
Deductive Functional Verification
of Safety-Critical Embedded C-Code:

An Experience Report

Dilian Gurov1, Christian Lidström2(B), Mattias Nyberg1,2,
and Jonas Westman1,2

1 KTH Royal Institute of Technology, Stockholm, Sweden
2 Systems Development Division, Scania AB, Södertälje, Sweden

christian.lidstrom@scania.com

Abstract. This paper summarizes our experiences from an exercise in
deductive verification of functional properties of automotive embedded C-
code in an industrial setting. We propose a formal requirements model
that supports the way C-code requirements are currently written at
Scania. We describe our work, for a safety-critical module of an embed-
ded system, on formalizing its functional requirements and verifying its
C-code implementation by means of VCC, an established tool for deduc-
tive verification. We describe the obstacles we encountered, and discuss
the automation of the specification and annotation effort as a prerequisite
for integrating this technology into the embedded software design process.

1 Introduction

While Formal Methods are in general only slowly making their way into indus-
trial practice for quality assurance, their adoption in the domain of embedded,
safety-critical systems has seen much progress over the last years. One reason
for this development, from an industry perspective, is the increased analyses
effort advocated by standards to achieve functional safety of such systems. For
example, automotive functional safety standard ISO 26262 recommends for-
mal verification for higher levels of criticality. The smaller size of embedded
code as compared to arbitrary applications, and the constraints on how code
is structured in order to safeguard against potential unwanted behaviours, are
also enabling factors for the application of the typically more expensive formal
analysis techniques.

Scania is a leading manufacturer of commercial vehicles, and specifically
heavy trucks and buses. A large part of the embedded C-code developed at
Scania is safety-critical, and a considerable effort is spent during code devel-
opment and deployment on quality assurance. On top of the traditional testing
methods, Scania is exploring the possibility for integrating deductive verifica-
tion and model checking into the code design and quality assurance process.

Work partially funded by Vinnova within the KLOSS AkUt initiative, which sent
academics out to Industry one day a week for half a year during 2015/2016.

c© Springer International Publishing AG 2017
L. Petrucci et al. (Eds.): FMICS-AVoCS 2017, LNCS 10471, pp. 3–18, 2017.
DOI: 10.1007/978-3-319-67113-0 1



4 D. Gurov et al.

The main motivation for this are the increased safety requirements resulting
from innovative trucking solutions such as platooning and autonomous driving.

Motivating Factors. The starting point for the work described here were the
following general findings and concrete observations made from studying a par-
ticular C-module and its associated requirements document [1].

1. Many of the requirements of the module are functional, in the sense that they
express output values as a function of input values (i.e., as a mathematical
function). A common case is that two or more outputs of the same mod-
ule depend on intersecting sets of inputs. This leads to a natural functional
decomposition that allows the functionality of modules to be understood con-
ceptually through the metaphor of a combinational logic circuit.

2. The well-known and established logic and deductive system called Hoare logic
has been developed precisely for formally specifying and proving this type of
properties [12]. Program verification in this style is based on logical assertions,
which are essentially state properties expressed as first-order formulas over
program and (additional) logical variables, typically in the form of pre- and
postconditions to C-functions, or loop invariants. The assertions are tied to
specific control points of the program, usually by means of program annota-
tions provided by the programmer. The annotated program is then translated
by purely symbolic means (based on computation of so-called weakest pre-
conditions, or on symbolic execution) to a first-order logic formula, called
verification condition, which is true exactly when the assertions hold for the
annotated program. The generated verification condition is then passed on to
an automated (back-end) theorem prover to be checked for validity.

3. The typical control flow of embedded code, and the used datatypes, follow
certain constraints, described through guidelines following MISRA C and ISO
26262, which render the given correctness problem decidable. For instance,
most of the code we examined does not involve any looping constructs, which
typically require loop invariants to be provided by the programmer, and most
of the data is of enumerable (i.e., non-inductive) types, and thus no datatype
invariants need to be provided.

4. There exist mature tools such as VCC [4,5] and Frama-C [8] that support
the automated deductive verification of C-code supplied with annotations.

All these observations and findings were a strong indication that the formal
specification of requirements and their deductive functional verification can be
automated to a degree that makes them a viable option for increased quality
assurance of the safety-critical embedded C-code. This lead to the present pre-
study, which builds on the findings of two Master theses [10,13].

Goals of the Study. The main question that the present pre-study addresses is: is
it feasible, and what would be needed, to push formal requirement specification
and deductive functional verification into an embedded software design process,
such as the one at Scania?



Deductive Functional Verification Safety-Critical Embedded C-Code 5

Our concrete questions concern:

1. Formalization of functional requirements: how user-friendly can it be made,
and how much effort does it take?

2. Verification tool: what is the code coverage regarding the given code base,
how easy is it to use the tool and to make sense and use of the feedback it
provides on failed verifications, and how efficient is it in practice?

3. Annotation of the code: how much effort does it take, what annotation over-
head does this incur, and how automatable is the annotation process?

Structure of the Paper. The remainder of the paper is organized as follows.
In Sect. 2 we describe the type of requirements we found in the requirements
document, and propose a formal requirements model, based on mathematical
functions, for capturing such requirements. In Sect. 3 we describe the verifica-
tion tool VCC, the verification method it supports, and the specifics of its use.
In Sect. 4 we discuss (without, however, revealing proprietary code or informa-
tion) the module which we considered in our pre-study, its requirements, the
annotation process, and the obstacles which we encountered. Our findings are
summarized in Sect. 5, together with a proposal for a semi-automated specifica-
tion and verification process based on these findings. Related work we describe
in Sect. 6, and conclude with Sect. 7.

2 Formalizing Functional Requirements

In this section we describe the character of the requirements as we encountered
in the requirements document of the module we considered [1], and propose a
formal requirements model.

Requirements. The requirements in the provided requirements document are
written in terms of a set of requirements variables, which are (model) variables
distinct from the program variables. This follows a clean discipline of separating
specifications from implementations.

A significant number of the requirements are presented in a format illustrated
by the following concrete example:

While SecondaryCircuitHandlesSteering == True
If ParkingBrakeSwitch == ParkingBrakeNotSet

ElectricMotor = On

which could be described as a conditional assignment form. On its own, such
a requirement does not specify completely the value of the variable being set
(here, ElectricMotor). Since the same variable may be assigned a value by
more than one requirement, this immediately raises the questions of whether
the set of requirements is complete (i.e., it specifies, for all values of the input
variables, a value for every output variable) and whether it is consistent (i.e.,
specifies at most one such value), together guaranteeing the well-definedness of



6 D. Gurov et al.

the specified data transformation. While specifications may be incomplete by
intention, inconsistency is always a problem that needs to be resolved.

Further noteworthy to observe is that, while some of the requirements vari-
ables used in the specifications do correspond to global module interface ones
(i.e., variables through which the module interacts with its environment), most
do not; instead they are intermediate requirements variables. This corresponds
conceptually to a function decomposition of the functions computed by the mod-
ule. Such a break-down of requirements constitutes a natural representation of
a multi-output function when its outputs depend on intersecting sets of inputs,
and makes the reading of requirements easier. It also allows the functionality of
modules to be understood conceptually, and visualized, through the metaphor
of a (multiple-valued) combinational logic circuit.

Many of the intermediate requirements variables have corresponding coun-
terparts in the code in the form of local variables or struct fields (sometimes even
more than one, as certain values are transferred by reference via calls to helper
functions). These observations raise the question whether one should aim to ver-
ify every requirement individually, or only the induced functional dependence of
the output variables on the input ones. The first option can only be realized by
referring in the code annotations to the local code artifacts, and thus ties the
verification to the implementation. This goes against the principle of separating
specifications from implementation details, which allows the implementation to
evolve without necessarily changing the requirements. On the other hand, the
second option may result in considerably worse verification times, as it is usually
the case when verifying a specification in a “black-box” manner, not utilizing
the implementation information.

Formal Requirements Model. To formalize the requirements, one has first to
define a formal requirements model. In the present case of purely functional data
transformation, it is suitable to base the formal model on the standard discrete-
mathematical notion of (partial) function.

As an example, consider variables x1, x2 ∈ {7,−3} and x3, y ∈ {−2, 6}, and
let the value of variable y depend functionally on the values of the variables x1,
x2 and x3, as defined by the table on the left of Fig. 1. We shall use this (rather
trivial) example to discuss possible presentations of such functions.

Function Views. One can distinguish between two views on mathematical func-
tions. First, there is the black-box view, which describes the functions computed
by a module via interface variables only, i.e., as module contracts. This view is
important for modular verification (say, in an assume/guarantee style), as it is
the view of the module that is exported to the rest of the system. In principle,
this is the view to be verified, since it specifies just the data transformation to be
computed by a module and nothing more. And then, there is the white-box view,
which decomposes the functions by introducing intermediate variables. This view
is important for readability and simplicity of module specifications. However, as
explained above, the verification of the individual requirements resulting from
the breakdown is problematic. Ideally, intermediate variables should only be



Deductive Functional Verification Safety-Critical Embedded C-Code 7

x1 x2 x3 y

7 7 −2 6
−3 7 −2 6

7 −3 −2 6
−3 −3 −2 −2

7 7 6 −2
−3 7 6 −2

7 −3 6 −2
−3 −3 6 6

(a) Function.

x1 x2 f

7 7 7
−3 7 7

7 −3 7
−3 −3 −3

z x3 g

7 −2 6
−3 −2 −2

7 6 −2
−3 6 6

(b) Function decomposition.

f

g y

zx

x

x

1

2

3

(c) Function architecture.

Fig. 1. A function and its decomposition.

used as a vehicle to relate output values to input values. The two views have a
simple mathematical connection by means of function decomposition in the one
direction, and function substitution in the other.

For instance, the example function defined above can be decomposed accord-
ing to the equations:

z = f(x1, x2)
y = g(z, x3)

introducing the intermediate requirements variable z ∈ {7,−3} and the func-
tions f and g defined by the tables in the middle of Fig. 1. The “architecture” of
this decomposition, or white-box view of the function, is depicted on the right
of Fig. 1, in the style of a combinational logic circuit.

3 The Verification Tool VCC

VCC, standing for Verified Concurrent C, is a tool for the formal verification
of programs written in the C language [5]. As the name suggests, it supports
verification of concurrent code. It has been developed at Microsoft Research, and
is available for Windows under the MIT license via GitHub1.

The assertions to be verified, such as function contracts and data invariants,
are to be specified by the programmer directly in the C source code in the form
of annotations. VCC has its own syntax for this: annotations are always enclosed
in parentheses and preceded by an underscore ‘ (...)’, but otherwise follow a
syntax similar to the one of the C language itself.

The contract of a function is a set of annotations located between the function
header and its body. The set typically includes a precondition expressing an
assumption on the values of the actual parameters and global variables at the
time of invoking the function, and a postcondition relating the return value and
the values of the global variables at the time of returning from the function
1 See github.com/Microsoft/vcc.



8 D. Gurov et al.

#include <vcc.h>

void swap(int *p, int *q)

_(writes p,q)

_(ensures *p == \old(*q) && *q == \old(*p))

{

int tmp;

tmp = *p;

*p = *q;

*q = tmp;

}

Fig. 2. A simple C-function annotated with a contract.

call to the former values. The remaining annotations essentially specify other
side-effects of executing the function body.

An example of a contract for a simple C function is given in Fig. 2. The header
file vcc.h is included in order to make the compiler ignore the VCC annotations.
In the contract, the ensures clause specifies a postcondition, where an expression
appearing within an \old clause refers to its value at function invocation time
(for preconditions this is the default mode). The postcondition states that the
value pointed to by p upon return from the method call will equal the value
pointed to by q before execution, and vice versa. Preconditions are specified with
the keyword requires. There is no precondition provided in this specification,
meaning that the contract should hold for any values of the actual parameters
and global variables at the time of invoking the function. The writes clause
specifies the side-effect that both argument pointers are writable, and no other
memory locations. It also serves to give notice to any calling function that (only)
the contents of the specified memory locations may change during the call. In
contrast, the lack of a writes clause tells the caller that this function will not
have any visible side-effects w.r.t. the specified variables.

Contracts can be specified not only for functions, but for any block of code.
Assertions can be inserted at any control point of executable code, and are useful
both to provide hints to VCC and for troubleshooting. Finally, one can specify
invariants for both loops and data structures.

Verification Method. VCC is a deductive verifier. The annotations are translated
into an intermediate language and provided to another tool, Boogie, from which
proof obligations are generated; these are then discharged by an automated
theorem prover, the default being Z3.

The verification of function contracts is modular : when checking the body of
a function, and a call to another function is encountered, the tool asserts that
the caller fulfills the preconditions of the callee, and assumes that the callee’s
postconditions hold right after the call statement. This function modularity
ensures scalability of the verification method w.r.t. the number of C functions.



Deductive Functional Verification Safety-Critical Embedded C-Code 9

The verification performed by VCC is claimed to be sound, in the sense
that verified assertions do indeed hold, but is not guaranteed to be complete,
meaning that assertions that could not be verified may still hold. Sometimes the
programmer can “help” the tool by rewriting assertions to equivalent formulas
that can be handled by the back-end reasoning engine.

Ghost Code. During verification, VCC keeps track of an internal state referred
to as the ghost state [5]. Apart from logical representations of all actual pro-
gram variables, this state also includes many other abstract data structures and
functions that are needed to provide a model in which to reason about the pro-
gram. In addition to function contracts, VCC provides numerous other ways of
manipulating the ghost state, allowing the programmer to assist the reasoning
engine in performing a successful verification.

Ghost functions can be defined with the keyword def. Such functions must
have no side effects, and may only be used in specifications. Also regular (but
side-effect free) C functions can be marked with the keyword pure to allow them
to be used in specifications. Ghost variables are declared with the keyword ghost
preceding an ordinary C declaration. For ghost variables, any native or user cre-
ated C type can be used, as well as a number of types built into VCC. For exam-
ple, there are mathematical integers (\integer), natural numbers (\natural),
and true Booleans (\bool), to name a few.

Memory Model. C is often referred to as a low-level programming language,
because of the similarity between its primitive objects and those of hardware. In
addition, C has explicit memory (de)allocation, pointer arithmetic and aliasing,
and a weak type system that can be easily circumvented, all of which makes
reasoning about memory harder. VCC, however, has a stricter memory model
and stronger typing for its ghost state [7]. System memory is represented as a set
of typed objects, and is maintained in the ghost memory as pointers to all valid
objects. One guarantee of this model is that valid objects are always separated.
VCC can thus efficiently take advantage of well-written C code and elevate it to
its own stronger model. In cases where it is not able to do this, verification will
fail, and additional annotations regarding the usage of memory are needed.

Because of its focus on concurrent code, ownership and closedness informa-
tion is also stored for each object in ghost memory [6]. For example, threads are
only allowed to make sequential writes to memory of which they are the owner,
and sequential reads to memory that they own or can be proved not to change.
Ownership is represented as a tree structure. The system heap is organized as a
set of trees, where each root node represents a thread and each edge represents
ownership by the source node. A thread is the direct owner of its local variables,
whereas a struct owns its fields and is itself owned by some higher-level object.



10 D. Gurov et al.

4 The Case Study

Our case study is based on a C-code module that is part of the embedded system
controlling the Scania trucks, and is considered safety-critical. More specifically,
the module deals with the secondary power steering function that must take over
in the case of a malfunction in the primary power steering function. Since the
C-code itself is proprietary, we shall only describe its relevant aspects here, and
will not be able to show any parts of it.

The code base of the analyzed module has 1,400 lines of code, consisting of
10 C-functions, one main and 9 helper functions. The analyzed code is strictly
sequential (although the larger system is not), and the control flow consists solely
of if- and switch-statements, and function calls (i.e., it does not involve any
loops). The module interacts with two other modules: one primarily concerned
with diagnostics, and one performing the I/O to the larger system. We had no
access to the source code for the first of these, and could therefore not perform
any reasoning about variables that depended on it. In the case of the latter,
9 small functions concerning reading, writing and status checking of signals were
annotated as part of the verification. Additionally, the analyzed code makes
much use of type definitions and macros imported from several external files,
none of which were taken into account in our quantitative assessment.

Scania has its own internal programming rules for embedded systems, most
of which are identical to the MISRA C development guidelines. Because of this,
the analyzed code base avoids many of the C constructs which may cause problem
in the stricter model which VCC operates in.

Requirements. Our starting point for annotating the code base was an inter-
nal document, containing 27 requirements. Of these, 14 were not considered for
verification: 6 were not specific to the module itself (they had to do with initial-
ization, and should be specified on another module), 3 were of a temporal nature
(and thus could not be captured through VCC assertions), and the remaining
5 depended on output from other modules (and would need more modules to
be included in the verification effort). Thus, 13 requirements were considered, of
which 10 were verified due to time constraints. No functional errors were found
in the code base during this verification.

The requirements are given in two formats: some are expressed in natural
language only, and some in a semi-formal form, making use of logical statements
and operators, such as if, else, and, and = (although the precise semantics
of these operators is left unspecified). The document provides no details as to
how variables referred to in requirements are related to system memory. After
careful analysis we found that they could refer to globally available signals, local
program variables, or not exist as explicit variables in the code at all.

An example of a semi-formal requirement was given above, in the beginning
of Sect. 2. An example for a requirement in natural language could be: “If the
vehicle is moving without primary power steering, then the secondary circuit
should handle power steering.” The requirement can be seen formalized and



Deductive Functional Verification Safety-Critical Embedded C-Code 11

8

21

4

23

10

2

13

14

15

20

WU1
SSS1

PCES

ES

SCHS

PBS
WBVS
VIML
VISL

PS
SCHS

VIM

PCHM
PCSM

VMWPPS

7

21

Fig. 3. Combinational logic circuit of case study requirements.

annotated in Fig. 5, and represented as a numbered box in Fig. 3, as requirement
number 15.

A representation of some of the requirements in the form of a combinational
logic circuit is shown in Fig. 3. The circuit models all requirements that define the
value of the variable SCHS (the complete model is over 35 requirements variables,
of which 6 output, 17 input and 12 intermediate variables). Outside the larger
box are the interface variables, with input variables to the left and the output
ones to the right. Requirements are represented by small boxes with numbers
corresponding to the number of the requirement according to the document.
These boxes are (sometimes cloned and) grouped together in “gates”, so that
each gate has a single output “wire” modelling a requirements variable.

The requirements did not form a complete specification of the module. We
also found that under a naive interpretation two of the requirements were con-
tradictory. Upon further investigation we found that this was a case of imprecise
specification, and that they were intended to be evaluated in a certain order.
Formal verification generally helps with detecting and resolving such issues, as
two contradictory requirements can not both be verified on the same code base.

Code Preprocessing. Before verifying the requirements, the code had first to be
prepared in order to pass VCC as it is, without any annotations concerning the
application-specific requirements. First of all, some preprocessor directives con-
cerning conditional inclusion of platform-specific headers and compiler-specific
language extensions had to be either rewritten or removed. Furthermore, VCC
always tries to prove validity and ownership of all accessed memory, which means
that annotations for that purpose had to be inserted. We also chose to insert
annotations for verification of termination of all functions before verifying the



12 D. Gurov et al.

requirements, which was easily achieved because of the simplicity of the module’s
control flow.

Code Annotation: Main Function. Since the analyzed module contains a single
entry-point function, all requirements chosen for verification had to be speci-
fied in the contract of this particular function. The requirements were specified
according to the white-box view described in Sect. 2, and were verified individ-
ually. To achieve this, ghost variables were used in the annotations to reason
about the variables that do not exist as memory in the scope of the top-level
function, such as local variables within a function, and about the requirements
variables that are not implemented in the module. Variables of the former kind
were referred to directly by their memory location. An example of a contract
specified according to the white-box view is shown in Fig. 5. Some requirements
were also specified according to the black-box view, in order to compare the read-
ability of the resulting contracts. This was performed by substitution of model
variables for the expressions which defined them.

Code Annotation: Ghost Variable Assignment. In order to successfully verify
the white-box view contracts, the ghost variables have to be assigned the correct
values during execution of the function. During the case study, we came up with
two distinct methods to achieve this.

The first of these is to simply assign to the ghost variable the value of the local
program variable or expression that it represents, within the functions where it
changes. For manual annotation this is relatively straight-forward. The verifica-
tion is also fast since the ghost representations are continuously synchronized
with the actual code, and as such there is less work for the verification tool to
prove the correlation. However, because of the tight connection to the code this
method does not lend itself well to automation, since the relation between inter-
mediary requirement variables and expressions in the code can not be inferred
without human instruction.

In the second method, we define a separate ghost program that computes the
complete combinational logic circuit discussed in Sect. 2, from program input
variables. The ghost program can then be inserted in the body of the top-level
function through inlining. Because VCC will need to infer the relation between
the ghost circuit and the actual code, the performance of the verification is worse
(how much worse depends largely on the number of intermediate variables, i.e.,
how much VCC needs to infer that would otherwise be explicit). On the other
hand, the construction of such a ghost program from a formal requirements
specification is far easier to automate. Another drawback of this method is that
incomplete specifications cause problems, since VCC is not able to infer any
relation between the ghost circuit and the software for input values that are not
specified, whereas in the first method this relation can be made explicit even if
not specified, provided ghost variables are always assigned values in the code.



Deductive Functional Verification Safety-Critical Embedded C-Code 13

int state[NUM_SIGNALS]; // Global state

int _(pure) read(int idx)

_(requires \thread_local_array(state, NUM_SIGNALS))

_(requires 0 <= idx && idx < NUM_SIGNALS)

_(ensures \result == state[idx])

{

if (idx >= 0 && idx < NUM_SIGNALS)

return state[idx];

}

Fig. 4. A fully specified function.

Code Annotation: Helper Functions. Since the requirements only specify the
behaviour of the module as a whole and not how individual functions should
behave, and because VCC performs its verification function-modularly, it was
necessary to decompose and propagate the top-level requirements through the
call hierarchy of the module. We utilized two complementary approaches to this,
which we term bottom-up and top-down.

In the bottom-up approach, we give a complete specification of the compu-
tations performed by the functions, starting at the bottom of the call hierarchy,
working upwards. This approach is suitable for small functions, which many
other functions depend on, such as setters and getters, since giving a complete
specification for these is relatively easy, and we get much value out of having
one. An example of a fully specified, simple read function is given in Fig. 4.

In the top-down approach, on the other hand, we instead work with one
requirement at a time, follow the trail of execution affecting that requirement
through the functional hierarchy, and add the appropriate annotations, or partial
specifications. This approach is suited for large and high-level (w.r.t. the call
hierarchy) functions, where giving a complete specification is complex and not
much value is gained from having one. An example of a partial contract of a
high-level function, where annotations for only certain requirements have been
supplied, is given in Fig. 5. These annotated requirements are represented as
boxes within gates in Fig. 3, with their respective numbers.

Obstacles. Apart from the previously mentioned challenges with the require-
ments themselves, we also identified several obstacles to verification that could
occur from how the code is written. Most importantly, the code should be writ-
ten in a type-safe manner. To perform its reasoning, VCC must be able to lift
the code to its own stronger model. If the code is not written in a well-typed
manner, such as making use of implicit type conversions or aliasing of distinct
memory objects, VCC will be unable to do this lifting and verification will not
be possible without assistance in the form of additional annotations.

Another obstacle that may occur is code that depends on previous execu-
tions, for example in the form of local static variables. Such variables are out-
side the scope of the contract and can therefore not be used to directly specify



14 D. Gurov et al.

_(ghost \bool model_vehicleIsMoving) // Intermediate ghost variable

_(ghost \bool model_VehicleMovingWithoutPrimaryPowerSteering)

void steering()

_(writes \array_range(state, NUM_SIGNALS))

_(writes &model_vehicleIsMoving)

_(writes &model_VehicleMovingWithoutPrimaryPowerSteering)

// Req. 4

_(ensures \old(state[WHEEL_BASED_SPEED]) > VEH_MOVING_LIMIT

==> model_vehicleIsMoving == \true)

_(ensures \old(state[WHEEL_BASED_SPEED]) < VEH_STATIONARY_LIMIT

==> model_vehicleIsMoving == \false)

// Req. 10

_(ensures \old(state[POS_SENSOR]) == NO_FLOW

&& model_vehicleIsMoving == \true

==> model_VehicleMovingWithoutPrimaryPowerSteering == \true)

// Req. 15

_(ensures model_VehicleMovingWithoutPrimaryPowerSteering == \true

==> state[SECONDARY_CIRCUIT_HANDLES_STEERING] == \true)

Fig. 5. A partially specified function.

properties of the function; but at the same time changes to their values may
affect future invocations of the function. It is possible to work around this, for
example by connecting static variables to ghost variables that exist in the scope
of the contract, but a much simpler solution is just to try to avoid them.

Variables of the enumerable and Boolean types can also make verification
difficult in some cases, since in the C language they are in reality backed by the
integer type, and may assume all the same values. While these types of variables
are common and may not be easily avoided, they introduce some additional
annotation effort; for a successful verification of requirements referring to such
variables, annotations for proving that the variables never assume values outside
of their expected domain are usually needed.

5 Discussion

Summary of Findings. We now return to the questions raised in the Introduction.

1. We found the formalization of functional requirements intuitive to achieve,
and without much effort. We also found that the formalization helped clarify
the requirements, as we were forced to resolve ambiguities and contradictions
in order to achieve a valid verification.

2. The code coverage of the verification tool VCC for the given code base was
almost complete. It is relatively easy to use the tool, especially as it can be
configured as a plug-in to Visual Studio, but requires a certain training and
knowledge of the underlying verification technology to make full use of it.



Deductive Functional Verification Safety-Critical Embedded C-Code 15

VCC turns out to be relatively efficient : it took 165 sec to verify the whole
annotated module, of which 65 sec went to the “worst” function. On the
negative side, the feedback provided from the tool when verification fails only
highlights the specific assertions that failed to verify, without any hints as to
why. Depending on the type and complexity of the assertion, this feedback
may not always be useful, and careful analysis of the code and the annotations
is usually required to understand what went wrong.

3. The annotation overhead of the code was about 50%, or roughly 700 lines
of annotations. The annotation was performed manually, but we observe a
clear potential for automation of (most of) the annotation process (see below).
Manual annotation of the code, even after having formalized the requirements
and understood the tool and code base, required much effort; we estimate
it roughly to have taken between 1 and 1.5 person-months. In particular,
finding and inserting appropriate annotations for all memory accesses, as
well as figuring out how each function affects the individual requirements or,
alternatively, giving a full specification for the function, are time consuming
tasks.

Towards Semi-automated Specification and Verification. Based on findings from
the case study, we propose the following work process that automates most
of the specification and verification effort, as a prerequisite of integrating our
technology into the development process for safety-critical embedded C-code.

Our proposal is to start from a (potentially graphical) combinational logic
circuit-like description of the computed functions, according to a chosen function
decomposition (i.e., a white-box view as illustrated on Fig. 3), together with
descriptions of the individual “gates” of this circuit, created with the help of
a tool. The tool has to support specifying interface requirements variables in
terms of references to the actual global program variables, or otherwise allow this
mapping to be provided by the user separately. This description can be seen as
the requirements model, and is then to be translated to a VCC “ghost program”
computing the functions, by introducing a ghost variable for each requirements
variable. In this way we can utilize the existing syntax and operational semantics
of VCC ghost code, and are thus relieved from the need to have to define such a
semantics for a new formal requirements language. This ghost program can thus
be seen as an executable specification.

From the requirements model, including the mapping of interface require-
ments variables to actual global program variables, a contract for the main func-
tion of the given module is to be generated. The tool should support generating
both the white-box and black-box view contracts. In the white-box view, global
program variables should be used in the specification of interface requirements,
in order to enable modular verification. The generated executable specification
is to be inlined in the top-level function of the module, so that the value of the
intermediate requirements variables can be computed. As a fallback strategy,
intermediate requirements variables may instead be manually synchronized with
their program counterparts, in cases where verification proves unfeasible.



16 D. Gurov et al.

What then remains to be annotated are the helper functions. One way of
handling these is to inline them successively into the main function. While this
eliminates the need for annotation of helper functions altogether, its drawbacks
are the potential explosion of code (which may result in an inability of VCC
to verify it), and the need to maintain a verified code base separately from
the actual code base, creating a potential gap and making more difficult the
interpretation of the feedback from the tool.

The preprocessing phase described in Sect. 4 is to be assisted by dedicated sta-
tic analyses, which are to generate annotations for the different types of implicit
requirements. Certain postprocessing may also be needed in order to help the
programmer in making sense of and reacting to the messages that VCC issues
on unsuccessful verifications.

6 Related Work

VCC has been used in a number of software verification initiatives. It was in
fact built with verification of the Microsoft Hyper-V hypervisor in mind [5,7].
In a case study [2], VCC was also used to verify another hypervisor, although a
less complex one. The study presents techniques for verification using automated
methods. It describes modeling of interaction between hardware and software,
and shows that functional verification of simulation of guest machines is feasible.
In another case study [3], VCC is used to verify system calls in a micro-kernel
based operating system targeted at safety-critical embedded systems. The study
was part of an avionics project, and describes the verification process as well
as how the underlying hardware architecture was modelled. In addition, it is
shown that assembly code can be semantically specified and integrated in the
verification through VCC.

Within the same avionics project, a case study utilizing the verification tool
Frama-C was also performed [9]. The study evaluates several aspects of modern
formal verification, such as how formalization of requirements can be achieved
and when it is feasible, and the complexity of the formal languages of verification
tools in comparison to programming languages. Solutions to many obstacles that
commonly occur in formal verification are proposed. Of the encountered case
studies, this is the only one with a starting point similar to ours, i.e. informal
requirements specifying functional relations between input and output states.
Our approach is different in that we formalize the requirements as a circuit, which
can then be executed in ghost code, as well as handle requirements variables
without explicit counter-parts in the software.

A methodology for reasoning about timed and hybrid systems in VCC is
presented in [4]. The approach uses what is referred to as Timers and Dead-
lines, and can provide a solution to the verification of temporal requirements in
a functional setting. Another work examines the incorporation of strongest post-
conditions in the verification process, and how symbolic execution can be used
to calculate them [11]. Such a framework could provide a basis for automation of
much of the C code annotation process, particularly the (complete) specification
of function contracts.



Deductive Functional Verification Safety-Critical Embedded C-Code 17

7 Conclusion

In this paper we summarize our findings and experiences with specifying and
verifying deductively the functional requirements of an embedded safety-critical
C-code module, by using the VCC tool. The main specifics of the verified code is
that it computes a multi-output function over variables from finite domains that
has a non-trivial, multi-level decomposition. The main challenge then is how to
deal with intermediate requirements variables.

The pre-study indicates that deductive functional verification can be a viable
option for increased quality assurance of safety-critical embedded C-code. For
its integration into an embedded C-code development process, however, a number
of issues need to be resolved. First, a formal requirements language needs to
be adopted and guidelines for writing requirements need to be formulated and
supported by a tool. Second, the coding rules that are prerequisite for successful
verification need to be enforced. Third, the annotation process needs to be auto-
mated almost completely, with clear hints to the programmer where he or she has
to provide annotations, and of what type. And fourth, support for interpreting
and handling the feedback from the verification tool needs to be provided in a
way that allows unsuccessful verifications to be resolved adequately and without
requiring deep knowledge of the inner workings of the tool. Our work currently
focuses on addressing these issues.

References

1. Allocation Element Requirement AE417 Dual-Circuit Steering. Scania Technical
Product Data (2015)

2. Alkassar, E., Hillebrand, M.A., Paul, W., Petrova, E.: Automated verification
of a small hypervisor. In: Leavens, G.T., O’Hearn, P., Rajamani, S.K. (eds.)
VSTTE 2010. LNCS, vol. 6217, pp. 40–54. Springer, Heidelberg (2010). doi:10.
1007/978-3-642-15057-9 3

3. Baumann, C., Beckert, B., Blasum, H., Bormer, T.: Formal verification of a micro-
kernel used in dependable software systems. In: Buth, B., Rabe, G., Seyfarth,
T. (eds.) SAFECOMP 2009. LNCS, vol. 5775, pp. 187–200. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-04468-7 16

4. Cohen, E.: Modular verification of hybrid system code with VCC. CoRR
abs/1403.3611 (2014)

5. Cohen, E., Dahlweid, M., Hillebrand, M., Leinenbach, D., Moskal, M., Santen, T.,
Schulte, W., Tobies, S.: VCC: a practical system for verifying concurrent C. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 23–42. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 2

6. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: A practical verification method-
ology for concurrent programs. Technical report MSR-TR-2009-15, Microsoft
Research, February 2009

7. Cohen, E., Moskal, M., Schulte, W., Tobies, S.: A precise yet efficient memory
model for C. In: Workshop on Systems Software Verification (SSV 2009). Electronic
Notes in Theoretical Computer Science, vol. 254, pp. 85–103. Elsevier (2009)

http://dx.doi.org/10.1007/978-3-642-15057-9_3
http://dx.doi.org/10.1007/978-3-642-15057-9_3
http://dx.doi.org/10.1007/978-3-642-04468-7_16
http://dx.doi.org/10.1007/978-3-642-03359-9_2


18 D. Gurov et al.

8. Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski,
B.: Frama-C. In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM
2012. LNCS, vol. 7504, pp. 233–247. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-33826-7 16

9. Dordowsky, F.: An experimental study using ACSL and Frama-C to formulate
and verify low-level requirements from a DO-178C compliant avionics project. In:
Formal Integrated Development Environment (F-IDE 2015), pp. 28–41 (2015)

10. Eriksson, J.: Formal Requirement Models for Automotive Embedded Systems.
Master’s thesis, KTH Royal Institute of Technology, School of Computer Science
and Communication (2016)

11. Gordon, M., Collavizza, H.: Forward with Hoare. In: Roscoe, A., Jones, C., Wood,
K. (eds) Reflections on the Work of C.A.R. Hoare, pp. 101–121. Springer, London
(2010). doi:10.1007/978-1-84882-912-1 5

12. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM
12(10), 576–580 (1969)

13. Lidström, C.: Verification of Functional Requirements of Embedded Automotive
C Code. Master’s thesis, KTH Royal Institute of Technology, School of Computer
Science and Communication (2016)

http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-3-642-33826-7_16
http://dx.doi.org/10.1007/978-1-84882-912-1_5

	Deductive Functional Verification of Safety-Critical Embedded C-Code: An Experience Report
	1 Introduction
	2 Formalizing Functional Requirements
	3 The Verification Tool VCC
	4 The Case Study
	5 Discussion
	6 Related Work
	7 Conclusion
	References


