1 × SE2)|� ∩ (S1 × S2), λ) where

−→�
E

Δ= {(s, r)
a

−→�
E S′ × ∪∂�

a (r) | s
a

−→�
E1

S′}

∪ {(s, r)
a

−→�
E ∪∂�

a (s) × R′ | r
a

−→�
E2

R′}

∪ {(s, r)
a

−→�
E S′ × R′ | s

a

−→�
E1

S′ ∧ r
a

−→�
E2

R′ ∧ S′ 	∈ ∂�
a (s) ∧ R′ 	∈ ∂�

a (r)}

−→�
E

Δ= {(s, r)
a

−→�
E (S′ × ∪∂�

a (r)) | s
a

−→�
E1

S′}

∪ {(s, r)
a

−→�
E (∪∂�

a (s) × R′) | r
a

−→�
E2

R′}

c
Δ= {(s, r) �→ c1(s) · c2(r) | s ∈ SE1 ∧ r ∈ SE2}

λ
Δ= {(s, r) �→ λ1(s) ∪ λ2(r) | s ∈ SE1 ∧ r ∈ SE2}

– ε(Φ1 ∨ Φ2)
Δ= ((SE1 ∪ SE2 , A, −→�

E , −→�
E , c), S1 ∪ S2, λ1 ∪ λ2) with:

−→�
E

Δ= −→�
E1

∪ −→�
E2

−→�
E

Δ= −→�
E1

∪ −→�
E2

c
Δ= {s �→ c1(s) · 0k2 | s ∈ SE1} ∪ {s �→ 0k1 · c2(s) | s ∈ SE2}

– ε([a] Φ1) Δ=((SE1 ∪ {snew, stt}, A, −→�
E , −→�

E1
, c), {snew}, λ) with:

−→�
E

Δ= −→�
E1

∪{stt

a′

−→�
E {stt} | a′ ∈ A} ∪ {snew

a

−→�
E S1}

∪ {snew

a′

−→�
E {stt} | a′ 	= a ∧ a′ ∈ A}

c
Δ= c1 ∪ {snew �→ 0k1} ∪ {stt �→ 0k1}

λ
Δ= λ1 ∪ {snew �→ ∅} ∪ {stt �→ ∅}

– ε(〈a〉 Φ1)
Δ= ε(ff) if S1 = ∅

ε(〈a〉 Φ1)
Δ= ((SE1 ∪ {snew, stt}, A, −→�

E , −→�
E , c), {snew}, λ) otherwise, with:

−→�
E

Δ= −→�
E1

∪{snew

a

−→�
E S1} ∪ {snew

a′

−→�
E {stt} | a′ ∈ A} ∪ {stt

a′

−→�
E {stt} | a′ ∈ A}

−→�
E

Δ= −→�
E1

∪{snew

a

−→�
E S1}

c
Δ= c1 ∪ {snew �→ 0k1} ∪ {stt �→ 0k1}

λ
Δ= λ1 ∪ {snew �→ ∅} ∪ {stt �→ ∅}

– ε(σZ.Φ1) ((2SE1 |�, A,−→�
E ,−→�

E , cσ), 2SE1 |� ∩{{s} | s ∈ S1}, λ) where σ ∈ {ν, μ} with:

−→�
E

Δ= {{s1, . . . , sn}
a

−→�
E S | ∃i.∃S′

i.si

a

−→�
E1

S′
i∧

S = ∂P ((∪∂�
a (s1), . . . , S′

i, . . . ,∪∂�
a (sn)), S1, λ1, Z)}

∪ {{s1, . . . , sn}
a

−→�
E S | ∀j.∃S′

j.sj

a

−→�
E1

S′
j ∧ S′

j 	∈ ∂�
a (sj)∧

S = ∂P ((S′
1, . . . , S′

n), S1, λ1, Z)}

−→�
E

Δ= { {s1, . . . , sn}
a

−→�
E S | ∃i.∃S′

i.si

a

−→�
E1

S′
i∧

S = ∂P ((∪∂�
a (s1), . . . , S′

i, . . . ,∪∂�
a (sn)), S1, λ1, Z)}

cν({s1, . . . , sn})(j) Δ=

8>>><
>>>:

maxodd
1≤i≤n

(c1(si)(j)) if ∀i.Z 	∈ λ1(si)

even�

s∈SE1

c1(s)(j) if ∃i.Z ∈ λ1(si)

cμ({s1, . . . , sn})(j) Δ=

8>>><
>>>:

maxodd
1≤i≤n

(c1(si)(j)) if ∀i.Z 	∈ λ1(si)

odd�

s∈SE1

c1(s)(j) if ∃i.Z ∈ λ1(si)

λ
Δ= {{s1, . . . , sn} �→

S
1≤i≤n

λ1(si) − {Z} | {s1, . . . , sn} ∈ 2SE1 }
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ε(Φ) and its start states are singletons containing some start state of ε(Φ). An
invariant of the maximal model construction is that start states do not have
incoming transitions. (The case for ε(tt) is the only exception and can be easily
adapted to satisfy the invariant.) For a transition of state q = {s1, . . . , sn} of
ε(σZ.Φ), each state si has a transition in ε(Φ). A member state of the target
of this transition, then, contains a derivative for each si. A member of the tar-
get state additionally contains an initial state of ε(Φ) if one of the derivatives
included is labeled by Z. The definition of Table 1 makes use of the target set
function ∂P defined below.

Definition 6 (Target Set Function ∂P). Let Φ be a modal μ-calculus for-
mula, σ be either μ or ν, ε(Φ) be (E1,S,λ) where E1 = (SE1 , A, −→�

E , −→�
E , c)

is an EMTS, S ⊆ SE1 is a set of start states, λ : SE1 → 2PropV ar is a func-
tion that maps states of E to propositional variables, c : SE → Nk is a col-
oring function that maps states of E to k-tuples, and let Z ∈ PropV ar be a
propositional variable. Given a tuple consisting of a target set for each element
of a state of ε(σZ.Φ), the function ∂P : (2SE1 × . . . × 2SE1 ) × 2SE1 × (SE1 →
2PropV ar) × PropV ar → 22SE1 defines the target set of a transition of ε(σZ.Φ)
for this state as follows:

∂P((S1, . . . , Sn), S, λ, Z) Δ= {{s1, . . . , sn} | ∀i.si ∈ Si∧ � ∃j.Z ∈ λ(sj)}∪
{{s1, . . . , sn, s0} | ∀i.si ∈ Si ∧ ∃j.Z ∈λ(sj) ∧ s0 ∈S}

Each component of the color of state q is determined by comparing the corre-
sponding entries of the member states si. When, for at least one si, this entry
is odd, the greatest of the corresponding odd entries is selected as the entry of
q, otherwise the maximum entry is selected for the same purpose. In Table 1,
the function maxodd selects the greater of two numbers if both of them are odd
or both of them are even, and the odd one otherwise. The color of q is further
updated if it contains a state si labeled by Z. When Z identifies a greatest fixed
point formula, each entry of the constructed tuple is defined to be the least even
upper bound of the integers used in this entry of ε(Φ). Whereas, when Z identi-
fies a least fixed point formula, the least odd upper bound of the integers is the
entry for the color of q. In Table 1, least even and least odd upper bounds are

denoted by the operators
even
� and

odd
� , respectively.

4.2 Composing EMTSs

We extend the function ε to the domain of OTAs so that ε(Γ � E) = (E ,S,λ),
where E = (SE , A, −→�

E , −→�
E , c) is an EMTS, S ⊆ SE is the set of start states

of E , and λ : SE → 2RecProcV ar is a labeling function.
The function ε is defined inductively on the structure of E as shown in Table 2.

In the definition, we let ε(Γ � E1) be ((SE1 , A, −→�
E1

, −→�
E1

, c1), S1, λ1) and
ε(Γ �E2) be ((SE2 , A, −→�

E2
, −→�

E2
, c2), S2, λ2), where SE1 and SE2 are disjoint

sets. The new state snew is not in SE1 . The coloring functions c1 : SE1 → N
k1

and c2 : SE2 → N
k2 color the states of E1 and E2 with integer tuples of length k1

and k2 respectively.
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Table 2. EMTS Construction for Process Algebra Terms

– ε(Γ � 0)Δ=(({snew}, A, ∅, ∅, {snew �→ 0}), {snew}, {snew �→ ∅})
– ε(Γ � X)Δ= ε(Φ) if X ∈ AssProcV ar

where Φ =
�

X:Ψ ∈ Γ

Ψ ( defaults to tt when Γ contains no assumption on X ).

– ε(Γ �X)Δ=(({snew}, A, ∅, ∅, {snew �→ 0}), {snew}, {snew �→ {X}}) if X ∈ RecProcV ar

– ε(Γ � a.E1)
Δ= ((SE1 ∪ {snew}, A, −→�

E , −→�
E , c), {snew}, λ1 ∪ {snew �→ ∅}) with:

−→�
E

Δ= −→�
E1

∪{snew

a

−→�
E S1}

−→�
E

Δ= −→�
E1

∪{snew

a

−→�
E S1}

c
Δ= c1 ∪ {snew �→ 0k1}

– ε(Γ � E1 + E2)
Δ= ((SE1 ∪ SE2 ∪ (S1 × S2), A, −→�

E , −→�
E , c), S1 × S2, λ)

−→�
E

Δ= −→�
E1

∪ −→�
E2

∪{(s, r)
a

−→�
E S′ | s ∈ S1 ∧ r ∈ S2 ∧ (s

a

−→�
E1

S′ ∨ r
a

−→�
E2

S′)}

−→�
E

Δ= −→�
E1

∪ −→�
E2

∪{(s, r)
a

−→�
E S′ | s ∈ S1 ∧ r ∈ S2 ∧ (s

a

−→�
E1

S′ ∨ r
a

−→�
E2

S′)}
c

Δ= {s �→ c1(s) · 0k2 | s ∈ SE1} ∪ {r �→ 0k1 · c2(r) | r ∈ SE2}
∪ {(s, r) �→ c1(s) · c2(r) | (s, r) ∈ S1 × S2}

λ
Δ= λ1 ∪ λ2 ∪ {(s, r) �→ λ1(s) ∪ λ2(r) | s ∈ S1 ∧ r ∈ S2}

– ε(Γ � fixX.E1)
Δ=((SE1 , A, −→�

E , −→�
E , c1), S1, λ) with:

−→�
E

Δ= {s
a

−→�
E S | (s

a

−→�
E1

S) ∨

(∃s1 ∈ S1.s1

a

−→�
E1

S ∧ X ∈ λ1(s) ∧ s is reachable from s1)}

−→�
E

Δ= {s
a

−→�
E S | (s

a

−→�
E1

S) ∨

(∃s1 ∈ S1.s1

a

−→�
E1

S ∧ X ∈ λ1(s) ∧ s is reachable from s1)}
λ

Δ= {s �→ (λ1(s) − {X}) | s ∈ SE1}
– ε(Γ � E1 ‖ E2)

Δ= ((SE1 × SE2 × {1, 2}, A, −→�
E , −→�

E , c), S1 × S2 × {1, 2}, λ)

−→�
E

Δ= {(s, r, x)
a

−→�
E S′ × {r} × {1} | s

a

−→�
E1

S′}

∪ {(s, r, x)
a

−→�
E {s} × R′ × {2} | r

a

−→�
E2

R′}

−→�
E

Δ= {(s, r, x)
a

−→�
E S′ × {r} × {1} | s

a

−→�
E1

S′}

∪ {(s, r, x)
a

−→�
E {s} × R′ × {2} | r

a

−→�
E2

R′}
c

Δ= {(s, r, 1) �→ c1(s) · 0k2 | s ∈ SE1 ∧ r ∈ SE2}
∪ {(s, r, 2) �→ 0k1 · c2(r) | s ∈ SE1 ∧ r ∈ SE2}

λ
Δ= {(s, r, x) �→ ∅ | s ∈ SE1 ∧ r ∈ SE2 ∧ x ∈ {1, 2}}

The EMTS corresponding to the nil process 0 consists of an abstract state
without outgoing transitions, indicating that no transition is allowed for
processes simulated by this state. If a process variable X in the term E stands
for an underspecified component of the system, that is if X is an assumption
process variable, then the EMTS for X is a maximal model for the conjunction
of the properties specified for this component in the assumption list Γ .

The EMTS for a recursion process variable X is a single state without outgo-
ing transitions, since the capabilities of the processes simulated are determined
by the binding fix-expression. The function λ labels the state X . Given the EMTS
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for the term of the fix-expression where X is free, the transitions of the start
states are transferred to the states labeled by X .

The EMTS for a subterm prefixed by an action a is given by a start state
with a must a-transition to the set of start states of the EMTS for the subterm.
The EMTS for the sum operator consists of an EMTS where the start states
are the cross product of the start states of the EMTSs for the subterms. It is
assumed for this case that there are no incoming transitions to the start states
of the EMTSs being combined. This is an invariant of the construction, except
the case for tt which can be trivially converted to an equivalent EMTS to satisfy
the property.

Finally, the states of the EMTS for a parallel composition of two components
consist of a state from each component. Each state has transitions such that one
of the components make a transition while the other stays in the same state.
Each state is further marked by 1 or 2 to keep track of which component has
performed the last transition; this is necessary to enable a run of the composition
if the interleaved runs are enabled.

4.3 Correctness Results

The aim of the above construction is to capture, by means of an EMTS, exactly
those behaviors denoted by the given OTA. The construction is sound (resp.
complete) if the denotation of the OTA is a subset (resp. superset) of the deno-
tation of the resulting EMTS. Our first result establishes that the first part of
the construction is a maximal model construction for the modal μ-calculus.

Theorem 1. Let T be a transition-closed LTS, Φ be a closed and guarded modal
μ-calculus formula and ε(Φ) = (E, S, λ). Then �S�T = ||Φ||T .

Our next result shows that the construction is sound and complete when as-
sumptions exist on only one of the components that are running in parallel and
the rest of the system is fully determined.

Theorem 2. Let T be a transition-closed LTS, Γ �E‖t be a guarded linear OTA
where E does not contain parallel composition and t is closed, and let ε(Γ �E‖t)
= (E, S, λ). Then �S�T is equal to the set �Γ �E ‖t�ρ0 up to bisimulation, where
ρ0 maps each recursion process variable X to 0.

Theorems 1 and 2 are proved by induction on the structure of the logical formula
and the process term, respectively. The proofs can be found in [19].

In the general case, when multiple underspecified components run in parallel,
we only have soundness: our construction is sound for systems without dynamic
process creation. For systems with dynamic process creation, the construction
does not terminate.

Theorem 3. Let T be a transition-closed LTS, Γ � E be a guarded linear OTA
where every recursion process variable in the scope of parallel composition is
bound by a fix operator in the same scope, and let ε(Γ � E) = (E, S, λ). Then
the set �S�T includes �Γ � E�ρ0 up to bisimulation.
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The proof of the theorem is as the proof of Theorem 2, but includes a more
general case for parallel composition and can be found in [19].

Our last result reflects the fact that verification of open systems in the pres-
ence of parallel composition is undecidable for the modal μ-calculus in general.
Completeness results can, however, be obtained for various fragments of the μ-
calculus, such as ACTL, ACTL* and the simulation logic of [9]. In our approach,
the tasks of constructing a finite representation of the state space in the form
of an EMTS and the task of verifying properties of this representation are sep-
arated. This allows different logics to be employed for expressing assumptions
on components and for specifying system properties, giving rise to more refined
completeness results.

5 A Proof System for EMTS

In [3], we presented a proof system for verifying that an abstract state s of
an EMTS E satisfies a modal μ-calculus formula Φ. In this section, we give a
summary of this proof system and provide an alternative termination condition
that uses the coloring function c instead of the earlier condition that assumed
an extensional definition of the set of prohibited runs WE . The system is a
specialization of a proof system by Bradfield and Stirling [20, 21] for showing
μ-calculus properties for sets of LTS states. The relationship between the two
proof systems is clear when one considers that each EMTS state denotes a set
of LTS states.

A proof tree is constructed using the rules below, where σ ranges over μ and ν.
The construction starts with the goal and progresses in a goal-directed fashion,
checking at each step if a terminal node was reached.

s �E
V Φ ∧ Ψ

s �E
V Φ s �E

V Ψ

s �E
V Φ ∨ Ψ

s �E
V Φ

s �E
V Φ ∨ Ψ

s �E
V Ψ

s �E
V σZ.Φ

s �E
V Z

s �E
V [a] Φ

s1 �E
V Φ . . . sn �E

V Φ
{s1, . . . , sn} = ∪ ∂�

a (s)

s �E
V Z

s �E
V Φ

Z identifies σZ.Φ
s �E

V 〈a〉Φ

s1 �E
V Φ . . . sn �E

V Φ
{s1, . . . , sn} ∈ ∂�

a (s)

A successful tableau (or proof) is a finite proof tree having successful terminals
as leaves. If n : r �E

V Z is a node where Z identifies a fixed point formula, and
there is an identical ancestor node of n, n′ : r �E

V Z and for any other fixed point
variable Y on this path, Z subsumes Y , then node n is called a σ-terminal. So
no further rules are applied to it. The most recent node making n a σ-terminal
is named n’s companion. The conditions for a leaf node r �E

V Ψ of a proof tree
to be a successful terminal are listed below.

Successful Terminals

1. Ψ = tt, or else Ψ = Z, Z is free in the initial formula, and r ∈ V(Z)
2. Ψ = [a] Φ and ∪∂�

a (r) = ∅
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3. Ψ = Z where Z identifies a fixed point formula σZ.Φ, and the sequent is a
σ-terminal with companion node n : r �E

V Ψ , then
(a) If σ = ν, then the terminal is successful.
(b) If σ = μ, then the terminal is successful if every infinite run of the EMTS

that corresponds to an infinite sequence of trails of the companion node
n0 is in WE . (The notion of trail is explained below.) When the set WE is
encoded using a coloring function c, the condition is that for any set ST

of trails of n0, there should exist 1 ≤ j ≤ k, so that max( ∪
T∈ST

c(α(T ))(j))

is odd. This ensures, for an infinite run wn0 = α(T1) ◦ α(T2) ◦ α(T3) . . .
where for all i ≥ 1, Ti is a trail of n0, that there exists some 1 ≤ j′ ≤ k
such that max (inf (c(wn0)(j′))) is odd.

Unsuccessful Terminals

1. Ψ = ff, or else Ψ = Z, Z is free in the initial formula, and r �∈ V(Z)
2. Ψ = 〈a〉Φ and ∪∂�

a (r) = ∅
3. Ψ = Z where Z identifies the least fixed point formula μZ.Φ, and the se-

quent is a σ-terminal with companion node n0, then the terminal is unsuc-
cessful if there exists a set ST of trails of n0 such that for every 1 ≤ j ≤ k,
max ( ∪

T∈ST

c(α(T ))(j)) is even. This means that some infinite run wn0 of the

EMTS, which corresponds to an infinite sequence of trails of the companion
node n0, is not in WE .

Trails and corresponding runs are defined as follows. Assume that node
nk:r �E

V Z is a μ-terminal and node n0:r �E
V Z is its companion. A trail T

of the companion node n0 is a sequence of state–node pairs (r, n0), . . . , (r, nk)
such that for all 0 ≤ i < k, one of the following holds:

1. ni+1 : ri+1 �E
V Ψi+1 is an immediate successor of ni : ri �E

V Ψi, or
2. ni is the immediate predecessor of a σ-terminal node n′ : r′ �E

V Z ′ where
n′ �= nk whose companion is nj : r′ �E

V Z ′ for some j : 0 ≤ j ≤ i, ni+1 = nj ,
and ri+1 = r′.

In order to convert a trail to a corresponding run, we use the function α, which
returns the empty string when the trail contains only one pair, and is defined
for longer trails as follows:

α((r1, n1) · (r2, n2) · T ) Δ=

⎧
⎪⎪⎨

⎪⎪⎩

(r1
a−→E r2) · α((r2, n2) · T )

�a or �a-rule
is applied to n1

α((r2, n2) · T ) otherwise.

A formula is prime if whenever it logically implies a disjunction then it also
implies one of the disjuncts. As we show in [3], the proof system is sound and
complete for all formulas with only prime subformulas. An example proof is
given in [19].
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6 Conclusion

In this paper we investigate a state space representation for open systems spec-
ified as open process terms with behavioural assumptions written in the modal
μ-calculus. This representation can serve both as a graphical specification formal-
ism and as a basis for verification, supporting state space exploration based tech-
niques and state visualization for interactive methods. We present a two-phase
construction of such a representation from an open term with assumptions, and
show it sound for terms without dynamic process creation and complete for sys-
tems with a single underspecified component. Finally, we adapt an existing proof
system for the task of proving behavioural properties of open systems based on
the given state space representation. The relative simplicity of the proof system
and its use is an indication of the adequateness of EMTSs for open system state
space representation.

Future work is required to characterize more precisely the construction and
the μ-calculus fragments for which it is complete, taking into account that the
fragment for specifying component assumptions need not be the same as the
fragment chosen for specifying system properties. In addition to automatic state
space construction, interactive state space exploration will be considered, allow-
ing a wider class of open systems to be handled. Finally, we plan to demonstrate
the utility of the proposed approach by means of tool support and case studies.
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