Model Checking of Multi-Applet JavaCards

Lars-Ake Fredlund
Swedish Institute of Computer Science

Joint work with

Gennady Chugunov Dilian Gurov

Swedish Institute of Computer Science Royal Institute of Technology

CCCCCCC Nice VeriSafe Workshop 02 — p.1

Problem Statement

Analyse inter-applet method call patterns
Motivating example due to Lanet et al:

logFull
getTrs
getTrs
getBalance
getTrs
getTrs
getBalance

logFull
SSSSSS H
TTTTTTTTTTT
COTENEE SIGS Nice VeriSafe Workshop 02 — p.2

VerifiCard Context

WPA4: Analysis of Applet properties on the byte code level
INRIA Sophia-Antipolis & SICS

A common card model:

#® A set of applets consisting of methods with program
points

EXxecution steps are:
s Methods calls and returns
o Intra method control flow

Data is completely abstracted away

3% SICS
CCCCCCC Nice VeriSafe Workshop 02 — p.3

VerifiCard Context I

Barthe, Gurov and Huisman (FASE’02): a compositional
program model

Each applet has its own control stack of program
points: (A, Py ... Pp)

A compositional operational semantics for deriving
global transitions A; || ... || A, — from local ones A; —

A compositional proof system
(Gentzen style, logic the modal j-calculus)
(1) AirFrance : ¢4
(2) Purse : ¢p
(3) RentACar : ¢g
(4) Xa: 04, Xp:op, Xp:0p = Xy || Xp || Xr: 0

TTTTTTTTTTT

Cs:ﬁﬁ: SIGS AIrFrance ” Purse H RentAcar : Cb Nice VeriSafe Workshop 02 — p.4

CCCCCCC

Our Verification Approach

Application of model checking techniques by

combining existing tools to achieve “push-button”
verification

Useful for checking individual applets
AirFrance : ¢4
#® Generally for checking closed systems
AirFrance || Purse || RentACar : ¢

but not for open ones

Nice VeriSafe Workshop 02 — p.5

Overview of Method

[JavaCard byte code class j [JavaCard byte code class j JavaCard byte code class j

N

l

[Call-graph model]

l

l

[Pushdown system]

O

LTL specification J

Nice VeriSafe Workshop 02 — p.6

SWEDISH
INSTITUTE OF
COMPUTER
SCIENCE

SICS

Call Graph Example

SxampleT BrcTes

[ICRACXCPoI0S

oo

. Gaceamperexcd) ¢

Fi

gl
g
£
a
&

@ D

G0

To o o

e

test of graph reduction procedures

Nice VeriSafe Workshop 02 — p.7

Call Graph Construction

Method call graphs produced by INRIA Rennes JVM
analysis tool (Jenset et al) based on Soot

Call graphs abstract away from data dependencies
Branching constructs introduce graph nondeterminism

Construction is class based
Applet instances cannot be distinguished

Class based (package based) analysis is a good fit
with the JavaCard firewall mechanism

3% SICS
CCCCCCC Nice VeriSafe Workshop 02 — p.8

Generating Call-Graphs for JavaCard

The adaptation of the call-graph construction tool for
JavaCard mostly concerns information collection

For each applet class (inherits from Appl et class) the
call graphs for methods i nstal |, sel ect, desel ect,
process and get Shar eabl el nt er f aceObj ect are

generated

#® For each applet class the call-graphs for methods
callable using sharable interfaces are generated

package purse. Loyalty;

public interface LoyaltyPurselnterface
extends Shareable { void grantPoints (byte[] buffer); }

3% SICS
CCCCCCC Nice VeriSafe Workshop 02 — p.9

Pushdown System

Pushdown systems are a natural execution model for
programs with recursion

A pushdown system (PDS) is a tuple

P2 (P,T,A)

() P is a finite set of control locations
(i) T'is a finite set of stack symbols
(i) A C(PxT)x(PxI™)is afinite set of rewrite rules
of the shape (p,~) — (¢, o)

#® Arun of PiIs asequence p = (pg,00) (p1,01) (p2,02) - -
such that for all i, there is a rule (p;,v) — (p;+1,0) and
wel*suchthato; =~y -wand o1 =0-w

3% SICS
CCCCCCC Nice VeriSafe Workshop 02 — p.10

Translation of Call-Graphs to PDSs

Translation of call-graphs to pushdown systems is
easy. A single control location c is used and the stack
symbols encode JavaCard program points

°

A common abstraction is to collapse API calls

A method call from program point p to method m
becomes the PDS rule

(¢,;p) — (¢, m - p)

A method return from program point p becomes

(& p) = (¢ €)

3% SICS
CCCCCCC Nice VeriSafe Workshop 02 — p.11

Correctness Properties

Linear Temporal Logic used to specify properties for
model checking:
=¢, ¢ N, ¢V 1), true, false
X ¢ (¢ holds in the next configuration)
o U v (¢ holds until ¢y eventually holds)
o W Y (¢ holds until ¢ holds)

#® The basic predicates are program points (p), classes
(class ¢) and packages (package p)

#® The satisfaction relation of a formula ¢ Is defined
relative toarun, r = ¢
Example: (co,p-0) (c1,01)... Ep iff p=p/

The judgment m + ¢ expresses the claim that every run
r of the PDS from the configuration (c, m) satisfies ¢

3% SICS
CCCCCCC Nice VeriSafe Workshop 02 — p.12

Specification Patterns

Specification patterns are used to write more readable
properties and to provide the link to compositional
verification (u-calculus)

#® Examples:

Eventually 6 = true U ¢
Always ¢ 2 (true U —¢)

Never ¢ 2 Always —¢

Withinm ¢ 2 m b ¢
a CannotCall m = Always (package a = — (X m))
m1 NeverTriggers ms 2 Within m1 (Never mg)
mo After myq a (Never ma) W my
A

Eventually m1 = Never mo

Nice VeriSafe Workshop 02 — p.13

CCCCCCCC
CCCCCCC

w2 SIES m1 Excludes M9

Example Revisited

With these specification patterns the example

logFull
getTrs
getTrs
getBalance
getTrs
getTrs
getBalance

logFull

violates the correctness property

Within AirFrance.logFull

CannotCall RentACar Purse.getTrs
INSCT%%E’%%:: SIGS Nice VeriSafe Workshop 02 — p.14

Model Checking of PDSs

Could not find an efficient y-calculus based model
checker

Instead: Moped for LTL (Schwoon)

Approach: a Blchi automaton is built for the negation
of the formula and combined with the original PDS into
a “Buchi” PDS; check If there is an accepting run

°

Time complexity O(p?b?) where p is the size of the
pushdown system and b is the size of the Buchi
automaton; space complexity is O(p?b?).

Diagnostics: reduced PDS exhibiting the error
Encoding of basic properties via regular expressions

3% SICS
CCCCCCC Nice VeriSafe Workshop 02 — p.15

In Practice

(package purse.Purse

[interface PurselL oyalty

|

~

method bonusPointsToPurse
R
implements
[class Purse j
NG
package purse.LoyaltyA .-~
[class LoyaltyA]

—

—~

—~

—

-

(" package purse.Loyalty

(interface LoyaltyPurse

method grantPoints
\

~N

J

method grantLoyaltyPoints
- .

A
[interface LoyaltyLoyalty)

] |
implements
E class Loyalty]
=7 A
R !
~ " extends : extends
package purse.LdyaltyB
E class LoyaltyB]

A concrete example (a modified purse from the SUN
JavaCard development toolkit):

Nice VeriSafe Workshop 02 — p.16

Example Properties

Property A: Calls to gr ant Poi nt s are not transitive

For all loyalty applets L and L/, a call to
L.gr ant Poi nt s never triggers a call to
L'.grant Poi nts

loyaltyA.grantPoints NeverTriggers loyaltyB.grantPoints

Property B: An object constructor is not called from the
process method

Any constructor invocation is recognized by the regular

. A ! :
expression Constructor = . *\ .. *\.<init> .*

Checking:

Within purse.Purse.process Never Constructor

3% SICS
CCCCCCC Nice VeriSafe Workshop 02 — p.17

Example Results

Example size approx. 1400 lines of Java code

® About the same number of rewrite rules with API
abstracted away

Call graph generation approx. 15 seconds

°

Model checking each property takes less than a
second

3% SICS
CCCCCCC Nice VeriSafe Workshop 02 — p.18

Conclusions

Automatic and light-weight verification techniques
attractive to end users

°

Possible to implement on-card in the near future?

|[s abstracting away all data dependencies too coarse
an abstraction?

Work in progress; first polished prototype to be
delivered during autumn

Paper describing initial experiments and results will be
presented at CARDIS’'02

3% SICS
CCCCCCC Nice VeriSafe Workshop 02 — p.19

	Model Checking of Multi-Applet JavaCards
	Problem Statement
	VerifiCard Context
	VerifiCard Context II
	Our Verification Approach
	Overview of Method
	Call Graph Example
	Call Graph Construction
	Generating Call-Graphs for JavaCard
	Pushdown System
	Translation of Call-Graphs to PDSs
	Correctness Properties
	Specification Patterns
	Example Revisited
	Model Checking of PDSs
	In Practice
	Example Properties
	Example Results
	Conclusions

