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Abstract. This paper presents the use of a method – and its corre-
sponding tool set – for compositional verification of applet interactions
on a realistic industrial smart card case study. The case study, an elec-
tronic purse, is provided by smart card producer Gemplus as a test case
for formal methods for smart cards. The verification method focuses on
the possible interactions between different applets, co-existing on the
same card, and provides a technique to specify and detect illicit interac-
tions between these applets. The method is compositional, thus support-
ing post-issuance loading of applets. The correctness of a global system
property can algorithmically be inferred from local applet properties.
Later, when loading applets on a card, the implementations are matched
against these local properties, in order to guarantee the global property.
The theoretical framework underlying our method has been presented
elsewhere; the present paper evaluates its practical usability by means
of an industrial case study. In particular, we outline the tool set that we
have assembled to support the verification process, combining existing
model checkers with newly developed tools, tailored to our method.

1 Introduction

The growing market for smart cards and other small personal devices has in-
creased the need to use formal validation and verification techniques in industry.
These devices often contain privacy–sensitive information; this is the case in typ-
ical usages for smart cards such as health care information systems and electronic
purses. Therefore strong security guarantees are needed for their wide–spread ac-
ceptance. With the acceptance of evaluation schemes such as Common Criteria1

industry has come to realise that the only way to achieve such high guarantees
is to adopt the use of formal methods in industrial practice.

Various work has been done, aiming at the verification of different kinds of
properties of smart card applications. Properties under study are for example
functional correctness, confidentiality, availability and restrictions on informa-
tion flow. Often this work focuses on the correctness of a single applet, or of a set
� Partially supported by the EU as part of the VerifiCard project IST-2000-26328.
1 See http://www.commoncriteria.org.
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of applets that is known in advance. However, future generations of smart cards
are expected to allow post–issuance loading of applets, where newly installed
applets interact with the applets already present on the card. As a consequence,
at the time the card is issued, it is not known which applets it might contain.
Therefore, it is necessary to state minimal requirements for the applets that can
be loaded later on the card, and to be able to verify at loading time that the ap-
plets actually respect these requirements. Only then, existing applets can safely
communicate with new applets, without corrupting the security of the card.

In the present case study we focus on a particular kind of properties to
ensure the security of the card, namely the absence of illicit control flow between
the different applets. For multi–application smart cards, certain control flow
paths can be undesirable because of general platform–dependent restrictions,
like the recommendation to avoid recursion due to limited resources, or due
to application–specific restrictions, like undesirable information flow caused by
illicit applet interactions as studied in this paper.

In a companion paper we presented an algorithmic compositional verification
technique for such control flow based safety properties [14], using a temporal
logic specification language for specifying applet properties. These can be either
structural, interpreting formulae over the control flow graph of an applet, or
behavioural, interpreting formulae over applet behaviour. The approach is com-
positional in that it allows global control flow properties of the whole system to
be inferred from local control flow properties of the individual applets. In this
way, global security properties can be guaranteed to hold even in the presence
of post–issuance loading of applets, as long as these applets satisfy their local
properties. The latter check can be delegated to a separate authority not neces-
sarily possessing the code of the applets already residing on the card. However,
while the global properties can be behavioural or structural, we require the lo-
cal properties to be structural; our technique does not allow global behavioural
properties to be algorithmically inferred from local behavioural ones. For a more
detailed motivation for using structural assumptions the reader is referred to [14].

An important asset of our method is that the verification tasks involved are
all based on algorithmic techniques, as opposed to earlier work in which we de-
veloped a proof system for compositional verification [1]. Therefore, once the
specifications for the different applets and the illicit applet interaction are given,
all verifications can be done automatically, using push–button technology. This
paper presents the tool set that we have assembled to support the whole verifica-
tion process, and illustrates its usefulness by applying it to a realistic, industrial
electronic purse case study, provided by the smart card producer Gemplus. The
application is not actually used by Gemplus, but has been provided as a test
case to apply formal methods to smart card applications. The properties that
we verify illustrate typical application–dependent illicit applet interactions.

As far as we are aware, this work is the first to develop algorithmic techniques
for the compositional verification of control flow properties for applets. Earlier,
we used part of our tool set for non-compositional verification of control flow
properties [8]. The underlying program model has been inspired by the work of
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Besson et al. [2], who verify stack properties for Java programs. Our work differs
considerably from more known model checkers for multi-threaded Java such as
Bandera [11] and Java PathFinder [5]. In contrast to these tools, we focus on the
control flow of applications and the compositionality of the verification. Finally,
we mention the model checking algorithms for Push–Down Automata, developed
by Bouajjani et al. [4]. We use the implementation of these algorithms in the
model checker Alfred [13] to verify the correctness of the decomposition.

The paper is structured as follows. First, Section 2 outlines the general struc-
ture of the tool set. Next, Section 3 summarises the theoretical framework under-
lying our approach. Then, Section 4 introduces the electronic purse example, and
motivates the property that we are interested in. This property is formalised in
Section 5, together with appropriate local properties for the individual applets.
Finally, Section 6 discusses the use of our tool set to establish the correctness
of the property decomposition and of the local properties w.r.t. an implementa-
tion. For a more detailed account of the theoretical framework we refer to our
companion paper [14].

2 General Overview of the Approach

As explained above, we aim at checking the absence of illicit applet interac-
tions, given the possibility of post–issuance loading, by using a compositional
verification method. In our method, we identify the following tasks:

1. specification of global security properties as behavioural safety properties;
2. specification of local properties as structural safety properties;
3. algorithmic verification of property decompositions, ensuring that the local

properties imply the global ones; and
4. algorithmic verification of local properties for individual applets.

Our method is based on the construction of maximal applets w.r.t. structural
safety properties. An applet is considered to be maximal w.r.t. a property if it
simulates all applets respecting this property.

Concretely, suppose we want to prove that the composition of applets A
and B respects a security property, formulated as behavioural safety property
φ (Task 1). We specify structural properties σA and σB (Task 2) for which we
construct maximal applets θIA

(σA) and θIB
(σB), respectively (where IA and IB

are the interfaces of the applets A and B, respectively). We show, using exist-
ing model checking techniques, that their composition respects the behavioural
safety property φ, i.e. θIA

(σA) � θIB
(σB) |= φ. The validity of this assertion

corresponds to the correctness of the property decomposition (Task 3), since
the simulation pre–order is preserved under applet composition and behavioural
properties expressible in our logic are preserved by simulation. When we get con-
crete implementations for A and B, we use existing model checking techniques to
check whether these implementations respect σA and σB , respectively (Task 4).

To support our compositional verification method, we have developed a tool
set, combining existing model checking tools and newly developed tools, specific
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to our method. Figure 1 gives a general overview of our tool set. Section 3 below
introduces the underlying theoretical framework.

As input we have for each applet either an implementation, or a structural
property, restricting its possible implementations, plus an interface, specifying
the methods provided and required by the applet. For these inputs, we construct
an applet representation, which is basically a collection of control flow graphs
representing methods, plus the applet interface. In case we have the applet im-
plementation, we use the Applet Analyser to extract the applet graph. In case
we have a structural property, we use the Maximal Model Constructor to con-
struct an applet graph that simulates all possible implementations of applets
respecting the formula. For a given applet implementation, the Applet Anal-
yser can also be used to obtain the applet interface. If required, applets can be
composed, using the applet composition operator �. This operation essentially
corresponds to forming the disjoint union of applets. Using the Model Generator
the resulting applet graphs are translated into models which serve as input for
different model checkers. If we want to check structural properties, we translate
the resulting graphs into CCS processes, which can be used as input for the
Edinburgh Concurrency Workbench (CWB) [9]. If for a composed system we
want to verify whether it respects a behavioural safety property, we translate
the composed graphs into Push–Down Automata (PDA), which form the input
for the model checker Alfred [13].

3 A Framework for Compositional Verification

This section outlines the theoretical framework underlying our tool set. For a
more comprehensive account of the technical details the reader is referred to [14].

3.1 Program Model

As we are only studying control flow properties, we abstract away from all data
in our program model. Further, since we are only concerned with smart card
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applications, we only consider sequential programs2. Basically, an applet is a col-
lection of method graphs, plus an interface specifying which methods it provides
and requires. For each method, there is a method graph describing its possible
control flow. Edges in the graphs denote method calls or internal computations.

As explained above, we distinguish between structural level properties, re-
stricting possible implementations of methods, and behavioural level properties,
restricting the possible behaviour of methods. Therefore, we also have two differ-
ent views on applets (and methods): structural and behavioural. However, these
two views are instantiations of a single framework (see [14]).

General Framework. First we present the general framework, defining the notions
of model and specification over a set of labels L and a set of atomic propositions
A. These are later instantiated to the structural and behavioural level.

Definition 1. (Model) A model over labels L and atomic propositions A is
a structure M = (S, L,→, A, λ), where S is a set of states, L is a finite set
of labels, → ⊆ S × L × S is a transition relation, A is a finite set of atomic
propositions, and λ : S → P(A) is a valuation assigning to each state s the
atomic propositions that hold at s. A specification S over L and A is a pair
(M, E), where M is a model over L and A and E ⊆ S is a set of states.

Intuitively, one can think of E as the set of entry states of the model. We define
the usual notion of simulation ≤ (where related states satisfy the same atomic
propositions).

Applet Structure. Before instantiating the notion of model on the structural
level, we first define the notion of applet interface. Let Meth be a countably
infinite set of method names.

Definition 2. (Applet interface) An applet interface is a pair I = (I+, I−),
where I+, I− ⊆ Meth are finite sets of names of provided and required methods,
respectively. The composition of two interfaces I1 = (I+

1 , I−
1 ) and I2 = (I+

2 , I−
2 )

is defined by I1 ∪ I2 = (I+
1 ∪ I+

2 , I−
1 ∪ I−

2 ).

As mentioned above, a method specification is an instance of the general notion
of specification.

Definition 3. (Method specification) A method graph for m ∈ Meth over
a set M of method names is a finite model

Mm = (Vm, Lm, →m, Am, λm)

where Vm is the set of control nodes of m, Lm = M ∪ {ε}, Am = {m, r},
m ∈ λm(v) for all v ∈ Vm, i.e. each node is tagged with the method name, and
the nodes v ∈ Vm with r ∈ λm(v) are return points. A method specification for
m ∈ Meth over M is a pair (Mm, Em), where Mm is a method graph for m
over M and Em ⊆ Vm is a non–empty set of entry points of m.
2 For example, Java Card, a dialect of Java for programming smart cards, does cur-

rently not allow multi-threading.



Checking Absence of Illicit Applet Interactions: A Case Study 89

Table 1. Applet Transition Rules

(transfer)
m ∈ I+ v →m v′ v |= ¬r

(v, σ) ε−→ (v′, σ)

(call)
m1, m2 ∈ I+ v1

m2−−→m1 v′
1 v1 |= ¬r v2 |= m2 v2 ∈ E

(v1, σ)
m1call m2−−−−−−→ (v2, v′

1 · σ)

(return)
m1, m2 ∈ I+ v2 |= m2 ∧ r v1 |= m1

(v2, v1 · σ)
m2 ret m1−−−−−−→ (v1, σ)

An applet is basically a collection of method specifications and an interface. For
the formal definition we use the notion of disjoint union of specifications S1 �S2,
where each state is tagged with 1 or 2, respectively, and (s, i) a−→S1�S2 (t, i), for
i ∈ {1, 2}, if and only if s

a−→Si t.

Definition 4. (Applet) An applet A with interface I, written A : I, is defined
inductively by

– (Mm, Em) : ({m}, M) if (Mm, Em) is a method specification for m ∈ Meth
over M , and

– A1 � A2 : I1 ∪ I2 if A1 : I1 and A2 : I2.

An applet is closed if I− ⊆ I+, i.e. it does not require any external methods.
Simulation instantiated to this particular type of models is called structural
simulation, denoted as ≤s.

Applet Behaviour. Next we instantiate specifications on the behavioural level.

Definition 5. (Behaviour) Let A = (M, E) : (I+, I−) be a closed applet where
M = (V, L,→, A, λ). The behaviour of A is described by the specification b(A) =
(Mb, Eb), where Mb = (Sb, Lb, →b, Ab, λb) such that Sb = V × V ∗, i.e. states
are pairs of control points and stacks, Lb = {m1 l m2 | l ∈ {call, ret}, m1, m2 ∈
I+} ∪ {ε}, →b is defined by the rules of Table 1, Ab = A, and λb((v, σ)) = λ(v).

The set of initial states Eb is defined by Eb = E × {ε}, where ε denotes the
empty sequence over V .

Note that applet behaviour defines a Push–Down Automaton (see, e.g., [7] for a
survey of verification techniques for infinite process structures). We exploit this
by using a model checker for PDAs to verify behavioural properties.

Also on the behavioural level, we instantiate the definition of simulation ≤b.
Any two applets that are related by structural simulation, are also related by
behavioural simulation, but the converse is not true (since behavioural simulation
only requires reachable states to be related).
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3.2 Property Specification Language

We use a fragment of the modal µ–calculus [12], namely the one excluding dia-
monds and least fixed points, to express properties restricting applet structure
and behaviour3. We call this fragment simulation logic, because it is able to
characterise simulation logically and, vice versa, satisfaction of a formula corre-
sponds to being simulated by a maximal model derived from the formula. Similar
logics have been studied earlier for capturing branching–time safety properties
(see e.g. [3]). Let X be a countably infinite set of variables over sets of states. Let
X ∈ X , a ∈ L and p ∈ A denote state variables, labels and atomic propositions,
respectively. The formulae in simulation logic are inductively defined as follows.

φ ::= p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ | νX.φ

We only consider closed formulae of simulation logic, i.e. all variables X ∈ X
have to be bound by some binder νX. Their semantics is standard, see e.g.
Kozen [12]. The satisfaction relation is extended from states to specifications as
usual: a specification satisfies a formula if all its entry points do. This relation
is instantiated at both the structural and the behavioural level, denoted as |=s

and |=b, respectively. For each applet A : I, we have an atomic proposition for
each m ∈ I+ and an atomic proposition r. At the structural level, labels are in
I− ∪ {ε}, and boxes are interpreted over edges in the method graphs. At the
behavioural level, labels are in Lb (see Definition 5), and boxes are interpreted
over transitions (see Table 1).

Writing specifications in the modal µ–calculus is known to be hard (even in
our fragment), therefore we define a collection of commonly used specification
patterns (inspired by the Bandera Specification Pattern project [10]). In our ex-
perience, all relevant behavioural control flow safety properties can be expressed
using a small set of such patterns – however, it is important to remember that
one can always fall back on the full expressiveness of simulation logic. Below we
present several specification patterns, both at structural and behavioural level.
These are all used in the case study at hand.

Structural Specification Patterns. We shall use Everywhere with the obvious
formalisation:

Everywhere σ = νZ. σ ∧ [ε, I−]Z

as well as the following patterns, for method sets M and M ′ of an applet with
interface I:

M HasNoCallsTo M ′ =
(∧

m∈M ¬m
) ∨ (Everywhere [M ′] false)

HasNoOutsideCalls M = M HasNoCallsTo (I− \ M)

The first pattern specifies that method graphs in the set M do not contain edges
labelled with elements of the set M ′. The second specifies a closed set of methods
M , i.e. methods in M only contain calls to methods in M .
3 In fact, in our theoretical framework, we use an alternative, but equivalent formula-

tion, expressing formulae as modal equation systems.
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Behavioural Specification Patterns. Pattern Always is standard:

Always φ = νZ. φ ∧ [Lb]Z

For specifying that a property φ is to hold within a call to method m, we use
the Within pattern formalised as follows:

Within m φ = ¬m ∨ (Always φ)

Notice that this is a typical behavioural pattern: the notion of Within a method
invocation encompasses all methods that might be invoked during the call to m.
This reachability notion cannot directly be expressed at the structural level.

Finally, for applet A : (I+, I−) and method set M , we define:

CanNotCall A M =
∧

m∈I+

∧

m′∈M

[m call m′] false

This pattern holds for state (v, σ) if no call to a method in M is possible.

3.3 Maximal Models and Compositional Verification

Our compositional verification rests on the idea of constructing a so–called max-
imal model for a given property (w.r.t. a simulation pre–order). For every struc-
tural property σ and applet interface I, we can construct a so–called maximal
applet θI(σ), i.e. an applet with interface I that simulates all applets with this
interface, respecting property σ. As the simulation pre–order is preserved un-
der applet composition and behavioural properties expressible in the logic are
preserved by the simulation pre–order, we have the following compositional ver-
ification principle:

A |=s σ θI(σ) � B |=b φ

A � B |=b φ
(beh-comp)

This rule states that the composition of applets A : I and B : J satisfies
(global) behavioural property φ, if one can find a (local) structural property
σ, satisfied by A, such that the composition of the maximal applet w.r.t. σ and
interface I, composed with applet B satisfies property φ. Thus, if we are given a
structural property for an applet A and an implementation for an applet B we
can verify whether their composition satisfies the required properties. We use the
Maximal Model Constructor to compute θI(σ), the Applet Analyser to extract
the applet graph for B, and the Model Generator to produce input for Alfred,
so it can check θI(σ) � B |=b φ. Later, when an implementation for applet A be-
comes available, it can be verified independently whether it respects σ, by using
the Applet Analyser to extract the applet graph for A, and the Model Generator
to generate input for CWB, which is used to check structural properties.

Note that, since applet composition is commutative, we can apply the com-
position principle above to its second premise and also replace applet B by a
local structural property (in the same way as displayed above for applet A).
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4 Illicit Applet Interactions in the Electronic Purse

The Gemplus electronic purse case study PACAP [6] is developed to provide a
realistic case study for applying formal methods to Java Card applications. The
case study defines three applications: CardIssuer, Purse and Loyalty. Typically, a
card will contain one card issuer and one purse applet, but several loyalty applets.
The property that we verify for this case study only is concerned with Purse
and Loyalty, therefore we will not discuss CardIssuer any further. If the card
holder wishes to join a loyalty program, the appropriate applet can be loaded
on the card. Subsequently, the purse and the different loyalties will exchange
information about the purchases made, so the loyalty points can be credited.
Current versions of Java Card use shareable interfaces to exchange this kind of
information, but in the future this is likely to change. However, for our techniques
it is not relevant how this communication exactly takes place, we only require
that it is done in terms of method calls. The goal of our work is to ensure that
no illicit interactions can happen between the applets on the card.

To understand the property that we are interested in, we look closer at how
the purse and the loyalties communicate about the purchases made with the
card. For efficiency reasons, the electronic purse keeps a log table of all credit and
debit transactions, and the loyalty applets can request the (relevant) information
stored in this table. Further, loyalties might have so–called partner loyalties,
which means that a user can add up the points obtained with the different
loyalty programs. Therefore, each loyalty should keep track of its balance and a
so–called extended balance. If the user wishes to know how many loyalty points
are available exactly, the loyalty applet will ask for the relevant entries of the
purse’s log table in order to update its balance, and it will also ask the balances
of partner loyalties in order to compute the extended balance.

If the log table is full, existing entries will be replaced by new transactions.
In order to ensure that loyalties do not miss any of the logged transactions, they
can subscribe to the so–called logFull service. This service signals all subscribed
loyalties that the log table will be overwritten soon, and that therefore they
should update their balances. Typically, loyalties will have to pay for this service.

Suppose we have an electronic purse, which contains besides the electronic
purse itself two partner loyalties, say L1 and L2. Further, suppose that L1 has
subscribed to the logFull service, while L2 has not. If in reaction to the logFull
message L1 always calls an interface method of L2 (say to ask for its balance),
L2 can implicitly deduce that the log table might be full. A malicious imple-
mentation of L2 might therefore request the information stored in the log table
before returning the value of its local balance to L1. If loyalties have to pay for
the logFull service, such control flow is unwanted, since the owner of the Purse
applet will not want other loyalties to get this information for free.

This is a typical example of an illicit applet interaction, that our compo-
sitional verification technique can detect. Below, we show how the absence of
this particular undesired scenario can be specified and verified algorithmically.
We allow an arbitrary number of loyalty applets on the card. Since all loyalty
applets have the same interface, we apply class–based analysis. We assume that
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at verification time only the Purse applet has been loaded on the card; the code
of the loyalty applet class is not yet available. We use compositional reasoning
to reduce the global behavioural property expressing the absence of the scenario
described above to local structural properties of the purse and loyalty applet
classes. The purse applet code is then checked against its structural property.
When the loyalty applet code becomes available, possibly after the card has been
issued, it is checked against its structural property before loading it on the card.

5 Specification

This section presents the formalisation of the global and local security properties
that we need for our example. The next section discusses the verification of the
decomposition and of the implementations w.r.t. the local properties.

As mentioned above, communication between applets takes place via so–
called shareable interfaces. The Purse applet defines a shareable interface for
communication with loyalty applets, containing among others the methods get-
Transaction, and isThereTransaction. The Loyalty applet defines shareable in-
terfaces for communication with Purse and with other loyalty applets, containing
among others the method logFull. The set I+

P denotes the methods provided by
Purse, and MSI

L denotes the set of shareable interface methods of Loyalty.

The Global Security Property. To guarantee that no loyalty will get the opportu-
nity to circumvent subscribing to the logFull service, we require that if the Purse
calls the logFull method of a loyalty, within this call the loyalty does not commu-
nicate with other loyalties. However, as the logFull method is supposed to call
the Purse for its transactions, we also have to exclude indirect communications,
via the Purse. We require the following global behavioural property:

A call to Loyalty.logFull does not trigger any calls to any other loyalty.

This property can be formalised with the help of behavioural patterns:

(φ) Within Loyalty.logFull
(CanNotCall Loyalty MSI

L ) ∧ (CanNotCall Purse MSI
L )

Thus, if loyalty receives a logFull message, it cannot call any other loyalty (be-
cause it cannot call any of its shareable interface methods), and in addition, if
the Purse is activated within the call to logFull, it cannot call any loyalty applet.

Property Decomposition. Next, we phrase local structural properties for Purse
and Loyalty. Here we explain their formalisation; Section 6 presents how we actu-
ally verify that they are sufficient to guarantee the global behavioural property.
Within Loyalty.logFull, the Loyalty applet has to call the methods Purse.isThere-
Transaction and Purse.getTransaction, but it should not make any other exter-
nal calls (where calls to shareable interface methods of Loyalty are considered
external4). Thus, a natural structural property for Loyalty would be, informally:
4 Notice that since we are performing class–based analysis, we cannot distinguish

between calls to interface methods of other instances, and those of the same instance.
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From any entry point of Loyalty.logFull, the only reachable external calls
are calls to Purse.isThereTransaction and Purse.getTransaction.

Reachability is understood in terms of an extended graph of Loyalty containing
explicit inter–method call edges.

For the Purse applet we know that within a call to Loyalty.logFull it can
only be activated via Purse.isThereTransaction or Purse.getTransaction.

From any entry point of Purse.isThereTransaction or Purse.getTransaction,
no external call is reachable.

Again, reachability should be understood in terms of a graph containing explicit
inter–method call edges. As our program model does not contain these, the
above properties cannot be formalised directly in our logic. However, they can be
formalised on a meta–level; for example for the Purse, the property holds, if and
only if there exist sets of methods MgT ⊆ I+

P , containing Purse.getTransaction,
and MiTT ⊆ I+

P , containing Purse.isThereTransaction, such that:

(σP ) HasNoOutsideCalls MiTT ∧ HasNoOutsideCalls MgT

These sets represent the methods in Purse which can be called transitively from
Purse.isThereTransaction and Purse.getTransaction, respectively. We can use
the Applet Analyser to find them. Similarly, to express the property for Loyalty
we need a set of methods MlF ⊆ I+

L containing Loyalty.logFull, such that:

(σL) MlF HasNoCallsTo I−
L \ (

M \ MSI
L

)

where M = MlF ∪ {Purse.isThereTransaction, Purse.getTransaction}. Calls
to MSI

L are excluded, since, as explained above, the methods in MSI
L are treated

as external. Since we assume that the code of the loyalty applet class is not yet
available at verification time, MlF has to be guessed. Here we take the (possibly
too) simple choice MlF = {Loyalty.logFull}. Under this choice, σL simplifies to
MlF HasNoCallsTo I−

L \ {Purse.isThereTransaction, Purse.getTransaction}.
However, if later one wishes to load an implementation of Loyalty with a different
set MlF , correctness of the decomposition can be re–established automatically.

6 Verification

Now that we have specified global and local security properties, we have to show:
(1) the local properties are sufficient to establish the global security property, and
(2) the implementations of the different applets respect the local properties. In
order to do this, we identify the following (independent) tasks, discussed below.

1. Verifying the correctness of the property decomposition by:
(a) building θIP

(σP ) and θIL
(σL), the maximal applets for σP and σL; and

(b) model checking θIP
(σP ) � θIL

(σL) |=b φ.
2. Verifying the local structural properties by:

(a) extracting the applet graphs P of the Purse and L of the Loyalty ; and
(b) model checking P |=s σP and L |=s σL.



Checking Absence of Illicit Applet Interactions: A Case Study 95

Table 2. Statistics for maximal applet construction.

# nodes # edges constr. time
σL 474 277 700 25 min.
σP 2 786 603 128 13 hrs.

As explained above, we have developed a tool set to support these verification
tasks, combining existing model checking tools (CWB and Alfred) with our own
tools (Maximal Model Constructor, Applet Analyser and the Model Generator).

6.1 Correctness of the Property Decomposition

To check correctness of the property decomposition, we construct maximal ap-
plets w.r.t. the specifications of the Purse and the Loyalty, and verify whether
their composition respects the global behavioural property.

Constructing Maximal Applets. Given applet interface I and structural safety
property σ, we produce θI(σ), the maximal applet for I and σ, using the proce-
dure described in [14], implemented in Ocaml as the Maximal Model Construc-
tor. The construction proceeds in three steps. First, the interface I is translated
into a structural safety property characterising all behaviour possible under this
interface. Then, the conjunction of this formula and the property σ is trans-
formed into a semantically equivalent normal form, which can directly be trans-
lated into a model. This model is the maximal applet θI(σ). In general, the size
of a maximal applet is exponential in the size of the input. We implemented
some optimisations, which save both time and, more importantly, memory.

In the maximal applet for σL we

iTT, gTiTT, gT, eps

v1

v2 Loyalty.m, r

Loyalty.m

I−, eps
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I−, eps

I−, eps

Fig. 2. Methods in θIL(σL)

can distinguish between two kinds of
methods, which are illustrated in Fig-
ure 2: the methods in MlF (that is
logFull) have the left method graph,
and only contain calls to Purse.iTT
and Purse.gT. All other methods pro-
vided by Loyalty have the form of the
right method graph, and do not con-
tain any restrictions on the method
calls. Each method of the applet θIL

(σL) has two nodes. The maximal applet for
σP is similar, but each method consists of two to eight nodes depending on the
set it belongs to (MiTT , MgT or I+

P ). Table 2 provides statistics on the size of
the constructed graphs, and the corresponding construction time on a Pentium
1.9 GHz machine.

Model Checking Behavioural Properties. Once the maximal applets θIP
(σP ) and

θIL
(σL) are constructed, we produce their composition θIP

(σP ) � θIL
(σL). The

behaviour of this applet is a (possibly infinite state) model generated by a push-
down automaton (PDA) given as a set of production rules. The model checking



96 Marieke Huisman et al.

Table 3. Statistics on applet graph extraction and verification.

# classes # methods # nodes # edges extr. time verif. time
Loyalty 11 237 3 782 4 372 5.6 sec. 12 sec.
Purse 15 367 5 882 7 205 7.5 sec. 19 sec.

problem for this class of models is exponential both in the size of the formula
and in the number of control states of the PDA [7]. We base our experiments on
Alfred [13], a demonstrator tool for model checking alternation–free modal µ–
calculus properties of PDAs. We developed the Model Generator – implemented
in Java – to translate applet graphs (in this case θIP

(σP ) � θIL
(σL)) to a PDA

representation, which serves as input to Alfred. We were successful in checking
correctness of (similar) property decompositions for applets with a small number
of interface methods; when dealing with applets with large interfaces as in our
case study, however, Alfred failed to scale up. Currently, we are investigating
how to encode applets more efficiently, into context-free processes, which are
equivalent to PDAs with a single control state. For this class of processes the
model checking complexity becomes polynomial in the number of productions.

6.2 Correctness of the Local Structural Properties

Extracting Applet Graphs. The Applet Analyser is used to extract applet graphs
and the appropriate set of entry points from the byte code of an applet. This is a
static analysis tool, built on top of the SOOT Java Optimization Framework [15].
The byte code of a Java Card applet is transformed into Jimple basic blocks,
while abstracting away variables, method parameters, and calls to methods of
the Java Card API. We use SOOT’s standard class hierarchy analysis to produce
a safe over-approximation of the call graph. If, for example, the static analysis
cannot determine the receiver of a virtual method call, a call edge is generated
for every possible method implementation. Table 3 provides statistics on the
extracted applet graphs.

Model Checking Structural Properties. Applet graphs can be viewed as finite
Kripke structures. This allows structural properties expressed in temporal log-
ics to be checked using standard model checking tools such as CWB [9]. The
Kripke structures of the CWB are labelled transition systems generated from
CCS process definitions. For this purpose, we use the Model Generator to con-
vert applet graphs into a representation as CCS processes. Since CCS does not
have the notion of valuation, atomic propositions p assigned to a node in an ap-
plet are represented by probes, that is, self–loops labelled by p. The translation
also produces a set of process constants corresponding to the entry nodes of the
respective applet. To model check an applet graph against a structural safety
property, all initial states have to be checked individually. We encode the prop-
erties to be checked as µ–calculus formulae, replacing atomic propositions p by
〈p〉 true. Since CWB supports parametrised formulae, our specification patterns
can directly be encoded.
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When verifying L |=s σL, we realised that in fact the choice of MlF was too
optimistic, as the implementation of Loyalty.logFull uses several other (internal)
methods. Using the Applet Analyser we computed MlF as the set of methods
reachable from Loyalty.logFull, adapted the specification σL and reverified L |=s

σL. Reverifying the decomposition can be done automatically. The last column
in Table 3 gives the verification times for model checking P |=s σP and L |=s σL

on a Pentium 1.9 GHz machine.

7 Conclusions
This paper demonstrates a method to detect illicit interactions between applets,
installed on a single smart card. The method is compositional, and therefore
supports secure post–issuance loading of applets. In particular, the method al-
lows to establish global control flow safety properties for a composed system,
provided sufficient local properties are given for the applets. When the applets
are loaded (post–issuance) it only remains to be shown that they respect their
local property. while the global properties can be structural or behavioural, the
local properties need to be structural. To support the specification process, a col-
lection of specification patterns is proposed, with appropriate translations into
the underlying logic.

We assembled a tool set – combining existing and newly developed tools – to
support the verification tasks that arise in our method. Once the specifications
are available, all verifications can be done using push–button technology. Thus,
it can be automatically checked whether an applet can be accepted on the card.

The case study shows that the presented verification method and tool set
can be used in practice for guaranteeing absence of illicit applet interactions.
However, there are some possibilities for improvement. Finding suitable local
properties, which requires ingenuity, is complicated by the requirement of for-
mulating local properties structurally. Another difficulty stems from the inherent
algorithmic complexity of two of the tasks: both maximal model construction and
model checking behavioural properties are problems exponential in the size of
the formula, thus making optimisations of these algorithms crucial for their suc-
cessful application. For some common property patterns such as Everywhere σ,
the size of the formula depends on the size of the interface. Therefore, it is crucial
to develop abstraction techniques to abstract away from method names which
are irrelevant to the given property.

Future work will thus go into fine–tuning the notion of interface, by defining
public and private interfaces. Now interfaces contain all methods provided and
required by a method. We wish to restrict the verification of the global safety
properties to public interfaces, containing only the externally visible methods,
provided and required by an applet. In order to check whether an implementa-
tion respects its local property, we will need to define an appropriate notion of
hiding. We also intend to extend the set of specification patterns that we use,
by investigating which classes of security properties generally are used. Finally,
on a more theoretical side, we will study if we can extend the expressiveness of
the logic used (e.g. by adding diamond modalities) and under what conditions
we can allow behavioural local properties.
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