
Model Checking of Multi-Applet JavaCards

Lars-Åke Fredlund
Swedish Institute of Computer Science

Joint work with

Gennady Chugunov Dilian Gurov

Swedish Institute of Computer Science Royal Institute of Technology

Nice VeriSafe Workshop 02 – p.1

Problem Statement

Analyse inter-applet method call patterns

Motivating example due to Lanet et al:

Purse AirFrance RentACar

logFull

getTrs

getTrs

getBalance

getTrs

getTrs

getBalance

logFull

Nice VeriSafe Workshop 02 – p.2

VerifiCard Context

WP4: Analysis of Applet properties on the byte code level
INRIA Sophia-Antipolis & SICS

A common card model:

A set of applets consisting of methods with program
points

Execution steps are:
Methods calls and returns
Intra method control flow

Data is completely abstracted away

Nice VeriSafe Workshop 02 – p.3

VerifiCard Context II

Barthe, Gurov and Huisman (FASE’02): a compositional
program model

Each applet has its own control stack of program
points: 〈A,P0 · . . . · Pn〉

A compositional operational semantics for deriving
global transitions A1 ‖ . . . ‖ An → from local ones Ai →

A compositional proof system
(Gentzen style, logic the modal µ-calculus)

(1) AirFrance : φA

(2) Purse : φP

(3) RentACar : φR

(4) XA : φA, XP : φP , XR : φR ` XA ‖ XP ‖ XR : φ

AirFrance ‖ Purse ‖ RentACar : φ Nice VeriSafe Workshop 02 – p.4

Our Verification Approach

Application of model checking techniques by
combining existing tools to achieve “push-button”
verification

Useful for checking individual applets

AirFrance : φA

Generally for checking closed systems

AirFrance ‖ Purse ‖ RentACar : φ

but not for open ones

Nice VeriSafe Workshop 02 – p.5

Overview of Method

Call−graph model

Pushdown system

Moped model checker (Schwoon)

INRIA Rennes Call Graph Tool

JavaCard byte code class JavaCard byte code class JavaCard byte code class

LTL specification

Translator to pushdown system

Nice VeriSafe Workshop 02 – p.6

Call Graph Example

test of graph reduction procedures

package example7

example7.Exc2

<init>

example7.ExcTest

<init>

main

m2

m1

example7.Exc1

<init>

example7.Exc3

<init>

79

80

2

3

65

67

71

72

75

6

7

8

9

17

10

1819

2620

throw(example7.Exc3)

exc

throw(example7.Exc2)

exc

throw(example7.Exc1)

exc

33

34

35

36

52

37

38

49 catch(example7.Exc1)

exc

catch(example7.Exc2)

exc

catch(example7.Exc3)

exc

39

50

51 54

5861

53

55

56

57

59

60

62

63

76

77

82

83

Nice VeriSafe Workshop 02 – p.7

Call Graph Construction

Method call graphs produced by INRIA Rennes JVM
analysis tool (Jenset et al) based on Soot

Call graphs abstract away from data dependencies
Branching constructs introduce graph nondeterminism

Construction is class based
Applet instances cannot be distinguished

Class based (package based) analysis is a good fit
with the JavaCard firewall mechanism

Nice VeriSafe Workshop 02 – p.8

Generating Call-Graphs for JavaCard

The adaptation of the call-graph construction tool for
JavaCard mostly concerns information collection

For each applet class (inherits from Applet class) the
call graphs for methods install, select, deselect,
process and getShareableInterfaceObject are
generated

For each applet class the call-graphs for methods
callable using sharable interfaces are generated
package purse.Loyalty;

...

public interface LoyaltyPurseInterface

extends Shareable { void grantPoints (byte[] buffer); }

Nice VeriSafe Workshop 02 – p.9

Pushdown System

Pushdown systems are a natural execution model for
programs with recursion

A pushdown system (PDS) is a tuple

P
∆
= 〈P,Γ,∆〉

(i) P is a finite set of control locations
(ii) Γ is a finite set of stack symbols
(iii) ∆ ⊆ (P × Γ)× (P × Γ?) is a finite set of rewrite rules

of the shape 〈p, γ〉 −→ 〈q, σ〉

A run of P is a sequence ρ = 〈p0, σ0〉 〈p1, σ1〉 〈p2, σ2〉 · · ·
such that for all i, there is a rule 〈pi, γ〉 −→ 〈pi+1, σ〉 and
ω ∈ Γ? such that σi ≡ γ · ω and σi+1 ≡ σ · ω

Nice VeriSafe Workshop 02 – p.10

Translation of Call-Graphs to PDSs

Translation of call-graphs to pushdown systems is
easy. A single control location c is used and the stack
symbols encode JavaCard program points

A common abstraction is to collapse API calls

A method call from program point p to method m
becomes the PDS rule

〈c, p〉 → 〈c,m · p〉

A method return from program point p becomes

〈c, p〉 → 〈c, ε〉

Nice VeriSafe Workshop 02 – p.11

Correctness Properties

Linear Temporal Logic used to specify properties for
model checking:
¬φ, φ ∧ ψ, φ ∨ ψ, true, false

X φ (φ holds in the next configuration)
φ U ψ (φ holds until ψ eventually holds)
φ W ψ (φ holds until ψ holds)

The basic predicates are program points (p), classes
(class c) and packages (package p)

The satisfaction relation of a formula φ is defined
relative to a run, r |= φ

Example: 〈c0, p · σ〉 〈c1, σ1〉 . . . |= p′ iff p ≡ p′

The judgment m ` φ expresses the claim that every run
r of the PDS from the configuration 〈c,m〉 satisfies φ

Nice VeriSafe Workshop 02 – p.12

Specification Patterns

Specification patterns are used to write more readable
properties and to provide the link to compositional
verification (µ-calculus)

Examples:
Eventually φ

∆
= true U φ

Always φ
∆
= ¬ (true U ¬φ)

Never φ
∆
= Always ¬φ

Within m φ
∆
= m ` φ

a CannotCall m
∆
= Always (package a⇒ ¬ (X m))

m1 NeverTriggers m2
∆
= Within m1 (Never m2)

m2 After m1
∆
= (Never m2) W m1

m1 Excludes m2
∆
= Eventually m1 ⇒ Never m2

Nice VeriSafe Workshop 02 – p.13

Example Revisited

With these specification patterns the example

Purse AirFrance RentACar

logFull

getTrs

getTrs

getBalance

getTrs

getTrs

getBalance

logFull

violates the correctness property

Within AirFrance.logFull

CannotCall RentACar Purse.getTrs

Nice VeriSafe Workshop 02 – p.14

Model Checking of PDSs

Could not find an efficient µ-calculus based model
checker

Instead: Moped for LTL (Schwoon)

Approach: a Büchi automaton is built for the negation
of the formula and combined with the original PDS into
a “Büchi” PDS; check if there is an accepting run

Time complexity O(p2b3) where p is the size of the
pushdown system and b is the size of the Büchi
automaton; space complexity is O(p2b2).

Diagnostics: reduced PDS exhibiting the error

Encoding of basic properties via regular expressions

Nice VeriSafe Workshop 02 – p.15

In Practice

A concrete example (a modified purse from the SUN
JavaCard development toolkit):

package purse.LoyaltyA

package purse.Purse

implements

class LoyaltyA

class Purse

interface PurseLoyalty

method bonusPointsToPurse

package purse.Loyalty

package purse.LoyaltyB

class LoyaltyB

class Loyalty

interface LoyaltyPurse

interface LoyaltyLoyalty

method grantPoints

method grantLoyaltyPoints

extends

implements

extends

Nice VeriSafe Workshop 02 – p.16

Example Properties

Property A: Calls to grantPoints are not transitive

For all loyalty applets L and L′, a call to
L.grantPoints never triggers a call to
L′.grantPoints

loyaltyA.grantPoints NeverTriggers loyaltyB.grantPoints

Property B: An object constructor is not called from the
process method

Any constructor invocation is recognized by the regular

expression Constructor
∆
= .*\..*\.<init>_.*

Checking:

Within purse.Purse.process Never Constructor

Nice VeriSafe Workshop 02 – p.17

Example Results

Example size approx. 1400 lines of Java code

About the same number of rewrite rules with API
abstracted away

Call graph generation approx. 15 seconds

Model checking each property takes less than a
second

Nice VeriSafe Workshop 02 – p.18

Conclusions

Automatic and light-weight verification techniques
attractive to end users

Possible to implement on-card in the near future?

Is abstracting away all data dependencies too coarse
an abstraction?

Work in progress; first polished prototype to be
delivered during autumn

Paper describing initial experiments and results will be
presented at CARDIS’02

Nice VeriSafe Workshop 02 – p.19

	Model Checking of Multi-Applet JavaCards
	Problem Statement
	VerifiCard Context
	VerifiCard Context II
	Our Verification Approach
	Overview of Method
	Call Graph Example
	Call Graph Construction
	Generating Call-Graphs for JavaCard
	Pushdown System
	Translation of Call-Graphs to PDSs
	Correctness Properties
	Specification Patterns
	Example Revisited
	Model Checking of PDSs
	In Practice
	Example Properties
	Example Results
	Conclusions

