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Abstract. We present a Gentzen-style sequent calculus for program veri�cation which ac-

comodates both model checking-like veri�cation based on global state space exploration, and

compositional reasoning. To handle the complexities arrising from the presence of �xed-point

formulas, programs with dynamically evolving architecture, and cut rules we use transition

assertions, and introduce �xed-point approximants explicitly into the assertion language. We

address, in a game-based manner, the semantical basis of this approach, as it applies to the

entailment subproblem. Soundness and completeness results are obtained, and examples are

shown illustrating some of the concepts.

1 Introduction

In a number of recent papers [1, 2, 4, 5, 9] proof-theoretical frameworks for compositional veri�cation

have been put forward based on Gentzen-style sequents of the shape � ` �, where the components

of � and� are correctness assertions P : �. Several programming or modelling languages have been

considered, including CCS [4], the �-calculus [2], CHOCS [1], general GSOS-de�nable languages

[9], and even a signi�cant core fragment of a real programming language, Erlang [5]. An important

precursor to the above papers is [10] which used ternary sequents to build compositional proof

systems for CCS and SCCS vs. Hennessy-Milner logic [7].

A key idea is that the use of a general sequent format allows correctness properties P : � to

be stated and proved in a parametric fashion. That is, correctness statements � of a composite

program P (Q

1

; Q

2

), say, can be relativized to correctness statements of the components, Q

1

; Q

2

.

A general rule of subterm cut

� ` Q :  ;� �; x :  ` P : �;�

� ` P [Q=x] : �;�

allows such subterm assumptions to be introduced and used for compositional veri�cation.

The di�culty with this (as with any other approach to modular veri�cation) is to �nd a way

of supporting temporal properties. In [4] we showed one way of doing this, and built, for the �rst

time, a compositional proof system capable of handling general CCS terms, including those that

create new processes dynamically (the only source of in�niteness in CCS). Essentially, recursive

formulas are handled using some form of well-founded induction on approximation ordinals. In

the absence of the subterm cut rule (or other rules with similar e�ect, such as the classical cut)

approximation ordinals can be guaranteed to occur only in covariant positions, allowing techniques

like tagging [12, 3] to be applied. In the presence of cut this can, however, no longer be guaranteed.

To be sound, rates of progress for �xed point formulas appearing in di�erent places in a sequent

must be related. In our earlier work this caused us to rely on a handling of �xed points which was

extremely syntactical, hedged with side conditions, and also unnecessarily restrictive.

The contribution of the present paper is to show that a simpler and more semantical approach

is possible, by introducing approximation ordinal variables explicitly into the proof system.

In a previous paper [6] we instantiated our approach to CCS and illustrated the workings of

the proof system by means of examples. In this paper we address the semantical basis, as it applies

to the entailment subproblem. After brie
y introducing the logic and proof system we present

a refutation game providing a semantical characterisation of validity for cyclic proof structures.

We prove soundness of the derived notion of refutation-game provability, and give a completeness

result through reduction to Kozen's axiomatisation. For practical proof search the game-based



characterization is unsatisfactory { it does not permit loop closure to be determined e�ectively.

For this reason we introduce (in the full paper) a rule of assumption discharge and show it sound

and complete. To illustrate the workings of the proof system we exhibit two examples, of a sequent

which is provable and of another sequent which is not.

2 Logic

The standard syntax of the modal �-calculus is augmented by adding a form of �xed point formula

approximation, using ordinal variables. Formulas � are generated by the following grammar, where

� ranges over a set of ordinal variables, � over a set of actions, and X over a set of propositional

variables.

� ::= � _ � :� h�i� X �X:� (�X:�)

�

We assume the standard modal �-calculus semantics [8], augmented by the clause:

k(�X:�)

�

k� =

8

<

:

; if �(�) = 0

k�k�[k(�X:�)

�

k�=X; �=�] if �(�) = � + 1

S

fk(�X:�)

�

k�[�=�] j � < �(�)g if �(�) is a limit ordinal

where � is an interpretation function (environment), mapping ordinal variables to ordinals, and

propositional variables to sets of states P 2 S.

3 A Proof System for Logical Entailment

An assertion is an expression of one of the forms E : �, � < �

0

, or E

�

! F , where E;F are a process

terms and � is a propositionally closed formula. Sequents are of the shape � ` �, where � and

� are sets of assertions. A sequent is pure if it contains satisfaction assertions only. The notion of

validity is the standard one for such proof systems.

On top of a fairly standard set of rules we add (assuming that U = �X:�):

h�i-L

�;E

�

! x; x : � ` �

�;E : h�i� ` �

fresh(x) h�i-R

� ` E

�

! E

0

; � � ` E

0

: �;�

� ` E : h�i�;�

U-L

�;E : U

�

` �

�;E : U ` �

fresh(�) U-R

� ` E : �[U=X ]; �

� ` E : U;�

U

�

-L

�; �

0

< �;E : �[U

�

0

=X ] ` �

�;E : U

�

` �

fresh(�

0

) U

�

-R

� ` �

0

< �;� � ` E : �[U

�

0

=X ]; �

� ` E : U

�

; �

OrdTr

�; �

0

< � ` �

00

< �

0

; �

�; �

0

< � ` �

00

< �;�

Theorem 1 (Local Soundness). All rules for logical entailment are individually sound: The

conclusion of each rule is valid whenever its premises are valid.

4 The Refutation Game

By themselves the above proof rules are insu�cient, as there is no bound on the number of times

�xed point formulas need to be unfolded. We devise a simple 1-player game to account for repeating

nodes, and for determining when proof construction can safely be terminated, implicitly building

in well-founded ordinal induction. We use the notation N(� ` �) to indicate that the node N is

labelled by the sequent � ` �, and write N

0

< N if N

0

appears on the path from the root to N .

De�nition 1 (Repeating Node, Arena).

1. Suppose N

0

(�

0

` �

0

) < N(� ` �). Then N is a repeat of N

0

up to the substitution �, if

(a) A� 2 � whenever A 2 �

0

, and

(b) A� 2 � whenever A 2 �

0

.



2. An arena, A, is a proof structure for which each leaf node N is either an axiom instance or

else to N is associated some node N

0

and substitution � such that N is a repeat of N

0

up to �.

Let an arena A be given, rooted in N

0

(� ` �). Initially R picks an interpretation �

0

for

which � ` � is non-trivial. R's claim is that �

0

is a falsifying interpretation for �

0

` �

0

. So

the initial con�guration of the game has the shape (N

0

; �

0

). Suppose the game has reached the

con�guration (N

i

; �

i

). Then R can chose (N

i+1

; �

i+1

) as a possible next con�guration if �

i+1

respects

the transition assertions and ordinal assertions, and either (1) N

i+1

is a child node of N

i

in A and

�

i+1

agrees with �

i

on all common free variables, or (2) N

i

is a repeat of N

0

up to some substitution

� in A, and then N

i+1

= N

0

and �

i+1

= �

i

� �. A game run, � , is a �nite or in�nite sequence

(N

0

; �

0

); : : : ; (N

i

; �

i

); : : : such that for each j : 0 � j < i, �(j + 1) = (N

j+1

; �

j+1

) is a possible

next con�guration for �(j).

De�nition 2 (Winning Run, Proof).

1. The refuter R wins a game run just in case it is in�nite.

2. A proof is an arena on which R has no winning run.

3. The sequent � ` � is refutation-game provable, � `

r

�, if there is a proof with root � ` �.

Theorem 2 (Soundness). The sequent � ` � is valid if � `

r

�.

We view transition assertions and ordinal assertions only as an intermediate machinery for

proof construction. Therefore, when addressing completeness of the proof system, we are interested

in completeness for pure sequents only. Rather than giving a direct completeness proof, which

would face well-known complications, we present a completeness result by reduction to Kozen's

axiomatisation [8]. This axiomatisation was shown to be complete by Walukiewicz [11].

Theorem 3 (Completeness). If the pure sequent � ` � is valid then � `

r

�.

The refutation game described above gives an abstract condition for when an arena can be

considered a proof. For practical proof search the game-based characterization is unsatisfactory {

it does not permit loop closure to be determined e�ectively. For this reason we introduce (in the

full paper) a rule of assumption discharge and show it sound and complete as well. To illustrate

the workings of the proof system we exhibit two examples, of a sequent which is provable and of

another sequent which is not.
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