An Expressive Trace Logic for Recursive Programs

Dilian Gurov &
KTH Royal Institute of Technology, Stockholm, Sweden

Reiner Hahnle =
Technical University of Darmstadt, Germany

—— Abstract

We present an expressive logic over trace formulas, based on binary state predicates, chop, and least
fixed points, for precise specification of programs with recursive procedures. Both programs and
trace formulas are equipped with a direct-style, fully compositional, denotational semantics that
on programs coincides with the standard SOS of recursive programs. We design a compositional
proof calculus for proving finite-trace program properties, and prove soundness as well as (relative)
completeness. We show that each program can be mapped to a semantics-preserving trace formula
and, vice versa, each trace formula can be mapped to a canonical program over slightly extended
programs, resulting in a Galois connection between programs and formulas. Our results shed light
on the correspondence between programming constructs and logical connectives.

2012 ACM Subject Classification Theory of computation — Denotational semantics; Theory of
computation — Operational semantics; Theory of computation — Program specifications; Theory
of computation — Program verification; Theory of computation — Logic and verification; Theory of
computation — Modal and temporal logics

Keywords and phrases Denotational semantics, compositional semantics, program specification,
compositional verification, fixed point logic, trace logic

Digital Object Identifier 10.4230/LIPIcs.FSCD.2025.21

Related Version Full Version: https://arxiv.org/abs/2411.13125 [14]

1 Introduction

It is uncommon that specification languages used in program verification are as expressive
as the programs they are intended to specify: In model checking [7] one typically abstracts
away from data and unwinds unbounded control structures. Specification of unbounded
computations is achieved by recursively defined temporal operators. In deductive verific-
ation [15], first-order Hoare-style contracts [18] are the basis of widely used specification
languages [3, 22]. The latter specify computation by taking symbolic memory snapshots
in terms of first-order formulas, typically at the beginning and at the end of unbounded
control structures, such as procedure call and return, or upon loop entry and exit. Contracts
permit to approximate the effect of unbounded computation as a finite number of first-order
formulas against which a program’s behavior can be verified.

Imagine, in contrast, a logic for program specification that is at least as expressive as
the programs it is supposed to describe. Formulas ¢ of such a logic characterize a generally
infinite set of program computation traces ¢. One can then form judgments of program
statements S of the form S : ¢ with the natural semantics that any possible trace o of S is
one of the traces described by ¢.

Two arguments against such a trace logic are easily raised: first, one expects a specification
language to be capable of abstraction from implementation details; second, its computational
complexity. Regarding the first, we note that any desired degree of abstraction can be achieved
by definable constructs, i.e. syntactic sugar, in a sufficiently rich trace logic. Regarding the

© Dilian Gurov and Reiner Hahnle;

oY licensed under Creative Commons License CC-BY 4.0
10th International Conference on Formal Structures for Computation and Deduction (FSCD 2025).
Editor: Maribel Fernandez; Article No. 21; pp. 21:1-21:22

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:dilian@kth.se
https://orcid.org/0000-0002-0074-8786
mailto:haehnle@cs.tu-darmstadt.de
https://orcid.org/0000-0001-8000-7613
https://doi.org/10.4230/LIPIcs.FSCD.2025.21
https://arxiv.org/abs/2411.13125
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

21:2

An Expressive Trace Logic for Recursive Programs

second, it is far from obvious whether the computational worst-case tends to manifest itself
in practical verification [15]. First experiments seem to indicate this is not the case. On the
other hand, a rich, trace-based specification logic bears many advantages:

1. On the practical side, trace-based specification permits to express, for example, that an
event or a call happened (exactly once, at least once) or that did not happen. Likewise,
one can specify without reference to the target code (via assertions) that a condition holds
at some point which is not necessarily an endpoint of a procedure call. It is also possible
to specify inter-procedural properties, such as call sequences, absence of callbacks, etc.
Such properties are important in security analysis and they are difficult or impossible to
express with Hoare-style contracts or in temporal logic.

2. The semantics of trace formulas in terms of trace sets can be closely aligned with a
suitable program semantics, which greatly simplifies soundness and completeness proofs.

3. An expressive trace logic makes for simple and natural completeness proofs for judgments
S : ¢, because it is unnecessary to encode the program semantics in order to construct
sufficiently strong first-order conditions.

4. In a calculus for judgments of the form S : ¢, one can design inference rules that
directly decompose judgments into simpler ones, but also algebraic rules that simplify
and transform ¢, and one may mix both reasoning styles.

5. The semantics of programs, of trace formulas, and the rules of the calculus can be
formulated in a fully compositional manner: definitions and inference rules involve no
intermediate state or context.

6. In consequence, we are able to establish a close correspondence between programs and
formulas, which sheds light on the exact relation between each program construct and
its corresponding logical connective. We formulate and prove a Galois connection that
formalizes this fact.

Our main contribution is a trace logic for imperative programs with recursive procedures
where we formalize and prove the claims above. We restrict attention to the terminating
executions of programs, i.e. to their finite trace semantics. This is not a fundamental
limitation, but the desire not to obscure the construction with complications that may be
added later. Still, adaptating the theory to maximal traces (including infinite runs) is not
trivial, and working out the details is left as future work (see Section 8.3).

Our paper is structured as follows: In Section 2 we define the programming language Rec
used throughout this paper and we give it a standard SOS semantics [29]. In Section 3 we
define a denotational semantics for Rec in fully compositional style and prove it equivalent
to the SOS semantics. In Section 4 we introduce our trace logic and map programs to
formulas by the concept of a strongest trace formula, which is shown to fully preserve
program semantics. In Section 5 we define a proof calculus for judgments and show it to be
sound and complete. In Section 6, using the concept of a canonical program, we map trace
formulas back to programs in the slightly extended language Rec” with non-deterministic
guards. We prove that Rec™ and trace formulas form a Galois connection via strongest trace
formulas and canonical programs. In Section 7 we discuss related work, in Section 8 we
sketch some extensions, including options to render specifications more abstract and how to
prove consequence among trace formulas. In Section 9 we conclude.

All proofs and some examples can be found in the accompanying report [14]. The most
important of these are also available in the present Appendix.

D. Gurov and R. Hihnle

2 The Programming Language Rec

We define a simple programming language Rec with recursive procedures and give it a
standard SOS semantics. We follow the notation of [26], adapted to Rec syntax.

» Definition 2.1 (Rec Syntax). A Rec program is a pair (S,T), where S is a statement
with the abstract syntax defined by the grammar:

S = skip | x:=a| S1;S2 | if b then S; else Sy | m()

and where T is a procedure table given by T ::= M™ with declarations of parameter-less
procedures M ::= m{S}.

In the grammar, a ranges over arithmetic expressions AExp, and b over Boolean ex-
pressions BExp. Both are assumed to be side-effect free and are not specified further. All
variables are global and range over the set of integers Z. We assume programs are well-formed,
i.e., only declared procedures are called, and procedure names are unique.

» Example 2.2. Consider the Rec program pg &f (S,T) with statement S = 3; even()
and procedure table:

o def even {if x = 0 then y :=1 else x := z — 1; odd()}
a)

odd {if z = 0 then y := 0 else z := z — 1; even()}
The intended semantics is that even terminates in a state where y = 1 if and only if it is

started in a state where x is even and non-negative, and it terminates in a state where y = 0
if and only if it is started in a state where z is odd and non-negative.

» Example 2.3. Consider the Rec program p; &ef (S,T) with S &ef down() and procedure
table:

T “ down {if > 0 then z := x — 2; down() else skip}

The intended semantics is that p; terminates in a state where x = 0 if and only if it is started
in state where z is even and non-negative.

» Remark 2.4. Loops can be defined with the help of (tail-)recursive programs. For example,
a loop of the form “while b do S” can be simulated with a procedure declared in T as:

m{if b then S;m() else skip}

using a unique name m and replacing the occurrence of the loop with a call to m().

A standard, structural operational semantics (SOS) for Rec is defined in Figure 1
(sometimes referred to as small-step semantics). We use it as a baseline when defining the
denotational finite-trace semantics in Section 3.

Let Var be the set of program variables, and State the set of program states s : Var — Z.

Let Afa] (s) € Z denote the integer value of the arithmetic expression a when evaluated in
state s, and B[b] (s) € T denote the truth value of the Boolean expression b when evaluated
in state s, both defined as expected.

A configuration is either a pair (S, s) consisting of a statement and a state, designating
an initial or intermediate configuration; or a state s, designating a final configuration. To
simplify notation we assume that S is evaluated relative to a Rec program with a procedure
table T which is not explicitly specified.

The transitions of the SOS either relate two intermediate configurations, or an intermediate
with a final one, and thus have the shape (S, s) = (S, s’) or (S, s) = &, respectively.

21:3

FSCD 2025

21:4

An Expressive Trace Logic for Recursive Programs

SKip (skip, s) = s ASSIGN (z = a,s) = s[z — Ala] (s)]
(S1,s) = & (S1,s) = (S1,s")
Pl T80 = (55 9) B2 G S, s) > (5% 50,9
IF-1 — if B[] (s) = tt

(if b then S, else Sy, s) = (51, s)

Ir-2 (if b then S else S2,s) = (52, s) if B[b] (s) =1F

CALL — if m is declared as m{S} in T

(m(),s) = (S,s)

Figure 1 SOS rules for Rec.

» Definition 2.5 (Rec SOS). The structural operational semantics (SOS) of Rec is defined
by the rules given in Figure 1.

The structural operational semantics of Rec induces a finite-trace semantics in terms
of the sequences of states that are traversed from an initial to a final configuration when
executing a given statement in the SOS. Let State™ denote the set of all non-empty, finite
sequences of states. Formally, we define a function S0s[S] : Stm — QState+, i.e., a function
such that Ss0s[S] C State™ for any statement S.

» Definition 2.6 (Induced Finite-Trace Semantics). Let S be a statement. Then, Ssos[S] is
defined as the set of (finite) sequences so - 81 - ...~ Sy, of states for which there are statements
S0,51, -+, Sn_1 such that Sy = S, (S;,8;) = (Sit1,8i41) for all0 < i < n—2, and
<Sn—17 5n—1> = Sp.

Observe that in Definition 2.6 any state sg € State can serve as the initial state of a finite
trace. Next we design a “direct-style”, denotational finite-trace semantics that conforms with
the SOS, in the sense that it is equal to the finite-trace semantics induced by the SOS.

3 A Denotational Finite-Trace Semantics for Rec

We define the semantic function St : Stm — 9State” it the intention that SulS] =
Ss0s[S]. Unlike S,s, however, Sy, is defined directly, without referring to other semantic rules
as SOS does (hence the term “direct-style”). We define S,-[S] in the style of denotational
semantics, compositionally, by induction on the structure of S, and through defining equations.
We let o range over traces.

Let us define a unary restriction operator on trace sets, for any trace set A and Boolean
expression b € BExp, as follows: A, def {s-0 € A|B[b] (s) = tt}. It filters out all traces

in A whose first state does not satisfy b. Another unary operator on trace sets is defined as

tA &f {s-s-0]s-o € A} which duplicates the first state in each trace in A. Finally, let us

define the binary operator on trace sets: A~ B def {oa-s-oploa-s€A N s-op € B}

which concatenates traces from A with traces from B that agree on the last and first state,
respectively, but without duplicating that state, see also [16].

» Definition 3.1 (Denotational Finite-Trace Semantics of Rec). Let M = {m1,...,my} be the

set of procedure names in Rec program (S,T), where every m; is declared as m; {S;} in T.

+
We define a helper function S, [S], that is relativized on an interpretation p : M — gState

D. Gurov and R. Hihnle

S?r[[skip]]p &f {s-s|s e State} S [z = a, %ef {s-s[x +— Ala] (s)] | s € State}
def —~ def
SlS1; 821, = Sh[51], S [S], S lmi(], = p(ma)

S9.[if b then Sy else So], & (4S0.[51],)lo U (4S0.[S2],)| -

Figure 2 Finite-trace semantic equations for Rec.

of the procedure names, inductively, by the equations given in Figure 2. The duplication
of the initial states in the equation for the if statement is needed to remain faithful to the
SOS of Rec, which allocates a small step for evaluation of the guard b. We then introduce a
semantic function H : (QState+)” — <QState+)” defined as:

H(p) € (4S0I51], ... tS0.[Su],)

N
Function H is monotonic and continuous in the CPO with bottom ((QState)n,E,Q”),
where T denotes point-wise set inclusion. Hence, by the Knaster-Tarski Theorem, it has a
least fixed point. Let py denote this least fixed point. The denotational finite-trace semantics

of statements S of Rec is defined relative to this interpretation as: Sy.[S] & SY. [s1,,-

» Example 3.2. We execute the statement x := 2; down() with the procedure table from
Example 2.3. The program execution (or run) we obtain from an arbitrary state s is:

(x := 2; down(), s) = (down(), sz — 2]) =

(if £ > 0 then = := x — 2; down() else skip, s[z — 2]) =

(x :=x — 2; down(), s[xz — 2]) = (down(), sz — 0]) =

(if x > 0 then z := 2 — 2; down() else skip, s[z — 0]) = (skip, s[z — 0]) = s[z — 0]

The finite-trace semantics agrees with the SOS of Rec, in the sense that S;.[S] coincides
with the finite-trace semantics Ss,5[S] induced by the SOS, as defined in Definition 2.6.

» Theorem 3.3 (Correctness of Trace Semantics). For all statements S of Rec, we have:

Str[[s]] = Ssos[[S]]‘

4 A Logic over Finite Traces

Our trace logic can be seen as an Interval Temporal Logic [16] with p-recursion [28], or
alternatively, as a temporal p-calculus with a binary temporal operator corresponding to the
chop operation over sets of traces (see, e.g., [32] for a general introduction to p-calculus).

4.1 Syntax and Semantics of the Logic

The philosophy behind our logic is to have logical counterparts to the statements of the
programming language in terms of their finite-trace semantics. For instance, we use binary
relation symbols that correspond to the atomic statements, and a chop operator corresponding
to sequential composition. This design choice helps to simplify proofs of the properties of
the logic and the calculus.

» Definition 4.1 (Logic Syntax). The syntax of the logic of trace formulas is defined by the
following grammar:

¢ u=p|R|X |1 ANda|d1Va|d1™ 2| pX.0

21:5

FSCD 2025

21:6

An Expressive Trace Logic for Recursive Programs

def def
Iply _ {s-o|sk=p} IRl - {s-s"| R(s,s)}
de de
IXl, = V(X) l¢1 Ad2ly, = lély, N le2ly
def ~ def ~
lé1Valy, = loulyUleely, o1 d2fy, = léuly" lo2ly

def
X0y < () { C state” | [olyx.y € 7}

Figure 3 Finite-trace semantic equations for formulas.

where p ranges over state formulas not further specified here, but assumed to contain at least
the Boolean expressions BExp, R ranges over binary relation symbols over states, and X
over a set RVar of recursion variables.

» Definition 4.2 (Logic Semantics). The finite-trace semantics of a formula ¢ is defined as its
denotation |¢|,, C State™, relativized on a valuation V : RVar — oState” of the recursion
variables, inductively by the equations given in Figure 3, where in the last clause V[X — 7]
denotes the updated valuation.

One can show that the transformers \y. ||¢Hv[X 3] ar€ monotonic functions in the complete

lattice (2813"j‘te+7 C) and hence, by Tarski’s fixed point theorem for complete lattices [33],
they have least and greatest fixed points. In particular, the least fixed point is simultaneously
also the least pre-fixed point, hence the defining equation for uX.¢. And because it is a fixed
point, we have the following result for unfolding fixed point formulas.

» Proposition 4.3 (Fixed Point Unfolding). Let uX.¢ be a formula and V a valuation. Then:
|uX .8l = |o[uX.0/X]| -

Our calculus is based on closed formulas of the logic. Observe that fixed point unfolding
preserves closedness. For closed formulas the valuation V is immaterial to the semantics
|#],,- In this case, we often omit the subscript and simply write |¢].

4.2 Binary Relations
We instantiate the set Rel of binary relation symbols with two specific relations:
Id(s,s") N
Sbi(s,s') <L ¢ = [z Ala] (s)]

These two relations are used to model skip and assignment statements, respectively. The
transitive closure R' of a binary relation R over states is easily defined as a recursive formula

in our logic as RT <% X (RV R X).

» Example 4.4. For any arithmetic expression a let Dec, be a binary relation symbol
interpreted as follows: Dec, (s, s') N Ala] (s") < Afa] (s). That is, the value of a does not
increase between two consecutive states. With this symbol, the formula Dec] expresses the

property that the value of a does not increase throughout the whole execution of a program.

D. Gurov and R. Hihnle

def def

stf(X, skip) 14 stf(X,z :=a) = Sb? stf(X, S1; So) = stf(X, 81) stf(X, Sa)

stf(X,if b then S else S2) & (b A Id 7 stf(X, S1)) V (=b A Id " stf(X, S2))

— def [IdpXm.stf(XU{m},Sm) m&X, m{Sn}eT
stf(X, m()) = { Id X, otherwise

Figure 4 Definition of strongest trace formula.

4.3 Strongest Trace Formulas

Since our program logic is able to characterize program traces, and not merely pre- and
postconditions or intermediate assertions, it is possible to establish a close correspondence
between programs and trace formulas. This correspondence is captured by the following —
constructive — definition of the strongest trace formula stf(S) for a given program S, which
characterizes all terminating traces of S.

For each procedure declaration m {S,,} in T, we create a fixed point formula, whenever
m is called the first time. Subsequent calls to m result in a recursion variable. To achieve
this, we parameterize the strongest trace formula function with the already created recursion
variables X. This parameter is initialized to @ and is ignored by all case definitions except
the one for a recursive call.

» Definition 4.5 (Strongest Trace Formula). Let (S,T) be a Rec program. The strongest

trace formula for S, denoted stf(S), is defined as stf(S) &f stf(@, S), where stf(X,S) is

defined inductively in Figure 4.

» Example 4.6. For the program even() with the procedure table of Example 2.2, the
strongest trace formula is:

17 X ewen. (5= 0 A 17 8B}) v
(z#£0AIdT S 1 pX pga-((x = 0 A 1A SbY) V (2 # O A Id“Sbi—l“Jd“XM))))
The binder for X,4q can be removed without changing the semantics.

» Example 4.7. For the program in Example 2.3, the strongest trace formula is:

stf(S) = Id™ 1 X down- (x> OA 1A SHE > T 1d™ Xgoun) V (x < 0N Id T 1d)).

» Theorem 4.8 (Characterisation of Strongest Trace Formula). Let (S,T) be a program of
Rec. Then the following holds: |stf(@,S)| = Si-[S].

The proof of Theorem 4.8 requires an inner fixed point induction for which it is advant-
ageous to break down stf into a modal equation system mes [23] that preserves the structure
of procedure declarations.

» Definition 4.9 (Modal Equation System). Given a closed trace formula ¢, the modal
equation system mes(¢) is an open trace formula together with a set of modal equations of
the form X; = ¢;, inductively defined over ¢ as follows: mes(¢) is just the homomorphism
over the abstract syntax, except when ¢ = uX.¢': In this case, mes(¢) def X, and a new
equation X = mes(¢') is added.

21:7

FSCD 2025

21:8

An Expressive Trace Logic for Recursive Programs

The semantics of modal equation systems is defined as in the literature [23], from where
we also take the semantic equivalence between ¢ and mes(¢).

» Example 4.10. The modal equation system corresponding to the strongest trace formula
in Example 4.6 is: mes(stf(even())) = Id~ Xeyen, where:

Xeven = (@ =ONIdTSby) V (w # 0N 1A Sb; ™ 1™ X aa))
Xoga= (¢ =0ATdT SV (x £ 0ATd T SHE " 1d™ X epen))

Observe the structural similarity between the formula Id™ X cyer, in the context of the defining
equations for Xepen, and X,q4, and the statement even() in the context of the procedure
table T of Example 2.2.

To use the decomposition of a trace formula into a modal equation system, we need
to define for each program S an open trace formula corresponding to mes(stf(S)). This
transformation, called stf’(S), is defined exactly as stf(X,S) in Definition 4.5 (ignoring the
parameter X), except for the case S = m(), which is defined as stf’(m()) = X,,.

» Lemma 4.11. Let (S,T) be a Rec program and M the procedures declared in T. Let
+
p:M— oState”™ . o arbitrary interpretation of the procedures m € M, and letV, : RVar —

oState” po 4 (induced) valuation of the recursion variables defined by V,(X,) = p(m).
We have, for all statements S of Rec: ||stf/(S)||v = S?T[[S]]p.
P

5 A Proof Calculus

We present a proof calculus for our logic in the form of a Gentzen-style deductive proof
system, which is compositional both in the statement and the formula.

5.1 Definition of the Calculus

To obtain a compositional proof rule for procedure calls, its shape will essentially embody
the principle of Fixed Point Induction. For this we need to represent recursion variables in
the Rec language, whose syntax is extended with a set SVar of statement variables, ranged
over by Y. We add these as a new category of atomic statements to Rec.

To define the semantics of programs in the presence of statement variables, we relativize
the finite-trace semantics S;-[S]; of statements S on interpretations T : SVar — oState” ¢

the statement variables, lifted from S;-[S] in the canonical manner.

» Definition 5.1 (Calculus Syntax). Judgments are of the form S : ¢, where S is a Rec
statement, possibly containing statement variables, and ¢ is a closed trace formula. The
sequents of the calculus are of the shape I' = S : ¢, where I' is a possibly empty set of
judgments.

5.1.1 Rules

The calculus has exactly one rule for each kind of Rec statement, except for statement
variables which do not occur in initial judgments to be proven, but are only created intermit-
tently in proofs by the (CALL) rule. All statement rules are compositional in the sense that
only the statement S in focus without any context appears in the conclusion.

D. Gurov and R. Hihnle

SKIP —_— ASSIGN

I' - skip: Id 'k oz:=a:5b;
g ' Si:¢1 T'F So:o Ie I F skip;S1:-bVve¢ I F skip;S2:bV ¢
° I'F S1;82: 017 ¢ I' + if b then S; else S2 : ¢
T FS:¢uX.¢/X] TFS:¢f .
UNFOLD - X0 Cons rgg 9F¢

Y :6m @0 m{SmleT
CALL I, Ym : &m B Swlskip; Yim/m(), skip; Yin, /mi(), . .., skip; Y, /mn()] : ém
T'Fm():Id ém

Figure 5 The rules of the proof calculus.

The statement rules and two selected logical rules of the calculus are shown in Figure 5.

The remaining logical rules, in particular the axioms, are the standard Gentzen-style ones
and are omitted.

To prove the judgment S : ¢ for a program (S,T"), we prove the sequent + S : ¢. All
rules, except the (CALL) rule, leave the antecedent T' invariant.

We first explain the two logical rules. The (UNFOLD) rule is based on Proposition 4.3 and
is used to unfold fixed point formulas. The consequence rule (CONS) permits to strengthen

the trace formula ¢ in the succedent, i.e., the specification of the program under verification.

This is typically required to achieve a suitable syntactic form of ¢, or to strengthen an
inductive claim. The rule assumes the existence of an oracle for proving the logical entailment
between trace formulas.

The (Sk1P) and (ASSIGN) rules handle the atomic statements, using the two binary

relation symbols defined in Section 4.2. The (SEQ) rule is a rule for sequential composition.

Observe that it is compositional in the sense that no intermediate state between S; and S
needs to be considered.
The (IF) rule is a compositional rule for conditional statements. The trace formulas

—bV ¢ in the left premise (and bV ¢ in the right one) might at first appear counter-intuitive.

Formula —b V ¢ is read as follows: We need not consider program S; for any trace, where —b
holds in the beginning, because these traces relate to So; otherwise, ¢ must hold. A more

intuitive notation would be b — ¢, but we refrain from introducing implication in our logic.

Unsurprisingly, the (CALL) rule is the most complex. We associate with each declaration
of a method m in T" a unique statement variable Y,,,. The antecedent I' contains judgments
of the form Y, : ¢,,,. One can think of the Y,, as a generic continuation of any recursive call
to m of which we know that it must conform to its contract ¢,,. Once this conformance has
been established, the fact is memorized in the antecedent I'. Therefore, the (CALL) rule is
triggered only when a call to procedure m() is encountered the first time. This is ensured by
the condition Y,, : ¢, € I'. To avoid having to apply the call rule again to recursive calls
of m(), all such calls in the body S,, are replaced with skip;Y,,, where the skip models
unfolding and Y, is justified by the assumption in I'. Likewise, any other Y,, : ¢, € T
triggers an analogous substitution. Now the procedure body Sp,[...] in the premise contains
at most procedure calls to m’ that do not occur in T'.

If a different judgment than Id™ ¢, is to be proven, then rule (CONs) must be applied
before (CALL) to achieve the required shape.

» Example 5.2. We prove the judgment even() : stf(even()) for the program from Example 2.2
in Figure 6. We abbreviate the fixed point formula in stf(even()) from Example 4.6 with

Geven, 50 that stf(even()) = Id™ peven, the body of even() with Seyen, and similarly for odd)().

21:9

FSCD 2025

21:10 An Expressive Trace Logic for Recursive Programs

CONS Yeven . ¢cvcn, Yodd . ¢odd }_ chen : Qbeven
R Skip : Id Yevcn : ¢cven, K)dd : ¢odd F Yeven : HXeven-(' t /\Qsodd)

SEQ - = =
Ym}en : Qbevcn, Yodd : ¢odd - Sklp; chen : Id HXevcn-(‘ . ¢0dd)
CALL Yeven : (lsm:en, Yodd : ¢odd F Sodd [Skip§ Yevcn/eyen()] . d)odd
Yeven © Peven b o0dd() : stf(odd())
Cons

Yeven : Geven b 0dd() : T pX oga-((x = O A Td T SbI) V (@ # O A 1A SbE 1 Geven)

chen : ¢even = chcn : Qsleuen[(lseven/Xcven]
YEUE'VL : ¢€’U€7L '7 SE’UE'VL : ¢€'U€7L
F even() : stf(even())

UNFOLD

CALL
Figure 6 Proof of even() : stf(even()).

Moreover, we abbreviate:

G = (x=0AId"Sby) V (x #0A

even

147 8by T Id T X pga- (= OA 1A Sb) V (x # O A Td™ S 1d™ Xeyen)))

The proof starts with the call rule, followed by an unfold of the fixed point formula ¢yer,-
We now proceed with the other statement rules simultaneously on Seye, and the formula
on the right until we encounter the call of odd() in Seyen. Here we would like to apply the
call rule to odd(), but we do not have ¢,44 on the right, because the unfolding of ¢y, went
“too deep”. To avoid a lengthy derivation at this point, we use the fact that trace formula on
the right is equivalent to ¢,q4, and use the consequence rule to obtain it.

Now we descend into odd(), similarly as before; however, because the judgment Yeyer, :
@even 1s present on the left, the call rule replaces even() in Seyen, With skip; Yeven : @even-
Finally, we encounter the statement variable Ye,e,, but again the fixed point formula on the
right is “too deep”. After a second transformation we close the proof with an axiom.

» Remark 5.3. It is easy to derive a rule for loops from the (CALL) rule using the encoding
m{if b then S;m() else skip} given in Remark 2.4. In a pure loop program no unprocessed
recursive call except m() ever occurs in the body, so the (CALL) rule is applicable with
I' = @. Rule (CALL) instantiated to m and a suitable ¢, gives Sp,[skip;Y,,/m()] =
if b then S;skip;Y,, else skip in the premise on the right, so its single premise becomes:
Yo : & F if b then S;skip; Y, else skip : ¢,,. Subsequent application of rule (IF) yields
the two premises Y;, : ¢, F skip; S;skip;Y,, : 70V ¢, and Y,, : ¢, F skip;skip : bV ¢,,..
In each premise is a spurious skip resulting from evaluating the method call which is only
due to the encoding. In addition, the antecedent is not needed to prove the second premise
and can be removed. After reordering and simplification, rule (WHILE) is obtained as:

I' - skip: bV I Y:¢ F skip;S;Y : -bV ¢
I' + while bdo S : ¢

WHILE

where I' contains judgments of the form Y : ¢ originating from while loops encountered
previously. These are only needed in a proof in the presence of nested loops.

D. Gurov and R. Hihnle

5.1.2 Semantics

» Definition 5.4 (Calculus Semantics). A judgment S : ¢ is termed valid in Z, denoted
=1 S ¢, whenever S, [S]; C |¢f. A sequentT' = S : ¢ is termed valid, denoted T’ = S : ¢,
if for every interpretation I, S : ¢ is valid in T, whenever all judgments in I are valid in T.

It is not possible to prove a judgment for m() (or any other statement) that is stronger
than its strongest trace formula. In this sense, stf(m()) can be seen as a contract for m, in
fact the strongest possible contract. This is captured in the following result:

» Corollary 5.5 (Strongest Trace Formula). Let S be a statement not involving any statement
variables. Then the strongest trace formula stf(S) of S entails any valid formula for S. That

is, if =S : ¢, then stf(S) = ¢.
Proof. The result follows directly from Theorem 4.8 and Definition 5.4. <

5.2 Soundness and Relative Completeness of the Calculus
Our proof system is sound, in the sense that it can only derive valid sequents.
» Theorem 5.6 (Soundness). The proof system is sound: every derivable sequent is valid.

Our proof system is complete, in the sense that every valid sequent can be derived, relative
to an oracle, used by rule (CoNs), that provides logical entailment between trace formulas.
By Theorem 4.8 and Definition 5.4 we know that every judgment of the shape S :

stf(S) is valid. We next show that all such judgments are derivable in our proof system.

Together with Corollary 5.5, we obtain completeness, with the help of the rule (Cons). By
definition: stf(m()) = Id™ uX,,.stf({m}, S,.), where S, is the body of m. We abbreviate
dm = pXm.stf({m}, Sp) and in the following use stf(m()) = Id” " ¢,,, without mentioning it
explicitly.

» Theorem 5.7 (Existence of Canonical Proof). Let (S,T) be a Rec program with n many
method declarations in T, and let T = {Yim, : Gdmys---r Ym, : &m, - Then, the judgment
I + S[skip; Yo, /m1(),...,skip; Yo, /mn()] : stf(S) is derivable in our calculus.

» Corollary 5.8 (Relative Completeness). The proof system is relatively complete: for every
Rec program S without statement variables and every closed formula ¢, any valid judgment
of the form S : ¢ is derivable in the proof system.

Proof. By Theorem 4.8 we know that stf(S) = ¢, so we can use rule (CONS) to obtain
S : stf(S), which is derivable by Theorem 5.7. <

Compared to a typical completeness proof of first-order Dynamic Logic, where the
invariant is constructed as equations over the Godelized program in the loop, the argument is
much simpler, because the inductive specification logic is sufficiently expressive to characterize
recursive programs (and loops as a special case). First-order quantifiers are not even necessary,

so our logic is not first-order, even though it is obviously Turing-hard and thus undecidable.

6 From Trace Formulas to Programs

In Section 4.3 we showed that any Rec program S can be translated into a trace formula
stf(S) that has the same semantics in terms of traces. Now we look at the other direction:
Given a trace formula ¢, can we construct a canonical program can(¢) that has the same
semantics in terms of traces? In general, this is not possible, as the following example shows:

21:11

FSCD 2025

21:12

An Expressive Trace Logic for Recursive Programs

» Example 6.1. Consider the trace formula: SbgAuX. (Id Vv Sbg“r\X). Its semantics are
the traces that count y up from 0 to any finite number. It is not possible to model the
non-deterministic choice in the fixed point formula directly in Rec, because the number of
calls is unbounded.

There is a Rec program that produces exactly the same traces as the formula above, up to
auxiliary variables, for example, y := 0; m(), where m is declared as: m() {if (y < z) theny :=
y + 1;m() else skip}. However, to transform an arbitrary formula with unbounded non-
determinism in the number of calls to an equivalent one with non-deterministic initialization,
is difficult and not natural.

6.1 Rec Programs with Non-deterministic Choice

To achieve a natural translation from the trace logic to canonical programs, it is easiest to
introduce non-deterministic choice in the form of a statement if * then S; else S5. The
extension of language Rec with the corresponding grammar rule is called Rec”.

The SOS rules for non-deterministic choice are:

(if * then S else Sa2,s) = (S;,s)

ie{1,2}

The finite-trace semantics of non-deterministic choice is:
Sy [if * then S else S5] & 48, [S1] U #Su[So]

The extension of Theorem 3.3 for non-deterministic choice is completely straightforward.
Likewise, the theory of strongest trace formulas is easy to extend:

stf(if * then S else Sy) & 1d 7 stf(Sy) Vv Id " stf(Ss)

It is easy to adapt the proof of Theorem 4.8. The corresponding calculus rule is:

I' - skip;S1:¢ I F skip;S2: ¢

T T F if = then S else S : ¢

It is also easy to extend the proofs of Theorem 5.6 and Theorem 5.7. A more problematic
aspect of the translation to canonical programs concerns formulas of the form ¢, A ¢, because
there is no natural programming construct that computes the intersection of traces. But in
Definition 4.5 general conjunction is not required, so without affecting the results in previous
sections we can restrict the syntax of trace formulas in Definition 4.1 to p A ¢.

A final issue are the programs that characterize a trace formula of the form p with
semantics |p| = State+|p. A program that produces such traces requires a havoc statement
that resets all variables to an arbitrary value. This goes beyond non-deterministic choice
quite a bit, but luckily, it is not required: As seen above, trace formulas of the form p occur
only as subformulas of p A ¢. Further, formulas of the form p V ¢ occur only as intermediate
formulas in derivations, and nowhere else. Altogether, for the purpose of mapping formulas
to programs, we can leave out the production for p. The grammar in Definition 4.1 is thus
simplified to:

¢ = Id|Sby | X [pAd|oVY| o™ Y| uX.0

In addition, we assume without loss of generality that all recursion variables in a trace
formula have unique names.

D. Gurov and R. Hihnle

6.2 Canonical Programs

» Definition 6.2 (Canonical Program). Let ¢ be trace formula. The canonical program for ¢,
denoted can(¢) = (S4,Ty), is inductively defined as follows:

can(Id def skip, ¢€) can(p A @) def (if p then S, else diverge, Ty)
can(Sb, O = a, €) can(¢ V 1) %ef (if * then Sy else Sy, Ty Ty)
def

S5 Sy, Ty Ty) can(uX.¢) = (mx (), Ts {mx{Ss}})

The definition contains the statement diverge. It is definable in the Rec language as
diverge def abort(), with the declaration abort{abort()}. We assume that any table Ty,

contains the declaration of procedure abort() when needed.

» Example 6.3. We translate the formula in Example 6.1:
can(Sby pX.(Id vV SHIHT T X)) = (y == 0;mx(), T)

where T'= mx {if * then skip else y :=y + 1;mx()}.

» Proposition 6.4. We have Si [diverge] = @.

» Proposition 6.5. Let ¢ be an open trace formula, let T(; be declarations of its unbound
recursion variables, and let can(¢) = (Sy,Ty). Then (Sy, Ty T},) is a well-defined Rec”
program.

Evaluation of procedure calls and Boolean guards introduce stuttering steps as compared to
the corresponding logical operators of least fixed point recursion and disjunction, respectively.
Hence, canonical programs obtained from a formula ¢ are statements, whose trace semantics
is equal to the one of @, but modulo stuttering: The two trace sets are equal when abstracting
away the stuttering steps. Further, we say that statement S refines statement Ss, written
Sl j SQ, when St,.[[Sl}] g St»,-[[SQ]].

» Definition 6.6 (Stuttering Equivalence). Let & be the stutter-free version of a trace o, i.e.,
where any subtrace of the form s-s---s has been replaced with s. Define A= {5 |0 € A}.
We say two trace sets A, B are stutter-equivalent, written A= B, if A = B.

It is easy to see that A = B implies A=B. Let |; and = denote entailment between
formulas and refinement between statements, respectively, both modulo stuttering equivalence.

Unsurprisingly, the characterization of canonical programs resembles the one of strongest
trace formulas, however, modulo stuttering equivalence.

» Theorem 6.7 (Characterisation of Canonical Program). Let ¢ be a closed trace formula, and
let can(¢) = (Sg,Ty). Then Si[Se] = |4].

Finally, we can establish that stf(-) and can(-) form a Galois connection w.r.t. the partial
orders = on formulas and < on statements.

» Corollary 6.8. Let ¢ be a closed trace formula, and let can(¢) = (Sg,Ty). Then, for every
statement S, we have: stf(S)=¢ iff S=<S,.

Proof. By using Theorem 4.8 and Theorem 6.7. |

21:13

FSCD 2025

21:14

An Expressive Trace Logic for Recursive Programs

7 Related Work

We do not discuss higher-order logical frameworks [4, 27], because they serve a different
purpose: Their expressiveness can be used to mechanize verification frameworks, including
syntax, semantics, and calculus. For example, a mechanization of contract-based deductive
verification is in [34]. One could do that also for the approach in the present paper.

Stirling [32, p. 528, footnote 2] suggests that the p-calculus can be generalized to non-
unary predicates, but does not develop this possibility further. In [24], Miiller-Olm proposes
a modal fixed point logic with chop, which can characterize any context-free process up to
bisimulation or simulation. The logic is shown to be strictly more expressive than the modal
p-calculus. Lange & Somla [21] relate propositional dynamic logic over context-free programs
with Miiller-Olm’s logic and show the former to be equi-expressive with a fragment of the
latter. Fredlund et al. [13] present a verification tool for the ERLANG language based on
first-order p-calculus with actions [9]. Rosu et al. [6, 31] propose matching logic (ML) as a
unifying logic for specifying and reasoning about the static structure and dynamic behaviour
of programs. It uses patterns and constraints to uniformly represent mathematical domains,
data types, and transition systems, whose properties can be reasoned about using one proof
system. Our trace logic bares certain similarities with ML, both allowing recursion, but our
logic is syntax-driven and has a fixed semantics in the domain of program traces, while ML
is a semantic approach. We are not aware of a similar result as Corollary 6.8 in ML.

In contrast to the above mentioned work, we separate programs from fixed point formulas,
and relate them in the form of judgments. Our logic has a single binary operator Sb% over
arithmetic expressions a and program variables z, together with the chop operator ~ . The
latter models composition of binary relations in the denotational semantics. Our logic is
sufficient to characterize any Rec program. Specifically, y-formulas can serve as contracts
of recursive procedures. More importantly, our approach leads to a compositional calculus,
where all rules but the consequence rule are analytic.

Kleene algebra with tests (KAT) [19] are an equational algebraic theory that has been
shown to be as expressive as propositional while programs. They were mechanized in an
interactive theorem prover [30] and are able to express at least Hoare-style judgments [20].
The research around KATs focuses on propositional while programs: we are not aware of
results relating KAT with recursive stateful programs. Specifically, our result that procedure
contracts can be expressed purely in terms of trace formulas (Theorem 4.8) has not been
obtained by algebraic approaches.

Expressive trace-based specification languages are rare in program verification. The trace
logic of Barthe et al. [2] is a many-sorted first-order logic, equipped with an arithmetic theory
of explicit trace positions to define program semantics. It is intended to model program
verification in first-order logic for processing in automated theorem provers. Like Sy, [], their
program semantics is compositional; however, it uses explicit time points instead of algebraic
operators. An extension of Hoare logic with trace specifications is presented by Ernst et
al. [11]. Hoare triples are extended with regular expressions recording events emitted before
the execution of the command and the events emitted by its execution. Our trace logic is
more expressive. Also the first-order temporal logic of nested words (NWTL) of Alur et al. [1]
permits to specify certain execution patterns within symbolic traces. It is orthogonal to our
approach, being based on nested event pairs and temporal operators, instead of least fixed
points and chop. NWTL is equally expressive over nested words as first-order logic. The
intended computational model is not Rec, but non-deterministic Biichi automata over nested
words for which it is complete. Temporal stream logic of Finkbeiner et al. [12], like our trace

D. Gurov and R. Hihnle

logic, has state updates Sbi, (with a different syntax) and state predicates, but it is based on
linear temporal logic and has no fixed points or chop. Again, the intended computational
model is an extension of Biichi automata, the verification target are FPGA programs.
Cousot & Cousot [8] define a trace-based semantics for modal logics where (infinite) traces
are equipped with past, present, and future. Their main focus is to relate model checking

and static analysis to abstract interpretation — the trace-based semantics is the basis for it.

In contrast, our paper relates a computation model to a logic. Like our semantics, theirs is
compositional and the operators mentioned in their paper could inspire abstractions of our
trace logic, cf. Section 8.1 below.

Nakata & Uustalu [25] present a trace-based co-inductive operational semantics with chop
for an imperative programming language with loops. Following up on this work, [10] extended
the approach to an asynchronous concurrent language, but neither of these uses fixed points,
so that the specification language is incomplete. Also the calculus is not compositional.

Closest to the present work is our earlier work on trace-based deductive verification [5],
where we used a similar trace logic than here. However, neither the semantics nor the calculus
were compositional. Furthermore, we proved soundness there, but left completeness as an
open question.

8 Future Work

8.1 Abstract Specifications and Extension of Recursive Programs

It is desirable to formulate specifications in a more abstract manner than the programs whose
behavior they are intended to capture. For example, if we reinstate the atomic trace formula

p in our logic, we can easily express the set of all finite traces as |true| = State®. Then

we can define a binary connective as ¢ - - ¢ &ef ¢” true” ¢ as “any finite (possibly, empty)

computation may occur between ¢ and ¢”. For example, the trace formula pX.(X - - X)
expresses that a procedure mx calls itself at least twice recursively, at the beginning and at
the end of its body, respectively.

A more general approach to introduce non-determinism to the logic is to define for a

Boolean expression b a binary relation Ry with semantics Rp(s, s) PN B[b] (s) = tt. The

+

atomic formula p is then definable as: p def R, "R} ... The advantage of basing p on a binary

relation is that it is more easily represented as a canonical program. To this end, we introduce
an atomic statement havoc with the trace semantics Sy-[havoc] = {s-s' | s,s’ € State},
i.e. in any given state s, executing havoc results in an arbitrary successor state. The proof

rule for havoc is the axiom I' F havoc : Ry, and obviously stf(havoc) def Riye- Then

p is characterized by can(p) e (if p then havoc() else diverge, T), where T contains the

declaration havoc {if * then havoc else skip; havoc()}.
Interestingly, Ry (and, therefore, havoc on the side of programs) permits to define
concatenation of trace formulas ¢ - ¢ with the obvious semantics:

def —~ —~
[¢- 01 = {0 snsh i [50750 €101, 56,50, € W1} = 67 Rurue™ ¥

8.2 Proving Consequence of Trace Formulas

In general this is a difficult problem that requires fixed point induction, but the derivations
needed in practice might be relatively simple, as the following example shows.

21:15

FSCD 2025

21:16

An Expressive Trace Logic for Recursive Programs

» Example 8.1. Consider the two trace formulas:

af(doun()) = KXo (&> 0TS X V (& < 05 14 1)
Dec;r = HXdem(D@CmAXdec V Dec,,)

from Examples 2.3 and 4.7, respectively. We expect the trace formula implication
stf(down()) = Id™ Dec} to be provable, because of Theorem 4.8.

It turns out that the following fixed point induction rule and consequence rule, combined
with straightforward first-order consequence and logic rules, are sufficient to prove the claim:

/ !
LEoéo=4 Cons.Lprr 20 F¥ T.&FY

FP-1 ad °
N T X uXa T,¢ ¢ F ¢ o

In fact, the proof is considerably shorter than proving the judgment down() : Id™ Dec;’
in the calculus of Section 5, which is as well possible.

A proof system for trace formula implication that can prove the above as well as many
other non-trivial examples is given in [17].

8.3 Non-terminating Programs

Our results so far are limited to terminating programs, i.e. to sets of finite traces. To extend
the calculus with a termination measure, such that a proof of S : ¢ not only shows correctness
of S relative to ¢, but also ensures it produces only finite traces, is easy.

However, the trace-based setup permits, in principle, also to prove properties of non-
terminating programs. To this end, it is necessary to extend the logic with operators whose
semantics contains infinite traces. One obvious candidate are greatest fized points [32]. The
downside to this approach is that nested fixed points of opposite polarity are difficult to
understand, as is well known from p-calculus. Is there a restriction of mixed fixed point
formulas that naturally corresponds to a certain class of programs? The theory of strongest
trace formulas and canonical programs might guide the search for such fragments.

9 Conclusion

We presented a fixed point logic that characterizes recursive programs with non-deterministic
guards. Both, programs and formulas have the same kind of trace semantics, which, like the
calculus for proving judgments, is fully compositional in the sense that the definitions and
rules embody no context. The faithful embedding of programs into a logic seems to suggest
that we merely replace one execution model (programs) with another (trace formulas). So
why is it worth having such an expressive specification logic? We can see four reasons:

First, the logic renders itself naturally to extension and abstraction that cannot be easily
mimicked by programs or that are much less natural for programs. This is corroborated
by the discussion in Section 8.1, but also by the case of conjunction: It is trivial to add
conjunction ¢ A ¥ to the trace logic and to a calculus for trace formulas, but conjunction
has no natural program counter-part. Yet it permits to specify certain hyper-properties, i.e.,
properties relating sets of traces.

Second, the logic offers reasoning patterns that are easily justified algebraically, such as
projection, replacement of equivalents, strengthening, distribution, etc., that are not obvious
in the realm of programs.

Third, the concept of strongest trace formula leads to a characterization of valid judgments
and, thereby, enables a simple completeness proof.

D. Gurov and R. Hihnle

And finally, the duality between programs and formulas permits to prove judgments

by freely mixing two styles of reasoning: with the rules of the calculus in Figure 5, or

using a calculus for the consequence of trace formulas. For example, a judgment such as
down() : IdADec: can be proved as in Example 8.1 or directly with the rules in Figure 5,
but also by mixing both styles.

A perhaps surprising feature of our trace logic is the fact that no explicit notion of

procedure contract is required to achieve procedure-modular verification: Instead, strongest
trace formulas and statement variables are employed. This results in a novel (CALL) rule
that works with symbolic continuations realized by statement variables.

—— References

1

10

11

12

Rajeev Alur, Marcelo Arenas, Pablo Barcelé, Kousha Etessami, Neil Immerman, and Leonid
Libkin. First-order and temporal logics for nested words. Log. Methods Comput. Sci., 4(11):1-
44, 2008. doi:10.2168/LMCS-4(4:11)2008.

Gilles Barthe, Renate Eilers, Pamina Georgiou, Bernhard Gleiss, Laura Kovacs, and Matteo
Maffei. Verifying relational properties using trace logic. In Clark W. Barrett and Jin Yang,
editors, Formal Methods in Computer Aided Design, FMCAD, pages 170-178, San Jose, CA,
USA, 2019. IEEE. doi:10.23919/FMCAD.2019.8894277.

Patrick Baudin, Jean-Christophe Fillidtre, Claude Marché, Benjamin Monate, Yannick Moy,
and Virgile Prevosto. ACSL: ANSI/ISO C Specification. Technical Report Version 1.17, CEA
and INRIA, 2021. URL: https://frama-c.com/download/frama-c-acsl-implementation.
pdf.

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development—
Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science.
An EATCS Series. Springer, Berlin Heidelberg, 2004. doi:10.1007/978-3-662-07964-5.
Richard Bubel, Dilian Gurov, Reiner Héhnle, and Marco Scaletta. Trace-based deductive
verification. In Logic for Programming, Artificial Intelligence and Reasoning (LPAR 2023),
volume 94 of EPiC Series in Computing, pages 73-95. EasyChair, 2023. doi:10.29007/VDFD.
Xijaohong Chen, Dorel Lucanu, and Grigore Rosu. Matching logic explained. Journal of
Logical and Algebraic Methods in Programming, 120:100638, 2021. doi:10.1016/J.JLAMP.
2021.100638.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The MIT Press,
Cambridge, Massachusetts, 1999.

Patrick Cousot and Radhia Cousot. Temporal abstract interpretation. In Mark N. Wegman
and Thomas W. Reps, editors, Proc. 27th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Boston, Massachusetts, USA, pages 12-25. ACM, 2000. doi:
10.1145/325694 .325699.

Mads Dam and Dilian Gurov. p-calculus with explicit points and approximations. J. of Logic
and Computation, 12(2):255-269, April 2002. doi:10.1093/L0OGCOM/12.2.255.

Crystal Chang Din, Reiner Hahnle, Einar Broch Johnsen, Violet Ka I Pun, and Silvia Lizeth
Tapia Tarifa. Locally abstract, globally concrete semantics of concurrent programming
languages. In Claudia Nalon and Renate Schmidt, editors, Proc. 26th Intl. Conf. on Automated
Reasoning with Tableaux and Related Methods, volume 10501 of LNCS, pages 22-43, Cham,
September 2017. Springer. doi:10.1007/978-3-319-66902-1_2.

Gidon Ernst, Alexander Knapp, and Toby Murray. A Hoare logic with regular be-
havioral specifications. In Tiziana Margaria and Bernhard Steffen, editors, Leveraging
Applications of Formal Methods, Verification and Validation, 11th Intl. Symp., ISoLA,
Rhodes, Greece, Proc. Part I, volume 13701 of LNCS, pages 45-64. Springer, 2022. doi:
10.1007/978-3-031-19849-6_4.

Bernd Finkbeiner, Felix Klein, Ruzica Piskac, and Mark Santolucito. Temporal stream
logic: Synthesis beyond the bools. In Isil Dillig and Serdar Tasiran, editors, Computer Aided
Verification: 31st Intl. Conf., CAV, Part I, volume 11561 of LNCS, pages 609-629, New York
City, NY, USA, 2019. Springer. doi:10.1007/978-3-030-25540-4_35.

21:17

FSCD 2025

https://doi.org/10.2168/LMCS-4(4:11)2008
https://doi.org/10.23919/FMCAD.2019.8894277
https://frama-c.com/download/frama-c-acsl-implementation.pdf
https://frama-c.com/download/frama-c-acsl-implementation.pdf
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.29007/VDFD
https://doi.org/10.1016/J.JLAMP.2021.100638
https://doi.org/10.1016/J.JLAMP.2021.100638
https://doi.org/10.1145/325694.325699
https://doi.org/10.1145/325694.325699
https://doi.org/10.1093/LOGCOM/12.2.255
https://doi.org/10.1007/978-3-319-66902-1_2
https://doi.org/10.1007/978-3-031-19849-6_4
https://doi.org/10.1007/978-3-031-19849-6_4
https://doi.org/10.1007/978-3-030-25540-4_35

21:18

An Expressive Trace Logic for Recursive Programs

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Lars-Ake Fredlund, Dilian Gurov, Thomas Noll, Mads Dam, Thomas Arts, and Gennady
Chugunov. A verification tool for Erlang. Journal of Software Tools for Technology Transfer,
4(4):405-420, August 2003. doi:10.1007/5100090100071.

Dilian Gurov and Reiner Héhnle. An expressive trace logic for recursive programs. CoRR,
abs/2411.13125, 2024. doi:10.48550/arXiv.2411.13125.

Reiner Hahnle and Marieke Huisman. Deductive verification: from pen-and-paper proofs to
industrial tools. In Bernhard Steffen and Gerhard Woeginger, editors, Computing and Software
Science: State of the Art and Perspectives, volume 10000 of LNCS, pages 345-373. Springer,
Cham, Switzerland, 2019.

Joseph Y. Halpern and Yoav Shoham. A propositional modal logic of time intervals. Journal
of the ACM, 38(4):935-962, 1991. doi:10.1145/115234.115351.

Niklas Heidler and Reiner Héhnle. A Sequent Calculus for Trace Formula Implication. arXiv
CoRR, May 2025. doi:10.48550/arXiv.2505.03693.

C. A. R. Hoare. Procedures and parameters: An axiomatic approach. In Erwin Engeler,
editor, Symposium on Semantics of Algorithmic Languages, volume 188 of Lecture Notes in
Mathematics, pages 102-116. Springer, Berlin, Heidelberg, 1971. doi:10.1007/BFb0059696.
Dexter Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages and
Systems, 19(3):427-443, 1997. doi:10.1145/256167.256195.

Dexter Kozen. On Hoare logic and Kleene algebra with tests. ACM Transactions on Compu-
tational Logic, 1(1):60-76, 2000. doi:10.1145/343369.343378.

Martin Lange and Rafal Somla. Propositional dynamic logic of context-free programs and
fixpoint logic with chop. Information Processing Letters, 100(2):72-75, 2006. doi:10.1016/J.
IPL.2006.04.019.

Gary T. Leavens, Erik Poll, Curtis Clifton, Yoonsik Cheon, Clyde Ruby, David Cok, Peter
Miiller, Joseph Kiniry, Patrice Chalin, Daniel M. Zimmerman, and Werner Dietl. JML Reference
Manual, May 2013. Draft revision 2344. URL: http://wuw.eecs.ucf.edu/~leavens/JML/
/01dReleases/jmlrefman.pdf.

Angelika Mader. Verification of modal properties using Boolean equation systems. PhD thesis,
Technical University Munich, 1997.

Markus Miiller-Olm. A modal fixpoint logic with chop. In Theoretical Aspects of Computer
Science (STACS 1999), volume 1563 of LNCS, pages 510-520, Berlin Heidelberg, 1999. Springer.
doi:10.1007/3-540-49116-3_48.

Keiko Nakata and Tarmo Uustalu. Trace-based coinductive operational semantics for While.
In Theorem Proving in Higher Order Logics (TPHOLs), volume 5674 of LNCS, pages 375-390,
Berlin Heidelberg, 2009. Springer. doi:10.1007/978-3-642-03359-9_26.

Hanne Riis Nielson and Flemming Nielson. Semantics with Applications: An Appet-
izer. Undergraduate Topics in Computer Science. Springer, London, 2007. doi:10.1007/
978-1-84628-692-6.

Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant
for Higher-Order Logic, volume 2283 of LNCS. Springer, Berlin Heidelberg, 2002. doi:
10.1007/3-540-45949-9.

David Michael Ritchie Park. Finiteness is mu-ineffable. Theoretical Computer Science,
3(2):173-181, 1976. doi:10.1016/0304-3975(76)90022-0.

Gordon D. Plotkin. A structural approach to operational semantics. J. Log. Algebr. Program.,
60-61:17-139, 2004.

Damien Pous. Kleene algebra with tests and Coq tools for while programs. In Sandrine
Blazy, Christine Paulin-Mohring, and David Pichardie, editors, Interactive Theorem Proving,
4th Intl. Conf. ITP, Rennes, France, volume 7998 of LNCS, pages 180-196. Springer, 2013.
doi:10.1007/978-3-642-39634-2_15.

Grigore Rosu. Matching logic. Logical Methods in Computer Science, 13(4), 2017. doi:
10.23638/LMCS-13(4:28)2017.

https://doi.org/10.1007/S100090100071
https://doi.org/10.48550/arXiv.2411.13125
https://doi.org/10.1145/115234.115351
https://doi.org/10.48550/arXiv.2505.03693
https://doi.org/10.1007/BFb0059696
https://doi.org/10.1145/256167.256195
https://doi.org/10.1145/343369.343378
https://doi.org/10.1016/J.IPL.2006.04.019
https://doi.org/10.1016/J.IPL.2006.04.019
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
http://www.eecs.ucf.edu/~leavens/JML//OldReleases/jmlrefman.pdf
https://doi.org/10.1007/3-540-49116-3_48
https://doi.org/10.1007/978-3-642-03359-9_26
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1007/978-1-84628-692-6
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1016/0304-3975(76)90022-0
https://doi.org/10.1007/978-3-642-39634-2_15
https://doi.org/10.23638/LMCS-13(4:28)2017
https://doi.org/10.23638/LMCS-13(4:28)2017

D. Gurov and R. Hihnle

32 Colin Stirling. Modal and temporal logics. In Handbook of Logic in Computer Science (Vol.
2): Background: Computational Structures, pages 477-563, USA, 1993. Oxford University
Press, Inc.

33 Alfred Tarski. A lattice-theoretical fixedpoint theorem and its applications. Pacific Journal of
Mathematics, 5:285-309, 1955.

34 David von Oheimb. Hoare logic for Java in Isabelle/HOL. Concurrency and Computation:
Practice and Ezperience, 13(13):1173-1214, 2001. doi:10.1002/CPE.598.

A Selected Proofs

A.1 Strongest Trace Formula

Proof of Lemma 4.11. The proof proceeds by induction on the structure of S.

Case S = if b then S, else S3. By the induction hypothesis, [stf(S;)],, = S,?T[[Si]]p for
1 =1,2. We have:

|stf'(if b then S, else Sg)va

[(b A Tt (1) v (b A T st (S))]),

[A 1a7 st (S1))],, U (=0 A 17 st (S5)],

(3 st (S [y, o L (& st (S2)]],)l

(880510)b U (8551521)b
SV [if b then S, else Sa],

Case S = m(). We have:

st (m O],
[Xmlly,
Vp(Xim)
p(m)
Silm0)]

p
<

Proof of Theorem 4.8. Since stf’(S) and stf(X,S) are defined identically, except for the
case S = m(), the proof is the same as for Lemma 4.11, except for that case:

Case S = m(). We only sketch the proof here. We translate the formula stf(&,m()) into
a modal equation system mes(stf(&, m())). This results in the formula X,,, defined in the
context of a system of modal equations: for each fixed point operator pX; in stf(&, m()),
there is an equation X; = Id”~ stf’'(S;), whenever m; is declared as m; {S;} in T. Next, from
the standard semantics of modal equation systems, and by Lemma 4.11, it follows that the
least solution Vy of the modal equation system is equal (on the names of the procedures
called recursively by m) to the valuation V,, induced by the interpretation py defined by the
procedure table T'. Finally, by Lemma 4.11, we have:

|stf (2, m())]
[Xy,

[Xmly,,
Vpo (Xm)
po(m)
Splm()]
Ser[m()]

PO

21:19

FSCD 2025

https://doi.org/10.1002/CPE.598

21:20

An Expressive Trace Logic for Recursive Programs

A.2 Soundness of the Calculus

For the proof we need to relate traces restricted by a condition b to trace formulas. In the
following proposition, the intuition for |—bV ¢| is that it ignores any trace, that is, it is
trivially true for any trace, where b does not hold in the beginning.

» Proposition A.1 (State formulas in judgments). Let b be a Boolean expression, ¢ a trace
formula. Then (Su-[S]ls C @] iff Se[S] S |-bV .

Proof. “Only If” direction: Assume (Sg-[S])|s C |¢| and there is a trace s - o € S-[S] that
is not in |[-bV ¢| = |-b| U |¢|, hence, s-o & |-b| and s- 0 & |¢|. But s-o & |-b| implies
s-0 € (Se[SDls C |¢|: contradiction.

“If” direction: Assume Si-[S] C |-bV ¢| and there is a trace s- o € (Si-[S])|» that is not
in |¢|. From the assumption and (S [S])][»C Si-[S] we obtain s- o € |-bV ¢|. However,
since B[b] (s) = tt we must have in fact s- o € |@|: contradiction. <

Proof of Theorem 5.6. The proof system is sound, since every rule of the system is locally
sound, in the sense that its conclusion is valid whenever all its premises are valid. We shall
prove local soundness of each rule. Without loss of generality, we ignore I" in most cases.

Rule IF. Let Z be an arbitrary interpretation. Using Proposition A.1, we have:

Ez skip;S1: bV ¢ and |7 skip;Sy:bV ¢
Sir[skip; S1]; € |-b V ¢| and

Sir[skip; Sa]; € [bV ¢

1S [S1]7 € [-bV ¢| and §S:-[S2]z C [bV |
(1St [S117)1, € |8l and (8Se-[S2]7)]-, € 9]
((tSe[S11)lp U (8Se[S2]1)-) € ol

Si[if b then S else So]; C |¢]

=z if b then S; else S : ¢

3

to e

where we use that Sy [skip; S]; = £S:-[S];, and therefore:

=z skip; S1: bV ¢ and |7 skip; Sy : bV ¢
& |z if b then S else Sy : ¢

Rule CALL. For the proof of the rule we employ the principle of Fixed Point Induction. To
simplify the presentation, we assume there is only one procedure m(), declared as m {S,}
in T. The general case follows from Beki¢’s Principle. The notation p[m > ~] specifies the
interpretation that is identical to p, except for p(m) = ~.

Yin: ¢m |= Sw[skip; Vi /m()] : ¢m
VL. (SerlYmlz S |oml
= Sir[Sm[skip; Vi /m()llz € [dm])
VY- (v Cloml = SElSm ppmisgy) € IEml)
V. (Ij'y c “Id/\d)m” = ﬁS?THSm]]p[mHﬁ’Y] - ”Id/\d)m”)
V. (v € A ¢m| = £S5 [Si] | S 1A ¢ml)
po(m) C [1d™" |
S lmO],, C 1Hd™ ém]
Sr[mOI € [1d™" ¢
= m(): 1d" ¢m

3

plm—ry

teed o

D. Gurov and R. Hihnle

A.3 Completeness of the Calculus

Proof of Theorem 5.7. The proof proceeds by induction on the structure of S. However, In
the case of a call the statement does not necessarily get smaller, because the body of m is
expanded. So we need to argue that the induction is well-founded. Indeed, the lexicographic
order on (N — |T'|, |S]) (obviously, the first component is never negative) always decreases.
Since T is irrelevant for all cases except S = m(), we simplify the claim accordingly for these.

Case S = if b then S; else S3. Assume by the induction hypothesis that + S : stf(S7)
and F S :stf(S3) can be proven. We also use that ¢ = (pV (-p A ¢)) is a valid consequence.
We have:
F if b then S; else S; : stf(if b then S; else Ss)
&k if b then S else Sy : (b A Id” stf(S1))V
(b A Id"stf(Ss))
< {By rule (IF) combined with rule (OR)}
F skip; S1: —bV (b A Id” stf(S7)) and
F skip; Sz : bV (b A Id” stf(Ss))
< {By rule (Cons)}
F skip; Sy : Id” stf(S;) and F skip; Sy : Id™ stf(Ss)
< {By rule (SEQ) combined with rule (Sk1p) and
the induction hypothesis}
true

Case S = m(). There are two subcases: either m € {m4,...,m,} or not. In the first case,
S[skip; Yo, /mi(), ..., skip; Yo, /m. ()] = skip; Yy,.

In the second case, S[skip; Yy, /mi(),...,skip;Y,,, /m,()] = m(). In both cases, we
have stf(m()) = Id™ ¢m.

Subcase skip; Y;,,. We have to prove the judgment I' - skip;Y,, : Id” ¢,,. Using rules
(SEQ) and (SKip), this reduces to I' + Y, : ¢p,. Because of the assumption m €
{mi,...,m,} we have Yy, : ¢, € T, so the proof is finished.

Subcase m/(). We have to prove the judgment I' = m() : Id” ¢,,. Rule (CALL) is applicable

due to assumption m & {my,...,m,}. Let

S, déf Sm [Skip; Ym/m()a skip; Yo, /ml()v ..., skip; Ymn /m”()]

m

The obtained premise yields the new claim to prove:
TU{Ym :0m} b SL o p X stf({m}, Sp)

We apply rule (UNFOLD) on the right and obtain:
P U{Yim : dm} b Sy, o stf({m}, Sim)[dm/ Xom]

By induction and by the definition of stf(.S) we finish the proof up to subgoals of the
form (for some m' # m):

TU{Ym : om} B m/():stf({m},m)[dm/Xm)

Unfortunately, the structure of the formula on the right does not conform to stf(m’) as
required. But, observing that |stf(S)| = Hstf(Y, S)||, as well as soundness of unfolding,
we can use CONS to obtain:

TU{Ym : dm} B m/() :stf(m)
This follows from the induction hypothesis, because of N—|T'| > N—|TU{Y,, : ¢ }|- <«

21:21

FSCD 2025

21:22

An Expressive Trace Logic for Recursive Programs

A.4 Canonical Programs

Proof of Proposition 6.5. We need to show that for any call mx () in can(¢) there is exactly
one declaration of my in 7. This is a straightforward structural induction. |

» Lemma A.2. Let ¢ be an open trace formula not containing fixved point binders (uX.),
and let can(¢) = (S4,Ty). Then, we have: StOT[[S(b]]p = |¢ly, for all interpretations p : M —

oState” of the procedures M declared in Ty, and (induced) valuations V, : RVar — gState™

defined by V,(Xmm) «f p(m).

Proof. We proceed by structural induction on ¢.

Case ¢ = p A 1. By the induction hypothesis, S, [Su], = 1¥ly,-

Si [if p then S else diverge] |
— (580181, U (250 [diverge])|,
= (ﬁS?r[[Sw}]pﬂp (Proposition 6.4)
= State™|, NS, [Sy], = State™|, N S)[Sy],
= Stateﬂp N ||z/)|\vp (Induction hypothesis)

—IpA vy,
Case ¢ = ¢1 V ¢2. By the induction hypothesis, we have that S?Tﬂsm]]p = ”¢1"V,, and
S?T[[ngz]]p = [¢2]y,,. Therefore,
Siy[if * then Sy, else Sy,], = 155, [96,], U 150151,
= S§pl561,U SulSs.], = léily, U 2]y, (Ind. hyp.)
[¢1V 2l

Case ¢ = X. We have:
Stlmx (0], = plmx) = V,(X) = | X|,,, <

Proof of Theorem 6.7. By structural induction on ¢. We only sketch the proof idea here.
An argument can be made similar to the one in the last case of the proof of Theorem 4.8,
by referring to the modal equation system corresponding to ¢, and using Lemma A.2 to
generalise the treatment to open formulas ¢ and statements that contain calls to procedures
not declared in Ty. Proposition 6.5 ensures that the program on the left is well-defined.
Compositionality of the proof is justified by Bekic¢’s Principle. |

	1 Introduction
	2 The Programming Language Rec
	3 A Denotational Finite-Trace Semantics for Rec
	4 A Logic over Finite Traces
	4.1 Syntax and Semantics of the Logic
	4.2 Binary Relations
	4.3 Strongest Trace Formulas

	5 A Proof Calculus
	5.1 Definition of the Calculus
	5.1.1 Rules
	5.1.2 Semantics

	5.2 Soundness and Relative Completeness of the Calculus

	6 From Trace Formulas to Programs
	6.1 Rec Programs with Non-deterministic Choice
	6.2 Canonical Programs

	7 Related Work
	8 Future Work
	8.1 Abstract Specifications and Extension of Recursive Programs
	8.2 Proving Consequence of Trace Formulas
	8.3 Non-terminating Programs

	9 Conclusion
	A Selected Proofs
	A.1 Strongest Trace Formula
	A.2 Soundness of the Calculus
	A.3 Completeness of the Calculus
	A.4 Canonical Programs

