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We consider relations with no order on their attributes aSatabase Theory. An independent par-
tition of the set of attributes S of a finite relatidhis any partition¥ of S such that the join of
the projections oR over the elements df yieldsR. Identifying independent partitions has many
applications and corresponds conceptually to revealitigbgonality between sets of dimensions in
multidimensional point spaces. A subset of S is termedmifelated if there is a value of each
of its attributes such that no tuple Bfcontains all those values. This paper uncovers a connection
between independence and self-correlation, showing tleataximum independent partition is the
least fixed point of a certain inflationary transfornoethat operates on the finite lattice of partitions
of S. o is defined via the minimal self-correlated subsets of S. VWesasne additional properties
of a to show the said fixed point is still the limit of the standappeoximation sequence, just as in
Kleene’s well-known fixed point theorem for continuous ftions.

1 Introduction

The problem of discovering independence between sets nfim a multidimensional space is a fun-
damental problem in science. It arises naturally in mangsacé Computer Science. For instance, with
respect to relational data, discovering such independalimss exponential gains in storage space and
processing of information [11], [1], and can facilitate greblem of machine learning [13]. With respect
to problem clusterisation of multidimensional relatiodata, finding independence helps finding the de-
sired clusterd [5]/[8]. Decomposing data into smallertiiait are independent except at their interfaces
has been known to be essential for understanding largeyleayatems|[17]. Independence has also been
the subject of recent works in logic, giving rise to so-adllegics of dependence and independence [4].
The concrete motivation for the present work derives fromdhea ofsoftware product line engi-
neering a discipline that aims at planning for and developintamily of products through managed
reuse in order to decrease time to market and improve saftquaality [12]. A software family can be
modelled as a relation whose attributes are the softwanestibnalities. The various implementations
of each functionality in the form of software artefacts dre attributesvalues The individual products
of a family are thus modelled as the tuples of that relatioer dkie attributes. In previous works [6,/15]
we considered a restricted class of software families @allmple familieglater on we changed the term
“families” to the more abstract term “relations”), wherescbvery of independence and a compositional
model checking technique are utilised to derivé\ade-and-conquer verification strateggimple rela-
tions constitute the least class that contains the sirtjliénate, single-value relations and is closed under
join of relations with disjoint attribute sets and unionsrelffations over the same set of attribute names
but with disjoint value sets. In the present work we genseathese previous results to discovering in-
dependence in arbitrary relations. We investigate decaitipos of a relatiorR with disjoint attributes
such thaR equals the join of the component relations. Every decontipasis represented by a partition
of the set of attributes dR. Such partitions are termaddependent partitions
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The problem of computing a maximum decomposition of thisdkitas previously been studied
in [10], where it is referred to garime factorisationand an efficient algorithmic solution is proposed. In
this paper we investigate an alternative approach thatsyoukely on the level of the attributes Rfand
is based on the concept obrrelation between attributes. We have discovered a nontrivial cdiorec
between independence and correlation and the major gdaikgddper is to demonstrate that connection.

A first observation is that the decomposition problem carbesolved purely based on analysis
of pairs of attributes. In the aforementioned waork [6] we gane dependence (or independence) in
simple relations by computing correlation between paimgtoifbutes. That approach does not generalise
for arbitrary relations as we show in this paper. Our soiui® to introduceself-correlation of sets
(of arbitrary cardinality) of attributes. In other wordlgtcurrent notion of correlation is a hypergraph
whose hyperedges are the self-correlated sets, ratheathardinary graph as were the case with the
simple relations. Since self-correlated sets are upwarsked under set inclusion (Proposition 2), the
minimal self-correlated sets, or tineincors(Definition[4), are the foundation of our analysis. A second
observation is that mincors do not cross independent jpati{Lemma b), hence one can safely merge
overlapping mincors to compute the maximum independertttipar In the case of simple relations
that merger indeed yields the maximum independent partjépbut in arbitrary relations merging the
mincorsdoes notnecessarily output an independent partition, as the examplpagé 67 shows. We
overcome this hindrance with the help of a final importanigins Let X be the partition of the set of
attributes that results from merging overlapping mincdige relation can be factored &) producing a
guotient relation In other words, the elements &fare considered atomic now; the subset&ehay or
may not be self-correlated in their turn, and the said guooftielation is defined via those new mincors.
We show that the procedure of identifying mincors and mergwerlapping ones can be repeated on this
guotient relation and this can be iterated until stabilisgtyielding the desired maximum independent
partition.

The above insights suggest that relational decompositiorbe presented in terms of a transformer
over the finite lattice of quotient relations, or concepiual/en simpler, ovethe lattice of the partitions
ordered by refinement, inducing the former lattice. Thedfammera on partitions introduced here
essentially corresponds to identifying the mincors of thetignt relation induced by a partition, merging
the overlapping ones, and extracting from the result theesponding partition (Definition 5). We prove
that the independent partitions correspond exactly to #eelfpoints ofa (Theoreni]L).

If o is monotone, one can utilise two well-known fixed point tleos on complete lattices (having
in mind that monotone functions over finite lattices are tardus). First, by Tarski’'s fixed point theorem
for complete latticed [16], the set of fixed points forms &datitself with respect to the same ordering,
hence there is a unigueast fixed poin{LFP), which in our case would be precisely the maximum
independent partitioning that we are after. And second,cameutilise Kleene’s fixed point theoreim [7],
to the effect that the LFP can be compufttatatively, starting from the bottom of the latticee. the
partition into singletons, and applyira until stabilisation,i.e., until the fixed point is reached. It turns
out, however, thatr in general isxot monoton@s demonstrated by the example on page 70 and therefore
the above reasoning is not applicable.

On the other hand, we show thatis inflationary (Propositio_44). The existence of a LFP is estab-
lished by showing that there exists a fixed point and the sell fiked points is closed under intersection
(Lemmd6). Furthermore, the downward closure of LiFeR, the set of all partitions refining it, is closed
undera (LemmalB). Since the lattice is finite, these results give tisa modified version of Kleene's
fixed point theorem—formulated in terms of inflationary stormers rather than monotone ones (The-
orem[2)—justifying the same iterative fixed point computatprocedure (Corollaryl 3). The proposed
characterisation reduces relational decomposition tpithlelem of identifying the mincors of a relation.
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Organisation The paper is organised as follows. Secfidn 2 recalls somekmmtions and results
about sets and families, partitions, lattices, fixed poirgkations, attributes, and relation schemes, quo-
tient relations, and defines independent partitions of thibates set. Sectidn 3 develops the theory of
self-correlated sets in quotient relations and how thegteek.r.t. partition abstraction. Sectidn 4 presents
many useful lemmas that concern independence. Sddtionreddfie transformem and contains our
main result, Theoreil 2. Sectibh 6 discusses what we curremblv about the area of decomposition of
relations, also called factorisation of relations, and pares the approach and the results of this paper
with similar works. The final Sectidd 7 draws some conclusiand outlines directions for future work.

2 Background

In this section we recall some standard set-theoreticabm®tand notation needed for our theoretical
developments.

2.1 Sets, covers, and partitions

In this work we consider only finite sets. The powerset of adstdenoted byOW(A) andP*(A) denotes
POW(A) \ {0}. Ground setsare nonempty sets over which we construct the families tieabar subject
of research.

Let A be a ground setA family over Ais any nonempty subset 8f (A). A family F is Sperner
family if VXY e F: X €Y. Fisconnectedf VX,Z € F: XNZ # 0 or F has elementg, Yo, ..., Yk
for somek > 1, such thatX NY; Z0, ;NYi,1 #0 for 1<i<k-—1, andYiNnZ # 0. A connected
component of a familjs any maximal connected subfamily in it. We u$éF) to denote the family
{UB|B is a connected component of FA superfamily over As any nonempty subset 8f(P*(A)).

SupposeA is a set. A cover of Ais any family F overA such thatuF = A. The set of all covers
of Ais denoted byK(A). If X € K(A) andY NZ = 0 for all distinctY,Z € X, we sayX is a partition
of A If |X| = 1 the partition igrivial and if |X| = |A| the partition ispartition into singletonsNote that
(C(F) defined above is a partition of the ground set. We denot®) lay X the fact that for som& C A,
) is a family overB such that every element @j is a subset of precisely one element®and every
element ofX is a superset of at most one elemen2pfFor example, ifA= {a,b,c,d,e, f,g,h,k} then
{{b},{c}.{d,g}} € {{a,b},{c},{d,e f,g},{hk}}.

The set of all partitions oA is denoted by1(A). For anyP;,P, € M(A), P, refines B, which we
denote byP; C P, if

VXePLdYeP: XCY

Conversely, we say th& abstracts P. If P, C P, andP; # P, we writeP; C Po.

2.2 Partial orders, lattices, and chains

We denote generic partial orders by™ If (A <) is a poseta least elementf A is anyx € A such that
Yy € A: x < yanda greatest elemerdf A is anyx € A such thatyy € A:y < x. A least element may not
exist but if it exists it is unique; the same holds for a greatdement. The least element is callattom
and is denoted by . The greatest element is callexp and is denoted by . A chainin a posetA, x) is
anyB C Asuch that’x,ye B: xgyVvVy=<xXx

A latticeis a posef A, <), shortly A when< is understood, such that for amyy € A there exists a
(unique) greatest lower bound Acalledmeetand denoted bxMy and a (unique) least upper bound
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in A calledjoin and denoted bxLy. Collectively,m andU arethe lattice operations of AThey are
commutative and associative [2, pp. 8]. We generalise thiedaperations on subsetsAin the obvious
way. A complete lattices a lattice such that evely C A has a meefiB and a joinLIB. In particular,
Ahas a meetlA= 1 and a joinLA = T. Every finite lattice is completé [3, pp. 46], therefore fraow
on by lattice we mean complete lattice. For aty A, the sets{y € Aly < x} and{y € A|x <y} are
calleddown-xandup-xand are denoted byx and X, respectively[[3, pp. 20].

It is well-known that(M(A),C) is a lattice. Furthermorel is the partition into singletons] is
the trivial partition, and for any1,P, € M(A), LN = {XNY|X € P,Y € P} \ {0} andP,UP, =
(C(PLUP,) (seell2, pp. 15]). We extend ther™ notation to subsets of partitions: for ady Q) € MN(A),
for any nonemptyX’ C X and any nonempt®)’ C 9) such that¥' N)’ £ 0, X' M%)’ denotes the set
{BNC|Be X',Ce '} \{0}.

2.3 Functions and fixed points

SupposeA is a set andf : A — A is a function. For everx € A: f0(x) % and for everyn € N,

f(x) ®fo f"=1(x). For everyn € N, f"(x) is the n-th iterate of f A fixed pointof f is everyx € Asuch
that f (x) = x. Let (A, <) be a poset. A functiori : A— Ais monotonef ¥x,y € A: x<y— f(x) < f(y)
andf isinflationaryif ¥x € A: x < f(x) [14, pp. 263].

A well-known fixed point theorem is Tarski’'s fixed point thear for continuous functions over
complete lattices [16], stating that the set of fixed poist®ian-empty and forms a lattice itself with
respect to the same ordering, and hence the function hagjaaleast fixed poin{LFP). Another well-
known theorem due to Kleene states the existence of an LR#®fdinuous functions on chain-complete
partial orders([7], and that the LFP can be computethtively, starting from the bottom of the lattice
and applying the function until stabilisation.

2.4 Schemes, relations, and quotient relations

The following definitions are close to the ones[in [#). schemas a nonempty set S {Ay,...,An}
whose elements, call@te attributes are nonempty sets. For every attribute, its elements atdsae
its values A relation over 9s a nonempty set of total functior$y, to, ..., tp}, which we callthe tuples
such that for I< j < p, tj : S— US, with the restriction that (A)) € A;, for 1 <i <n. We assume that
every value of every attribute occurs in at least one tuple.

The relations we have in mind are as in Relational Databaseryh.e. with unordered tuples, rather
than as in Set Theorye. with ordered tuples.

We further postulate that the said attributes are mutuadiypitit sets. That allows a simplification of
the definition of relation: a relation over S is nonempty dduples, each tuple being arelement set
with precisely one element from every attribute. To savespae often write the tuples without commas
between their elements. For examplenet 3, A; = {a1,ay}, Ao = {b1,b,}, andAs = {c1,Cp,C3}. One
of the relations over the schenf8;, A2, Az} is written as{{ajbic1 },{aib.C2}, {axbac3} }.

Let S, S,,...,S¢ be schemes such that for<li < j <k, VA€ SVB€ Sj: ANB=0. LetR be a
relation over § for 1<i <k. Thejoin of R, ..., R is the relation

Ri xRy - Rk:{U{Xl,Xz,...,Xk}‘X;LER17X2€R2,...,Xk€Rk}

The complete relationver S= {Aq,...,An}is 1L, {{X} |x€ Ai}. Clearly, its cardinality i§]i_; |Ail.
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Let S= {A4,...,A,} be a schemeA subscheme @ is any nonempty subset of S. The notatfqg
stands for the restriction dfto Z, for any functionf : X — Y and anyZ C X. LetR= {ty,tp,...,tp} be
arelation over S and let T be a subscheme OF& projection of R o isR [ T = {t; \T 1< j<p}

Definition 1 (quotient relation) Let R be a relation over some schefe For any X = {X1,Xa,...,
Xn} € (S), R/x T ; (R X;) is the following relation:
V{y1yz...yn} € X{L1(R] Xj):
{y1y2...yn} € R/x iff 3t € RVigci<n(t | Xi =)

We termR/x the quotient relation oR relative toX. WhenX is understood we say simptlye quotient
relation ofR.

We emphasise the quotient relation is not over S but overtéiparof S.

Here is an example of a quotient relation. LeJA,B,C,D}, let each attribute have precisely two
values, sayA = {a;,ap} and so on, lek; = {{A,B},{C,D}}, let X, = {{A},{B},{C},{D}}, and let

R = {{aibici0h }, {aubicodh }, {anbocado}, {azbpcads }, {@zbocody ) (1)

be a relation over S. Then

R/x, = {{{as,b1}{c1,di}}, {{an, b1 }{co,d2}}, {{an, b2 }{C1,do}},

{{az,b2}{cy,di}}, {{az,b2}{C2, 02} } } )
R/x, = {{{as}{br}{e {1 }}, {{as }{br }{c2}{do}}, {{as } {ba}{Cc1} {02} },
{{aoH{b2}{ca Hdi }}, {{ax {2 }{co} {d} } } (3)

A quotient relation is but a grouping together of the tupligthe original relation into subtuples according
to the partition. It trivially follows thaiR/x| = |R| for any relationR over any attribute set S and any
X en(s).

2.5 Independent partitions

For a given relatiorR over some schem®, we are after decompositions Bfsuch thaR equals the join
of the obtained components. Each decomposition of this &imcesponds to a certain partition &f

Definition 2 (independent partition) Let R be a relation over some scheme S. For@nryr(S), X is
an independent partition of S with respectRaf R= X R[Y. The set of all independent partitions
S

Yex
of S with respect to R is denoted b§ir(S), or shortly IN(S) if R is understood. If a partition is not
independent, it islependent

Note that IN(S) is nonempty since it necessarily contains the trivial parti
Proposition 1 For every independent partitioli, R/x is the complete relation ovex.

Informally speaking, the object of the present study is tiiependent partition with the maximum
number of equivalence classes, provided it is unique.

3 Correlation in Relations

In this section we define correlation in relations and qumtielations. From now on assume an arbitrary
but fixed scheme S and relatiGover it.
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3.1 Correlated subsets of ground sets

In this subsection, the ground sets are schemes.

Definition 3 (correlated subsets of schemes)etS= {A;,Ay,...,A,} and letT be some nonempty sub-
scheme{A,A,,,..., A} wherel <ij; <ip <--- <im<n. Tis self-correlated with respect &, or
shortly correlated with respect g, iff

X €A, IXEA, - XmEA, {X1X2- Xm} €RIT 4)

We denote that fact by cayT) or corr(T) if R is understood. The opposite conceptgorrelated The
family {T C A|corrr(T)}, in case it is nonempty, is calldtie correlation family oR.

Note that no minimal correlated subset is a singleton. THeviing result re-states correlation of a
subscheme in terms of the projection of the relation on it.

Lemmal LetT CS. Thencor(T)iffR[ T C xxerR| {X}.

Proof: First assume cofT). By Definition[3, there is an element in every attribute fromuEh that the
tuple of those elements does not occuRIN T. On the other hand, the tuples efx-TR | {X} are all
possible combinations of the elements of the attributes iflEreforeR | T C xxeTR [ {X}.

In the other direction, assumeorr(T). The negation of expressidnl (4) in Definitidn 3 is but another
way towriteR | T= xxeTR [ {X}. O

As the next result establishes, with respect to the p(8et), every correlated subset is upward
closed, while every uncorrelated subset is downward closed

Proposition 2 If corr(T) for someT C S thenVZrczcs: corr(Z). If —corr(T) for someT C S then
VZzct @ —corr(Z).

It is obvious that the correlation family, if it exists, is aver of the scheme. Furthermore, it does not
exist iff the relation is complete. The interesting part abarelation family is the sub-family comprising
the minimal correlated sets. However, that sub-family dugsnecessarily cover the scheme. We want
to define a family that both covers the scheme—because wdtmnately interested in a partition of the
scheme—and is a Sperner family, since the implied membedtedamily are of no interest.

Definition 4 (mincor family) A mincor of R is every minimal, self-correlated with respect to R, sub-
schemel C S. Further, mincors(R) gef {T C S|Tis amincor} and singletons(R) d:Ef{{A} |Ae SA-3IX €
mincors(R) : A € X}. The mincor familyof R, denoted byF(R), is MF(R) = mincors(R) U singletons(R).

For example, consideR defined in[(1) on the facing page. Clearly, ¢pffA,B}) and corg ({C,D})
because of the lacks of bo#k andb; in any tuple and the lack of botlz andd; in any tuple, respectively.
The other four two-element subsets of S are uncorrelatednshigletons(R') = 0 and therefordlF(R') =

{{A,B},{C,D}}.

Proposition 3 With respect t& and R,MF(R) exists and is unique.
If Ris complete theMF(R) consists of singletons. ClearNF(R) € K(S), and thu£((MF(R)) € MN(S).

3.2 Correlation in quotient relations

The following result establishes an important connectietwieen self-correlation in a partition of the
scheme and self-correlation in the scheme itself. Moreifipaty, Lemma2 is used to prove Lemina 3,
and the latter is used in the proof of Lemia 7 on dage 71.
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Lemma 2 ForanyX € IN(S) andX’ C X:
corrr/x (X') ¢ corrp(UX’)

Proof: Assume corig/ (X'). Let X' = {Yl,Yz, .,Ym}. So,(R/x) | X’ does not contain sonte-tuple
{U1,Uy,...,Un} such that); € R| Y for 1 <i <m. ThenR | UX’ does not contain/{U;,Us,...,Un}.

In the other direction, assume ceftuX’) whereUX’ is a subset ‘Sof S. Let S = {A,A2,...,An}.
That is,R | S’ does not contain sometuple {W;, Wb, ... Wy} such that € A for 1 <i <n. Let

={Y1,Y2,....Yn}. Then(R/x) | X’ does not contain thextuple {U1,U,,... .Uy} whereU; € R,
forl<i<m. 0
As an example that illustrates Lema 2, consieandX; on pagé 64. Clearlyk; = {{A,B},{C,D}} is
self-correlated with respect iy x; asR/x; does not contain, among others, the tufle;, by }{c1,d}}.
That impliesuX; = {A,B,C,D} is self-correlated with respect f® since{{ay, b1 }{c1,d>}} is not an
element oﬂ?/ael, it must be the case th@alblcldz} is not element oR  (and indeed it is not). In the
other direction, the fact thgia;b;cidy} ¢ Rimplies{{as,b;}{c1,do}} ¢ R/agl

The next result establishes that for every mincor Y of a qunbtielation there is a way to pick elements
from every element of Y such that the collection of those @let® is a mincor of the original relatidt

Lemma 3 VX € M(S) VY € mincars(R/x) 3Z €Y : |Z| = |Y| A UZ € mincors(R).

Proof: Assume?) € mincors(R/%x). Clearly, there is some & Q) such thatJZ is correlated with respect
to Rbecausee is reflexive andJ) is correlated with respect ®by Lemmad 2. Now consider any Z 9)
such thatZ'| < |9)|. There exists som®)’ C ) such that Z 9)’. But®)' is uncorrelated with respect
to R/x because)) is a mincor ofR/x and so every proper subset¥fis uncorrelated with respect to
R/x. Note that))’ being uncorrelated with respect®Jx impliesuUZ’ is uncorrelated with respect ®
by Lemmd.2. It follows that for any Z ) such that cog(UZ)—and we established such a Z exists—it
is the case thd®Z| = |9)|.

So, there exists a € 9) such thaiZ| = |2)| andUZ is correlated with respect t&. Furthermore,
there does not exist & ) such that|Z| < |9)| andUZ is correlated with respect t8. Consider any
Z € 9 such thatJZ is correlated with respect . As |Z| = |2)|, every element of) is a superset of
precisely one element &.

First assume all elements Bfare singletons. In this case no proper subsetdfs correlated with
respect taR. Suppose the contrary, namely that some"WZ is correlated with respect ®and deduce
there is some Ze ) such that W= UZ”, thus|Z”| < |9)|, such thatyZ" is correlated with respect R
Since no proper subset of is correlated with respect ®, UZ is a mincor with respect tB and we are
done with the proof.

Now assume not all elements Hfare singletons. It trivially follows there exists a minihsatZ € Z
such thatZ| = |Z| (thus|Z| = |)|) such thatZ is correlated with respect R. O

4 Results on Independent Partitions
This section provides important auxiliary results congggrindependent partitions. In subsectfon]4.1

we investigate the connection between independence dncbsedlation. In subsectidn 4.2 we prove the
meet of independent partitions is an independent partition
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4.1 Independence and the mincor family

The following lemma establishes that partition indepeicdes preserved under removal of attributes.

Lemma4 vV € IN(S) VX € : X € IMgux(UX).

Proof: LetQ=R][UX. We prove thaQ = x (Q | Z). In one directionQ C x (Q | Z) follows
Zex Zex

S
immediately from the definitions of relation join and prdjea. In the other direction, consider any
tupletin x (Q [ Z). Letvbe any tuple in x (R| Z) such that = V|U3€. But v € R becausg)) is
Zex yASD) |

independent and thiR= x (R Z). Asv € R, it follows thatv| , € Q. Butv| , ist, thereforet € Q,
Ze9)
andsox (Q[Z)CQ. O
ZeXx

The next lemma is pivotal. It shows that the mincors respatgpendent partitions, in the sense that no
mincor can intersect more than one element of an indepemaetition.

Lemma5 V) € IN(S) YW € mincos(R) IY € P:WCY.

Proof: Assume the contrary. Then there is a mincor W that has noneimtrsection with more than
one set from}). Suppose W has nonempty intersection with precissbts from?) for somet such that
2<t<q. LetYy, Yo, ..., Y; be precisely those sets frofh that have nonempty intersection with W.
Let W, =WnY;, for 1<i <t. Clearly, Jl_; W; = W. By Lemmd%:

RIW= X RIW,
1<i<t

Every W is a proper subset of W. But W is a minimal correlated set. Tinglies —corr(W;), for
1<i<t. Apply Lemmdl to conclude th&® [ W; = X R {x}. Then,
XeW

RIW= X X RJ[{x}

1<i<t xeW;

Obviously, X X R[{x} = X R {x}. Then,R|W = NWR [ {x}. By Lemmall that implies
xXeW Xe

1<i<t xeW;
—corr(W). O
Furthermore, merging mincors also yields sets that respdependent partitions.

Corollary 1 V9 € I1(S) : (((MF(R)) C 9.

Proof: Assume the contrary. Then for soR®n S and)) € IT1(S):
IX € ((MF(R)) VY €Y FJAe X:AgY

First note that X is not a singleton, otherwise X would be eorgd in some set fro®). So,|X| > 2 and
according to Definitiof]4, X is the union of one or more min¢@ach of size> 2, and X is connected.
But by assumption X is not a subset of any set frinand so there has to be some mincorVX that
has nonempty intersection with at least two sets fldmHowever, that contradicts Lemrh 5. d

Note that(((MF(R)) is not necessarily an independent partition. For examplesiderR defined in[(1)
on pagé 6. As explained on page B5(R') = {{A,B},{C,D}} and thu<((MF(R)) = {{A,B},{C,D}},
too. But{{A,B},{C,D}} is not an independent partition with respecRoln fact, there is no indepen-
dent partition of S except for the trivial partition g is a prime number.
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Now consider another relatidd’ on the same scheme:

R” = {{alblcldl}, {alblcldz}, {alblczdg}, {albgcldl}, {albgCldg}, {albgngz},
{agbocidi }, {@agbocida }, {@apbocodn }

ButMF(R") = {{A,B},{C,D}} = (C((MF(R")) just as in the case d&¥. Now {{A,B},{C,D}} is an inde-
pendent partition with respect &' becaus&®?’ =R’ | {A/B} xR’ | {C,D}.

So, in the case oR’, the connected components of the mincor family constituténdependent
partition, while that is not true foR/, although the mincor families of both relations are the saive
conclude that computing the mincor family does not sufficaltimin an independent partition. Therefore,
we use a more involved approach in which the computation @fntimcor family is but the first step
towards the computation of the maximum independent pamtiti

4.2 The meet of independent partitions

The following lemma allows us to define the maximum indepengeartition as the meet of all indepen-
dent partitions.

Lemma 6 VX, € IMN(S): XNY € IN(S).
Proof: (sketch) Let X,2) € IT(S). We assumé& LI®) is connected. There is no true loss of generality
in that because the proof below can be done componentwigelif) is not connected. Relative to an

arbitrary element ok, sayX;, we define the familyy = {Z,Z;,...,Z} over S as follows3 is a partition
of S and its elements are constructed in an ascending ordee afdex according to the following rule:

X1, ifi=0
Zi= < U{A\Z_1|AeYQANANZ_1#0}, ifiisodd
U{A\Z_1|A€e XNANZ_1#0}, ifiisevenand >0

Let us defineB; = {UijZOZj} nxngY for0<i<k. Clearly,Bo={X1} M%), B =B _1U({Z}NXMnY)
for 1 <i<kandByx = XM9). FurthermoreUBx = S and thuRR [ UBx = R. We prove by induction on
that for alli such that 6<i <k:

RIUB = x R|C ()
CeB;

and hence the result follows.

Basis. Leti = 0. Let the elements df) that have nonempty intersection wita be calledys, ..., Y;.
Obviously, there is at least one of them. The claim is RatX; = x ijle [ (X1NY;). That follows
immediately from Lemma]4.

Inductive StepAssume the claim holds for sonBg_; such that 6< i — 1 < kand consideB;. As already
mentionedB; = Bi_1U ({Z} N XM9).

Without loss of generality, assumes odd. Very informally speakingZ; is the union of some
elements o) that overlap with some elements (frgf) in B;_1, minus the overlap. Therefore, we can
write B; = Bi_1 U ({Z } 1 X) because under the current assumption, i isther tharQ) that dictates the
grouping together of the elements4fin B;. More specifically, sincé# k, there are elements froth
whose elements do not appear in the curBenthose elements o€ dictate the aforementioned grouping.
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So,B; is the union of two disjoint sets whose elements are fééomY), namelyB;_; and{Z } 1M X.
By the inductive hypothesi® [ UBi_1 = x RJC.

CeBi_1
Consider{Z} M X and call its elementsTy, ..., T,. Without loss of generality, considd. Our
immediate goal is to prove th& | ((UBj_1) UTy) = x  R[C. Note thatT; is a subset of some

CeBi_1U{T1}
Y’ €9 such thal’ has nonempty intersection withB;_;, T; itself being disjoint wittB; 1. Furthermore,
T, is the intersection of’ with someX’ € X. X' is disjoint with UB;_4, otherwise the elements af
would be part ofUB;_1. Furthermore, every element Bf 1 is a subset of some element®fthat is not
X'. Let the elements ok that have subsets-elementsByf1 be Xy, ..., Xp. Note that;U---UX, =
UBi_1. By Lemmd4, it is the case that

RI (XU UXpUT) =R X X -« KR XpXR[ Ty (6)

sinceT; is a subset oK’ andX' is none ofXy, ..., Xp. HoweverX;U---UX,UT; = (UBj_1) UTy by an

earlier observation anBl | Xy --- xR X, = x R[C. Substitute that in equatidn 6 to obtain
CeBi_1

R[(UBi_luTl):< X R[C) XR[T = X RJC @)
CeBi1 CeBi_1U{T1}
which is what we wanted to prove with respeciTio
We can us€ (7) as the basis of a nested induction. More s@digifiwe prove that

RT ((UB_1) UTqU---UTy) = (Cbé R[C) XR[ITyX - XRJ Tk

€61

implies

R ((UBi_l) UT1U'-'UT|(+1) = (C Dé R [C) MR[Ty X -« XRJ Tga1

€61

foranyk e {1,2,...,m—1}. The nested induction can be proved in a straightforwardn@aamaving in
mind the proof of[(¥). That implies the desired:

R (UBi_1) UT1U---UTy) = <C X R[C) XR[ITyX - MR Ty
€Bj_1
And that concludes the proof becausB, = UB;_1UTiU---U Ty, O
The proof of Lemma&l6 relies on the fact that all sets we comsidefinite.

As a corollary of Lemmal6, the maximum independent partjtwhich is the object of our study, is
well-defined: MM (S) exists, it is unique, and is an element Of(5). For notational convenience we
introduce another term for that object. We say théfflr(S) is thefocusof R and denote it byoc(R). A
trivial observation is thatlg(S) coincides withffoc(R).

5 A Fixed Point Characterisation of the Maximum IndependentPartition

In this section we identify the object of our study as thetléasd point ofa, wherea is a transformer on
the lattice of all partitions o86. Furthermore, we present an iterative fixed point approtiomgrocedure
for computing the maximum independent partition.
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5.1 Functiona

First we introduce a helper function. Latbe a ground set. The functidnmaps superfamilies ovétto
families overA as follows. For any superfamily:

£(3) = {uz|ze 5}

Syntactically speaking removes the innermost pairs of parentheses. For instammeoseA = {a,b,c,d}
and§ = {{{a},{b,c}},{{d}}}. Then{(3) = {{a b,c}, {d}}.

We now define the central function of the present study. Bdakpartition o, identifies the mincors
of the corresponding quotient relation, merges the ovpitpmincors, and us&sto map the result back
to a partition ofS.

Definition 5 (function o) agr: M(S) — MN(S), shortlya when R is understood, is defined as follows for
anyX e n(s):

ar(%) £'& (CCMF(R/x)))

Notably, o is not monotonen general as demonstrated by the following example. et {AB,
C,D,E} and let each attribute have precisely two values, Aay {a;,a;} and so on. LeQ be the
relation obtained from the complete relation oGeafter deleting all tuples containiragb;c;, all tuples
containingd,e,, and the tuplegaybicidse; }, {apbocidzer }. In other words,

Q= {{aibicodher }, {aubicodh e}, {aibicodzer }, {aibocidier }, {arbocidiey }, {agbocidber }
{arbacodier }, {a1bocodier }, {a1bocodoe |, {aobicidier }, {axbicidher }, {asbicodier }
{agbicodier}, {azbicodoe }, {ashocidier }, {axhocidien}, {axbocodier }, {axbocodien }, {abocodse }}

Let us see which sets of attributes are self-correlated veiipect toQ. The only two-element
subset ofS that is self-correlated i§D,E}. Further,{A,B,C} is self-correlated. It followsiF(Q) =
{{A,B,C},{D,E}}. Consider the following two partitions &: X1 = {{A},{B},{C},{D},{E}} and
X, = {{A},{B,D},{C,E}}. Obviously,X1 C X5. Itis clear thata(X;) = {{A,B,C},{D,E}}. Con-
sidera(X;). The set{{B,D},{C,E}} is self-correlated because of the lack{tf,d>} and{ci,e>}
in any tuple, which in its turn is due to the fact tiiitande, do not occur in any tuple dR. The sets
{{A},{B,D}} and{{A},{C,E}} are uncorrelated. It follows that(X,) = {{A},{B,C,D,E}}, and thus

a(X1) Za(xy).
However, we have the following property afthat shall later be exploited.

Proposition 4 « is an inflationary function oril1(S),C).

5.2 Independence and functiora

The following central result establishes that the indepahgartitions are precisely the fixed pointsoof

Theorem 1 VX € T(S): X € IMN(S) «» a(X) = X.

Proof: In one direction, assumg € IT1(S). R/x is complete by Propositidd 1. By definition, that is
R/x = XyexY. By the definition ofi, (R/x) | X = xvyex(R/x) | {Y}. It follows that —corr(X) by
Lemmall. Somincors(R/x) = 0 andMF(R/x) = singletons(R/x) by Definition[4. Then(((MF(R/x)) =
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{{A}|A € X}. Therefore & (((MF(R/x))) = {A|Ae€ X} = X. But £ ((C((MF(R/x))) is a(X) by defini-
tion. Thereforep (X) = X.

In the other direction, assunwe(X) = X. That is,&(((MF(R/x))) = X, which in its turn implies
(C(MF(R/x)) = {{A}|A € X} becausé((MF(R/x)) is a superfamily such that every element from S'is in
precisely one element of precisely one element of it. Thearader of the proof mirrors the above one.
O

Having in mind the observation on pdgd 69 tHak(S) coincides withtfoc(R), we derive the follow-
ing corollary of Theorerhll.

Corollary 2 1foc(R) is closed with respect ta.

The following lemma says that the mincors of a quotient i@hatespect the focus of the relation in the
sense that for every mincor &%/ x, the union of its elements is a subset of some element of thesfo

Lemma 7 VX € foc(R) VT & mincors(R/%x) 3Y € foc(R) : UT C Y.

Proof: Assume the contrary. That is, for some patrtitirthat refines the focus there is a mindor
of R/x such thatUT has nonempty intersection with at least two subsets, cathth; and Y, of the
focus. Use Lemm@l3 to conclude there is some Z such thatZ| = |T| andUZ & mincors(R). Since
|Z| = |T|, it must be the case thaiZ has nonempty intersection with both ¥nd Y,. But the focus is
an independent partition. We derived that a mincoRpfiamelyUZ, intersects two distinct elements of
an independent partition. That contradicts Leniina 5 diyectl d

We already established (see Propositibn 4) tha an inflationary function. The next lemma, however,
establishes a certain restriction: the applicatioonr oh a dependent partition can yield another dependent
partition or at most the focus, and never an independenitipartabove” the focus.

Lemma 8 [foc(R) is closed with respect ta.

Proof: We prove that'X € [foc(R) : a(X) C foc(R). Recall thato (X) is a partition of S and it abstracts
X. Assume the claim is false. Then there is a partifiosuch thatx C |foc(R) buta (X) £ [foc(R). Then
there is some B a(X) such that P has nonempty intersection with at least two eiesneall them Y
and Y,, of foc(R). However, P i< (C) for someC that is a connected component—relative to the ground
setX—of the mincor family ofR/x. ConsiderC. It is the union of one or more mincors Bf x, those
mincors being subsets d&f.

SinceX C foc(R), no element oft can intersect both Yand Y,. It follows that at least one mincor
M € C is such thatUM intersects both Y and Y,. But that contradicts Lemnia 7. O

The next and final central result allows us to compute thedaiR by an iterative application odt,
starting with the partition into singletons.

Theorem 2 For some m such that< m< |S|, a™(L) = foc(R).

Proof: Consider the sequence:
C=1,a(l), a?(L), ...

It is a chain in the lattic¢l(S),C), asa (X) abstractsk for all X (see Propositionl4), therefore all those
elements are comparable with respecttoC has only a finite number of distinct elements as the said
lattice is finite.

First note that every element Gfis in Jfoc(R). Indeed, assuming the opposite immediately contra-
dicts LemmaB.
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Then note that for ever¥ € [foc(R) \ {foc(R)}, it is the case thatr (X) # X. Assuming the opposite
implies X is a fixed point ofa, contradicting Corollar]2. Propositioh 4 implies a strentact: for every
X € lfoc(R) \ {foc(R)}, it is the case that C a(X). But|foc(R) is a finite lattice. It follows immediately
that for some valuen not greater thafS|, a™(_L) equals the top offoc(R), viz. foc(R). O

We thus obtain Kleene's iterative least fixed point appration procedure [7], however for inflationary
functions instead of monotone ones.

Corollary 3 The following algorithm:

X+ 1

whileX # a(X)
X+ a(X)

return X

computes the least fixed pointafi.e., the maximum independent partition®With respectto R. O

Here is a small example illustrating the work of that aldorit Consider S an®& defined in[(1) on
page 64.L is {{A},{B},{C},{D}}. Letus computer(L), thatis,& ((C(MF(R/1))). R/L is the same
asR'/x, on pagé 64, namely:

R/1L={{{aa{{baH{er H{du}}, {{as H{bu Mo {2} }, {{au b2} {er H 2} },
{{azH{ba}{c1}{d1}},{{az}{ba}{co}{d}}}

Let us computéC(MF(R'/1)). Having in mind thaMF(R') = {{A,B},{C,D}} as explained on pagel65,
conclude thafC(MF(R/ 1)) = {{{A,B}},{{C,D}}}. Therefore£ ((C(MF(R'/1))) = {{A,B},{C,D}}.
That differs from_L and thewhile loop is executed agairR//a(L) is the same aR /x,; on pagd 64,
namely:

R/a(L) = {{{abi}{cidi}}, {{arb1} {cath} }, {{arbr} {c102} },
{{agb2}{c1d1}}, {{azb2}{cod} } }

Let us computéC(MF(R/a(1))). To that end, note thatr (L) = {{A,B},{C,D}} is self-correlated
with respect toR'/{{A B},{C,D}} because of the lack of, for instance, bdt,b,} and{c;,c:} in
any tuple ofR /g (L). It follows that(C(MF(R'/a(1))) = {{{A B},{C,D}}} and, thereforeg?(L) =
E(CC(MF(R/a(L)))) = {{A,B,C,D}}. That differs froma(L) and thewhile loop is executed once
more. At the end of that execution, it turns out tha{ L) equalsa?(_L) and the algorithm terminates,
returning as the resu{t{ A,B,C,D}}, the trivial partition.

6 Related Work

An algorithm that factorizes a given relation into primetéas is proposed in_[10, algorithmRRAVE
FACTORIZATION]. It runs in timeO(mnlgn) wherem is the number of tuples andlis the number of
attributes. Sincennis the input size, that time complexity is very close to thérapm. The theoretical
foundation of RIME FACTORIZATION is a theorem (seé [10, Proposition 10]) that says a givetiorla
Shas a factoF iff, with respect to any attributé and any valuer of its domain,F is a factor of bothQ
andR whereQ andR are relations such th&@ U R = SandQ consists precisely of the tuples in which
the value ofA is v. In other words, the approach 6f [10] to the problem of cormguthe prime factors



D. Gurov, M. Markov 73

is “horizontal splitting” of the given relation using thelaetion operation from relational algebra. The
approach of this paper to that same problem is quite differdfe utilise “vertical splitting”, using the
projection operation of relational algebra. The theostfoundation of our approach is based on the
concept of self-correlation of a subset of the attributieat toncept has no analoguelinl[10].

An excellent exposition of the benefits of the factorisatidmelational data is [11]. The factorised
representation both saves space, where the gain can pdiiebe as good as exponential, and time,
speeding up the processing of information whose un-fasgdrrepresentation is too bigl [1] proposes a
way of decomposing relational data that is incomplete a8}l ptoposes factorisation of relational data
that facilitates machine learning.

Clusterisation of multidimensional data into non-intetsey classes called clusters is an important,
hard and computationally demanding problem. [5] investigalustering in high-dimensional data by
detection of orthogonality in the lattel.|[8] proposes skkececommunity discovering, which is a sort of
clusterisation, in media social networks by utilising taitation of a relational hypergraph.

The foundation of this paper is the work of Guretwal. [6] that investigates relational factorisation
of a restricted class of relations called there simple f@il [6] introduces the concept of correlation
between the attributes and proposes a fast and practicaitalg that computes the optimum factorisa-
tion of a simple family by using a subroutine for correlatidrhe fundamental approach of this paper is
an extension of that, however now correlation is consiééranore involved, being not a binary relation
between attributes but a relation of arbitrary arity (tisishe only place where “relation” means relation
in the Set Theory sense, that is, a set of ordered tuples).

7 Conclusion

This paper illustrates the utility of fixed points to formaéixpress maximum independence in relations
by means of minimum correlated sets of attributes. By usimgmum correlated sets, we define an
inflationary transformer over a finite lattice and show theximaim independent partition is the least
fixed point of this transformer. Then we prove the downwams$gte of that least fixed point is closed
under the transformer. Hence, the least fixed point can bguotad by applying the transformer itera-
tively from the bottom element of the lattice until stakdgliion. This iterative construction is the same as
Kleene’s construction, but does not rely on monotonicityheftransformer to guarantee that it computes
the least fixed point.

A topic for future work is to introduce a quantitative meastor the degree of independence between
sets of attributes and investigate approximate relatitazabrisation.
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