
System Description: Verification of Distributed
Erlang Programs

Thomas Arts 1, Mads Dam, Lars-hke Fredlund, and Dilian Gurov 2

1 Computer Science Laboratory, Ericsson Telecom AB, 126 25 Stockholm, Sweden,
thomas@cslab, ericsson, se

2 Swedish Institute of Computer Science, Box 1263, S-164 28 Kista, Sweden,
{mfd, fred, dilian}@sics, se

1 Introduction

Software written for telecommunication applications has to meet high quality
demands. Correctness is one major concern; the activity of proving formally that
a system is correct is called verification. Telecommunications software is highly
concurrent, and testing is often not capable of guaranteeing correctness to a
satisfactory degree. The software we are faced with consists of many, relatively
small modules, written in the functional language Erlang [AVWW96]. These
modules define the behaviour of a number of processes operating in parallel
and communicating through asynchronous message-passing. New processes can
be generated during execution. Because of the complexity of such software, our
approach to verification is to prove that the software satisfies a set of properties
formally specified in a suitable logic language. The specification language we
use is based on Park's p-calculus [Par76,Koz83], extended with Erlang-specific
features. This is a very powerful logic, due to the presence of least and greatest
fixed point recursion, allowing the formalization of a wide range of behavioural
properties.

To facilitate verification of Erlang programs of realistic size we are devel-
oping a verification tool implementing a tableau-based proof system described
in [DFG98]. Our main objectives are to achieve a satisfactory degree of au-
tomation, proof reuse, easy navigation through proof tableaux, and meaningful
feedback about the current proof state, so as to require user intervention only
when this is really necessary, and to assist in taking informed proof decisions.

2 The Erlang Programming Language

We consider a core fragment of the Erlang programming language with dynamic
networks of processes operating on data types such as numbers, lists, tuples, or
process identifiers (pid's), using asynchronous, first-order call-by-value commu-
nication via unbounded ordered message queues called mailboxes. Real Erlang

C. Kirchner and H. Kirchner (Eds.): Automated Deduction, CADE-15
LNAI 1421, pp. 38-41, 1998. c~) Springer-Verlag Berlin Heidelberg 1998

System Description: Verification of Distributed Erlang Programs 39

has several additional features such as communication guards, exception han-
dling, modules, and a host of built-in functions. The abstract syntax of Core
Erlang expressions is summarised as follows:

Var :=
Atom :=
Pid :=
Pattern :=
Match :=
Expr :--

xl lzl . . .

atblcl . . .

< 1 > 1 < 2 > 1 < 3 > [. . .

Var I Atom I Pid I {Pattern, Pattern}
Pattern - > Expr I Match; Pattern - > Expr
Var I Atom I P id l {Expr, Expr} I [] I [ExprlExpr] I
case Expr of Match end I Expr, Expr I
Atom(Expr) I spaun(Atom, Expr) I
s e l f I Expr !Expr I r e c e i v e Match end

Core Erlang expressions are built from variables, atoms (like integers and
operations on integers), process identifiers (pid's), and patterns by forming tu-
pies (pairs), lists, case expressions, sequential composition, function application,
generating new processes (spawn), obtaining the identity of the current process
(se l f) , as well as constructs for input and output to a specified recipient.

3 T h e S p e c i f i c a t i o n L a n g u a g e

The property specification logic we use can be summarised as a first-order pred-
icate logic, extended with labelled "box" and "diamond" modalities, least and
greatest fixed point recursion, and some Erlang-specific atomic predicates. This
is a powerful logic capable of expressing a wide range of important system prop-
erties, ranging from type-like assertions to complex reactivity properties of the
interaction behaviour of a telecommunication system. For example, the formula
#X . (n = OV3n' . (X(n ')An = n '+ 1)) defines the type of natural numbers, i.e. the
least predicate which is true at zero and is closed under successor. As another
example, uX.(Vx.~?x] (3y. < q!y > X)) expresses the capability of a system to
react to messages received by process p by sending replies to process q. Far more
complicated properties, such as fairness and responsiveness properties, can be
expressed by alternating least and greatest fixed points.

4 T h e P r o o f S y s t e m

A large number of algorithms, tableau systems and proof systems for verifying
processes against modal #-calculus specifications can be found in literature, e.g.
[EL86,SW91,Gur98] to cite but a few. However, most of these approaches are
only applicable for finite-state processes, or at least processes where properties
depend only on a finite portion of a potentially infinite-state process. The com-
plexity of the software we consider and the properties we want to verify demand
a new approach.

40 Thomas Arts et al.

We build upon work begun by Dam in [Dam95], where instead of closed cor-
rectness assertions of the shape S : r (where S is a system and r a specification),
open correctness assertions of the shape F k- S : r where F expresses a set of
assumptions s : r on components s of S, are considered. Thus, the behaviour of
S is specified parametrically upon the behaviour of its components.

This idea of open correctness assertions gave rise to the development of a
Gentzen-style proof system [DFG98] that serves as the basis for the implemen-
tation of the verification tool. On top of a fairly standard proof system we added
two rules: a "cut" rule for decomposing proofs of a system with multiple pro-
cesses to proofs about the components, and a discharge rule based on detecting
loops in the proof. Roughly, the goal is to identify situations where a latter proof
node is an instance of an earlier one on the same proof branch, and where appro-
priate fixed points have been safely unfolded. The discharge rule thus takes into
account the history of assertions in the proof tree. In terms of the implementa-
tion this requires the preservation of the proof tree during proof construction.
Combined, the cut rule and the discharge rule allow general and powerful induc-
tion and co-induction principles to be applied. Examples include induction on
the dynamically evolving architecture of a system, induction on datatypes, and
co-induction on possibly infinite computation sequences.

5 T h e E r l a n g V e r i f i c a t i o n T o o l

From a user's point of view, proving a property of an Erlang program using the
verification tool involves "backward" (i.e., goal-directed) construction of a proof
tree (tableau). The user is provided with commands for defining the initial node
of the proof tree, for expanding a proof tree node ('the current proof node can
be considered proved if the following nodes are proved instead'), for navigating
through the proof tree, for checking whether the discharge rule is applicable,
and for visualizing the current state of the proof tree using the daVinci graph
manipulation tool [FW94]. Since the whole proof tree is maintained, proof reuse
and sharing is greatly facilitated. The verification tool provides also a scripting
language which can be used for automating several proof tasks, such as model-
checking of simple formulas.

As an example, consider a resource managing process rm, which accepts
requests req from users u for using resources. The resource manager reacts to each
such request by generating a new resource handling process rh, with the only task
to serve this special request by sending a reply rep to the corresponding user.
Naturally, such a system should not send spontaneous replies without having
received initiating requests. To keep the example simple, we shall formalise an
approximation of this property, namely that the system can never engage in an
infinite sequence of output actions. This property (let us denote it with r can
be expressed as vX.~Y.(VuNreq.[u?req]X A VuNrep.[u!rep]Y). Our initial proof
obligation is '% rm : r By applying a command which attempts to model-
check process rm until some new process is generated, we automatically obtain
a new proof obligation of the shape '% rm [[rh : r namely that the system

System Description: Verification of Distributed Erlang Programs 41

after generating one request handler also has the same property. So, some form
of induction on the global process structure is necessary here. This is easily
achieved by applying (manually) the cut rule, reducing the previous obligation
to "s : r ~ s II rh : r (denote this proof obligation by (*)), namely to proving
that any process s satisfying r when put in parallel with process rh, also satisfies
r In fact, this is the only point at which human intervention is required. By
invoking the same command, the tool explores the possible actions of s and rh,
and ultimately completes the proof. If s II rh performs an input action, this can
only be because of s, and if s evolves thereby to s r, then the resulting proof
obligation becomes "s' : r ~ s ~ II rh : r which is automatically discharged
against (*). Similarly, if s [I rh performs an output action, this can only be
because of rh, and since after this action rh ceases to exist, the resulting proof
obligation becomes "s : r t- s : r which is an instance of the usual identity
axiom of Gentzen-style proof systems.

At the present point in time a first prototype tool has been completed with
the functionality described above. A number of small examples have been com-
pleted, including, as the largest, a correctness proof concerning trust of a mobile
billing agent reported in [DFG98]. Further information on the project and the
prototype implementation can be found at h t t p : / / ~ , s i c s . s e / f d t / e r l m a g / .
We expect to announce a public release of the system by the end of 1998. Future
work includes bigger case studies, increased support for proof automation, and
better handling of fairness.

References

[AVWW96]

[Dam95]

[DFG98]

[EL86]

[GurgSl

[FW941

[Koz83]

[Par76]

[SW91]

J. Armstrong, R. Verding, C. Wikstr6m and M. Wiliams, Concurrent Pro-
gramming in Erlang. 2:nd edition, Pretence Hall, 1996.
M. Dam, Compositional proof systems for model checking infinite state
processes. In Proceedings CONCUR'95, LNCS 962, p. 12-26, 1995.
M. Dam, L.-s Fredlund and D. Gurov, Toward Parametric Verification of
Open Distributed Systems. To appear in: H. Langmaack, A. Pnueli, W.-P.
De Roever (eds.), Compositionality: The Significant Difference, Springer
Verlag, 1998.
E.A. Emerson and C. Lei, Efficient model checking in fragments of the
propositional mu-calculus. In Proceedings LICS'86, p. 267-278, 1986.
D. Gurov, Specification and Verification of Communicating Systems with
Value Passing. Ph.D. Thesis, Department of Computer Science, University
of Victoria, March 1998.
M. Fr6hlich and M. Werner. The graph visualization system daVinci -
a user interface for applications. Technical Report 5/94, Department of
Computer Science, Bremen University, 1994.
D. Kozen, Results on the propositional #-calculus. Theoretical Computer
Science, 27:333-354, 1983.
D. Park, Finiteness is mu-ineffable. Theoretical Computer Science, 3:173-
181, 1976.
C. Stirling and D. Walker, Local model checking in the modal mu-calculus.
Theoretical Computer Science, 89(1):161-177, 1991.

