
Specification and Verification of Synchronization
with Condition Variables

Pedro de Carvalho Gomes1(B), Dilian Gurov1, and Marieke Huisman2

1 KTH Royal Institute of Technology, Stockholm, Sweden
pedrodcg@kth.se

2 University of Twente, Enschede, The Netherlands

In this paper we propose a technique to specify and verify the correct synchro-
nization of concurrent programs with condition variables. We define correctness
as the liveness property: “every thread synchronizing under a set of condition
variables eventually exits the synchronization”, under the assumption that every
such thread eventually reaches its synchronization block. Our technique does not
avoid the combinatorial explosion of interleavings of thread behaviors. Instead,
we alleviate it by abstracting away all details that are irrelevant to the synchro-
nization behavior of the program, which is typically significantly smaller than
its overall behavior. First, we introduce SyncTask, a simple imperative language
to specify parallel computations that synchronize via condition variables. We
consider a SyncTask program to have a correct synchronization iff it terminates.
Further, to relieve the programmer from the burden of providing specifications
in SyncTask, we introduce an economic annotation scheme for Java programs
to assist the automated extraction of SyncTask programs capturing the synchro-
nization behavior of the underlying program. We prove that every Java pro-
gram annotated according to the scheme (and satisfying the assumption) has a
correct synchronization iff its corresponding SyncTask program terminates. We
show how to transform the verification of termination into a standard reachabil-
ity problem over Colored Petri Nets that is efficiently solvable by existing Petri
Net analysis tools. Both the SyncTask program extraction and the generation
of Petri Nets are implemented in our STaVe tool. We evaluate the proposed
framework on a number of test cases as a proof-of-concept.

1 Introduction

Condition variables (CV) are a commonly used synchronization mechanism to
coordinate multithreaded programs. Threads wait on a CV, meaning they sus-
pend their execution until another thread notifies the CV, causing the waiting
threads to resume their execution. The signaling is asynchronous: if no thread
is waiting on the CV, then the notification has no effect. CVs are used in con-
junction with locks; a thread must acquire the associated lock for notifying or
waiting on a CV, and if notified, must reacquire the lock.
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Many widely used programming languages feature condition variables. In
Java, for instance, they are provided both natively as an object’s monitor [6],
i.e., a pair of a lock and a CV, and in the concurrent API, as one-to-many
Condition objects associated to a Lock object. The mechanism is typically
employed when the progress of threads depends on the state of a shared variable,
to avoid busy-wait loops that poll the state of this shared variable. Nevertheless,
condition variables have not been addressed sufficiently with formal techniques,
mainly because of the complexity of reasoning about asynchronous signaling. For
instance, Leino et al. [14] acknowledge that verifying the absence of deadlocks
when using CVs is hard because a notification is “lost” if no thread is waiting
on it. Thus, one cannot verify locally whether a waiting thread will eventu-
ally be notified. Furthermore, the synchronization conditions can be quite com-
plex, involving both control-flow and data-flow aspects as arising from method
calls; their correctness thus depends on the global thread composition, i.e., the
type and number of parallel threads. All these complexities suggest the need for
programmer-provided annotations to assist the automated analysis, which is the
approach we are following here.

In this work, we present a formal technique for specifying and verifying that
“every thread synchronizing under a set of condition variables eventually exits
the synchronization”, under the assumption that every such thread eventually
reaches its synchronization block. The assumption itself is not addressed here, as
it does not pertain to correctness of the synchronization, and there already exist
techniques for dealing with such properties (see e.g. [16]). Note that the above
correctness notion applies to a one-time synchronization on a condition variable
only; generalizing the notion to repeated synchronizations is left for future work.
To the best of our knowledge, the present work is the first to address a liveness
property involving CVs. As the verification of such properties is undecidable in
general, we limit our technique to programs with bounded data domains and
numbers of threads. Still, the verification problem is subject to a combinato-
rial explosion of thread interleavings. Our technique alleviates the state space
explosion problem by delimiting the relevant aspects of the synchronization.

First, we consider correctness of synchronization in the context of a synchro-
nization specification language. As we target arbitrary programming languages
that feature locks and condition variables, we do not base our approach on a sub-
set of an existing language, but instead introduce SyncTask, a simple concurrent
programming language where all computations occur inside synchronized code
blocks. We define a SyncTask program to have a correct synchronization iff it
terminates. The SyncTask language has been designed to capture common pat-
terns of CV usage, while abstracting away from irrelevant details. SyncTask has a
Java-like syntax and semantics, and features the relevant constructs for synchro-
nization, such as locks, CVs, conditional statements, and arithmetic operations.
However, it is non-procedural, data types are bounded, and it does not allow
dynamic thread creation. These restrictions render the state-space of SyncTask
programs finite, and make the termination problem decidable.
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Next, we address the problem of verifying the correct usage of CVs in real
concurrent programming languages by showing how SyncTask can be used to
capture the synchronization of a Java program, provided it is bounded. There is a
consensus in Software Engineering that synchronization in a concurrent program
must be kept to a minimum, both in the number and complexity of the synchro-
nization actions, and in the number of places where it occurs. This avoids the
latency of blocking threads, and minimizes the risk of errors, such as dead- and
livelocks. As a consequence, many programs present a finite (though arbitrarily
large) synchronization behavior. To assist the automated extraction of finite syn-
chronization behavior from Java programs as SyncTask programs, we introduce
an annotation scheme, which requires the user to (correctly) annotate, among
others, the initialization of new threads (i.e., creation of Thread objects), and
provide the initial state of the variables accessed inside the synchronized blocks.
We establish that for correctly annotated, bounded Java programs, correctness of
synchronization is equivalent to termination of the extracted SyncTask program.

As a proof-of-concept of the algorithmic solvability of the termination prob-
lem for SyncTask programs, we show how to transform it into a reachability prob-
lem on hierarchical Colored Petri Nets1 (CPNs) [7]. We define how to extract
CPNs automatically from SyncTask programs, following a previous technique
from Westergaard [18]. Then, we establish that a SyncTask program terminates
if and only if the extracted CPN always reaches dead markings (i.e., CPN con-
figurations without successors) where the tokens representing the threads are
in a unique end place. Standard CPN analysis tools can efficiently compute the
reachability graphs, and check whether the termination condition holds. Also,
in case that the condition does not hold, an inspection of the reachability graph
easily provides the cause of non-termination.

We implement the extraction of SyncTask programs from annotated Java
and the translation of SyncTasks to CPNs as the STaVe tool. We evaluate the
tool on two test-cases, by generating CPNs from annotated Java programs and
analyzing these with CPN Tools [8]. The first test-case evaluates the scalability
of the tool w.r.t. the size of program code that does not affect the synchronization
behavior of the program. The second test-case evaluates the scalability of the
tool w.r.t. the number of synchronizing threads. The results show the expected
exponential blow-up of the state-space, but we were still able to analyze the
synchronization of several dozens of threads.

In summary, this work makes the following contributions: (i) the SyncTask
language to model the synchronization behavior of programs with CVs, (ii) an
annotation scheme to aid the extraction of the synchronization behavior of Java
programs, (iii) an extraction scheme of SyncTask models from annotated Java
programs, (iv) a reduction of the termination problem for SyncTask programs

1 The choice of formalism has been mainly based on the simplicity of CPNs as a
general model of concurrency, rather than on the existing support for efficient model
checking. For the latter, model checking tools exploiting parametricity or symmetries
in the models may prove more efficient in practice.



6 P. de Carvalho Gomes et al.

to a reachability problem on CPNs, (v) an implementation of the framework by
means of STaVe, and (vi) its experimental evaluation.

The remainder of the paper is organized as follows. Section 2 introduces Sync-
Task. Section 3 describes the mapping from annotated Java to SyncTask, while
Sect. 4 presents the translation into CPNs, and presents test-cases. We discuss
related work in Sect. 5. Section 6 concludes and suggests future work.

2 SyncTask

SyncTask abstracts from most features of full-fledged programming languages.
For instance, it does not have objects, procedures, exceptions, etc. However, it
features the relevant aspects of thread synchronization. We now describe the
language syntax, types, and semantics.

2.1 Syntax and Types

The SyncTask syntax is presented in Fig. 1. A program has two main parts:
ThreadType*, which declares the different types of parallel execution flows, and
Main, which contains the variable declarations and initializations and defines
how the threads are composed, i.e., it statically declares how many threads of
each type are spawned.

Fig. 1. SyncTask syntax

Each ThreadType consists of adjacent SyncBlocks, which are mutually exclu-
sive code blocks, guarded by a lock. A code block is defined as a sequence of
statements, which may even be another SyncBlock. Notice that this allows nested
SyncBlocks, thus enabling the definition of complex synchronization schemes
with more than one lock.

There are four primitive types: booleans (Bool), bounded integers (Int),
reentrant locks (Lock), and condition variables (Cond). Expressions are evaluated
as in Java. The boolean and integer operators are the standard ones, while max
and min return a variable’s bounds. Operations between integers with different
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bounds (overloading) are allowed. However, an out-of-bounds assignment leads
the program to an error configuration.

Condition variables are manipulated by the unary operators wait, notify,
and notifyAll. Currently, the language provides only two control flow con-
structs: while and if-else. These suffice for the illustration of our technique,
while the addition of other constructs is straightforward.

The Main block contains the global variable declarations with initializa-
tions (VarDecl* ), and the thread composition (StartThread*). A variable is
defined by its type and name, followed by the initialization arguments. The
number of parameters varies per type: Lock takes no arguments; Cond is initial-
ized with a lock variable; Bool takes either a true or a false literal; Int takes
three integer literals as arguments: the lower and upper bounds, and the initial
value, which must be in the given range. Finally, start takes a positive number
and a thread type, signifying the number of threads of that type it spawns.

Fig. 2. Modelling of synchronization via a shared buffer in SyncTask

Example 1 (SyncTask program). The program in Fig. 2 models synchroniza-
tion via a shared buffer. Producer and Consumer represent the synchronization
behavior: threads synchronize via the CV m cond to add or remove elements,
and wait if the buffer is full or empty, respectively. Waiting threads are woken
up by notifyAll after an operation is performed on the buffer, and compete for
the monitor to resume execution. The main block contains variable declarations
and initialization. The lock m lock is associated to m cond. b els is an integer
in the interval [0,1] (initially set to 1), and represents the number of elements in
the buffer. One Producer and two Consumer threads are spawned with start.

2.2 Structural Operational Semantics

We now define the semantics of SyncTask, to provide the means for establishing
formal correctness results.

The semantic domains are defined as follows. Booleans are represented as
usual. Integer variables are triples Z × Z × Z, where the first two elements are
the lower and upper bound, and the third is the current value. A lock o is a pair
(Thread id ∪ {⊥}) × N of the id of the thread holding the lock (or ⊥, if none),
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and a counter of how many times it was acquired. A condition variable d simply
stores its respective lock, which is retrieved with the auxiliary function lock(d).

SyncTask contains global variables only and all memory operations are syn-
chronized. Thus, we assume the memory to be sequentially consistent [11]. Let
μ represent a program’s memory. We write μ(l) to denote the value of variable l,
and μ[l �→ v] to denote the update of l in μ with value v.

A thread state is either running (R) if the thread is executing, waiting (W )
if it has suspended the execution on a CV, or notified (N) if another thread has
woken up the suspended thread. The states W and N also contain the CV d
that a thread is/was waiting on, and the number n of times it must reacquire
the lock to proceed with the execution. The auxiliary function waitset(d) returns
the id’s of all threads waiting on a CV d.

Fig. 3. Operational rules for synchronization

We represent a thread as (θ, t,X), where θ denotes its id, t the executing
code, and X its state. We write T = (θi, ti,Xi)|(θj , tj ,Xj) for a parallel thread
composition, with θi �= θj . Also, T |(θ, t,X) denotes a thread composition, assum-
ing that θ is not defined in T . For convenience, we abuse set notation to denote
the composition of threads in the set; e.g., T d

W = {(θ, t, (W,d, n))} represents
the composition of all threads in the wait set of d. A program configuration is
a pair (T, μ) of the threads’ composition and its memory. A thread terminates
if the program reaches a configuration where its code t is empty (ε); a program
terminates if all its threads terminate.
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The initial configuration is defined by the declarations in Main. As
expected, the variable initializations set the initial value of μ. For example,
Int i(lb,ub,v) defines a new variable such that μ(i) = (lb, ub, v), lb ≤ v ≤ ub,
and Lock o() initializes a lock μ(o) = (⊥, 0). The thread composition is defined
by the start declarations; e.g., start(2,t) adds two threads of type t to the
thread composition: (θ, t, R)|(θ′, t, R).

Figure 3 presents the operational rules, with superscripts a−h denoting condi-
tions. For readability, we just present the rules for the synchronization statements,
as the rules for the remaining statements are standard (see [2, Sect. 3.4-8]).

In rule [s1], a thread acquires a lock, if available, i.e., if it is not assigned to
any other thread and the counter is zero. Rule [s2] represents lock reentrancy
and increases the lock counter. Both rules replace synchronized with a primed
version to denote that the execution of synchronization block has begun. Rule
[s3] applies to the computation of statements inside synchronized blocks, and
requires that the thread holds the lock. Rule [s4] preserves the lock, but decreases
the counter upon exiting a synchronized block. In rule [s5], a thread finishes the
execution of a synchronized block, and relinquishes the lock.

In the [wt] rule, a thread changes its state to W , stores the counter of the
CV’s lock, and releases it. The rules [nf1] and [na1] apply when a thread notifies
a CV with an empty wait set; the behavior is the same as for the skip statement.
By rule [nf2], a thread notifies a CV, and one thread in its wait set is selected
non-deterministically, and its state is changed to N . Rule [na2] is similar, but
all threads in the wait set are awoken. By the rule [rd], a thread reacquires all
the locks it had relinquished, changes the state to R, and resumes the execution
after the control point where it invoked wait.

Finally, we define a SyncTask program to have a correct synchronization iff
it terminates.

3 From Annotated Java to SyncTask

The annotation process supported by STaVe relies on the programmer’s know-
ledge about the intended synchronization, and consists of providing hints to the
tool to automatically map the synchronization to a SyncTask program. In this
section we present an annotation scheme for writing such hints, and sketch a
correctness argument for the extraction.

3.1 An Annotation Language for Java

An annotation in STaVe binds to a specific type of Java declaration (e.g.,
classes or methods). The annotation starts in a comment block immediately
above a declaration, with additional annotations inside the declaration’s body.
Annotations share common keywords (though with a different semantics), and
overlap in the declaration types they may bind to. The ambiguity is resolved by
the first keyword (called a switch) found in the comment block. Comments that
do not start with a keyword are ignored.
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Fig. 4. Annotation language for Java programs

Figure 4 presents the annotation language. Arguments given within square
brackets are optional, while text within parentheses tells which declaration types
the annotation binds to. The programmer has to (correctly) provide, by means of
annotations, the following three types of information: resources, synchronization
and initialization.

A resource is a data type that is manipulated by the synchronization. It
abstracts the state of a data structure to a bounded integer, which is potentially
a ghost variable (as in [12]), and defines how the methods operate on it. For
example, the annotation abstracts a linked list or a buffer to its size. In case
a resource is mapped to a ghost variable, we say that the variable extends the
program memory. Resources bind to classes only, and the switch @resource
starts the declaration. @value and @capacity define, respectively, which class
member, or ghost variable, stores the abstract state, and its maximum value.
The keyword @operation binds to method declarations, and specifies that the
method potentially alters the resource state. Similarly, @predicate binds to
methods and specifies that the method returns a predicate about the state.

There are two ways to extract an annotated method’s behavior. @code tells
STaVe not to process the method, but instead to associate it to the code
enclosed between @{ and }@, while @inline tells STaVe to try to infer the
method declaration with the potential aid of @maps, which syntactically replaces
a Java command (e.g., a method invocation) with a SyncTask code snippet.

The synchronization annotation defines the observation scope. It binds to
synchronized blocks and methods, and the switch @syncblock starts the dec-
laration. Nested synchronization blocks and methods are not annotated; all its
information is defined in the top-level annotation. The keywords @lock and
@condvar define which mutex and condition object to observe. @monitor has
the combined effect of both keywords for an object’s monitor, i.e., a pair of a
lock and a CV. Here, @resource annotates that a local variable is a reference
to a global object in the heap, which is observed and is represented by an alias.
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Initialization annotations define the global pre-condition for the elements
involved in the synchronization, i.e., they define the lock, condition variable
and resource declarations with initial value, and the global thread composition.
They bind to methods, and the switch @synctask starts the declaration. Here,
@resource, @lock, @condvar and @monitor define the objects being observed,
and assign global aliases to them. Finally, @thread defines that the following
object corresponds to a spawned thread that synchronizes within the observed
synchronization objects. The object’s type must have been annotated with a
synchronization annotation.

Example 2 (Annotated Java). The SyncTask program in Fig. 2 was generated
from the Java program in Fig. 5. We now discuss how the annotations delimit
the expected synchronization. The example also illustrates the extraction.

The @syncblock annotations (lines 5/19) add the following synchronized
blocks to the observed synchronization behavior, and its arguments @monitor
and @resource (lines 6/20 and 7/21, respectively) map local references to global
aliases. The @resource annotation (line 29) starts the definition of a resource
type. @value, @object, @capacity (lines 29/30/31) define how the abstract state

Fig. 5. Annotated Java program synchronizing via shared buffer
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is represented by a bounded integer; in this example, the state is equivalent
to els, which is an abstraction of the number of elements in a buffer. The
@operation (lines 34/36) and @predicate (lines 38/40) annotations define how
the methods operate on the state. Notice that the annotated methods have been
inlined in Fig. 2, i.e., add is inlined in lines 5 and 6. The @synctask annotation
above main starts the declaration of locks, CVs and resources, and @thread
annotations add the underneath objects to the global thread composition.

3.2 Synchronization Correctness

The synchronization property of interest here is that “every thread synchroniz-
ing under a set of condition variables eventually exits the synchronization”. We
work under the assumption that every such thread eventually reaches its syn-
chronization block. There exist techniques (such as [16]) for checking the liveness
property that a given thread eventually reaches a given control point; checking
validity of the above assumption is therefore out of the scope of the present work.

The following definition of correct synchronization applies to a one-time syn-
chronization of a Java program. However, if it can be proven that if the initial
conditions are the same every time the synchronization scheme is spawned, then
the scheme is correct for an arbitrary number of invocations. This may be proven
by showing that a Java program always resets the variables observed in the syn-
chronization before re-spawning the threads.

Definition 1 (Synchronization Correctness). Let P be a Java program
with a one-time synchronization such that every thread eventually reaches the
entry point of its synchronization block. We say that P has a correct synchro-
nization iff every thread eventually reaches the first control point after the block.

We defined both synchronization correctness and the termination of the cor-
responding SyncTask program relative to the correctness of the annotations pro-
vided by the programmer. Although out of the scope of the present work, the
annotations can potentially be checked, or partially generated, with existing sta-
tic analysis techniques. Further, we assume the memory model of synchronized
actions in a Java program to be sequentially consistent.

We now connect synchronization schemes of annotated Java programs with
SyncTask programs. We shall assume that the programmer has correctly anno-
tated the program, as described in Sect. 3.1.

Theorem 1 (SyncTask Extraction). A correctly annotated Java program
has a correct synchronization iff its corresponding SyncTask terminates.

Proof (Sketch). To prove the result, we define a binary relation R between the
configurations of the Java program and its SyncTask, and show it to be a weak
bisimulation (see [15]), implying that the SyncTask program eventually reaches a
terminal configuration (i.e., all threads terminate) if and only if the original Java
program has a correct synchronization. We refer to the accompanying technical
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report [5] for the full formalization, and for the most interesting cases, namely
the notify and wait instructions.

The Java annotations define a bidirectional mapping between (some of) the
Java program variables and ghost variables and the corresponding bounded vari-
ables in SyncTask. Thus, we define R to relate configurations that agree on com-
mon variables. Similarly, we define the set of visible transitions as the ones that
update common variables, and treat all other transitions as silent. We argue
that R is a weak bisimulation in the standard fashion: We establish that (i) the
initial values of the common variables are the same for both programs, and
(ii) assuming that observed variables in a Java program are only updated inside
annotated synchronized blocks, we establish that any operation that updates a
common variable has the same effect on it in both programs.

To prove (i) it suffices to show that the initial values in the Java program are
the same as the ones provided in the initialization annotation, as described in
Sect. 3.1. (Here we rely on the correctness of the annotations; however, existing
techniques such as [13,14] can potentially be used for checking this.) The proof
of (ii) requires to show that updates to a common variable yield the same result
in both programs. It goes by case analysis on the Java instructions set. Each case
shows that for any configuration pair of R, the operational rules for the given
Java instruction and for the corresponding SyncTask instruction lead to a pair
of configurations that again agree on the common variables. As the semantics
of SyncTask presented in Sect. 2 has been designed to closely mimic the Java
semantics defined in [2], the elaboration of this is straightforward. �

4 Verification of Synchronization Correctness

In this section we show how termination of SyncTask programs can be reduced
to a reachability problem on Colored Petri Nets (CPN), and present an experi-
mental evaluation of the verification with STaVe and CPN Tools.

4.1 SyncTask Programs as Colored Petri Nets

Various techniques exist to prove termination of concurrent systems. For Sync-
Task, it is essential that such a technique efficiently encodes the concurrent
thread interleaving, the program’s control flow, synchronization primitives, and
basic data manipulation. Here, we have chosen to reduce the problem of termi-
nation of SyncTask programs to a reachability problem on hierarchical CPNs
extracted from the program. CPNs allow a natural translation of common lan-
guage constructs into CPN components (for this we re-use results from Wester-
gaard [18]), and are supported by analysis tools such as CPN Tools. We assume
some familiarity with CPNs, and refer the reader to [7] for a detailed exposition.

The color set THREAD associates a color to each Thread type declaration,
and a thread is represented by a token with a color from the set. Some compo-
nents are parametrized by THREAD, meaning that they declare transitions, arcs,
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or places for each thread type. For illustration purposes, we present the para-
metrized components in an example scenario with three thread types: blue (B),
red (R), and yellow (Y).

The production rules in Fig. 1 are mapped into hierarchical CPN compo-
nents, where substitute transitions (STs; depicted as doubly outlined rectangles)
represent the non-terminals on the right-hand side. Figure 6a shows the compo-
nent for the start symbol SyncTask. The Start place contains all thread tokens in
the initial configuration, connected by arcs (one per color) to the STs denoting
the thread types, and End, which collects the terminated thread tokens. It also
contains the places that represent global variables.

Figure 6b shows the modelling of wait. The transition wait cond produces
two tokens: one into the place modelling the CV, and one into the place modelling
the lock, representing its release. The other transition models a notified thread
reacquiring the lock, and resuming the execution. Figure 6c shows the modelling
of notify. The Empty cond transition is enabled if the CV is empty, and the
other transitions, with one place per color, model the non-deterministic choice
of which thread to notify. The component for notifyAll (not shown) is similar.

The initialization in Main declares the initial set of tokens for the places
representing variables, and the number and colors of thread tokens. A Lock
creates a place containing a single token; it being empty represents that some
thread holds the lock. The color set CPOINT represents the control points of
wait statements. A Condition variable gives rise to an empty place representing
the waiting set, with color set CONDITION. Here, colors are pairs of THREAD
and CPOINT. Both data are necessary to route correctly notified threads to the
correct place where they resume execution.

4.2 SyncTask Termination as CPN Reachability

We now enunciate the result that reduces termination of a SyncTask program
to a reachability problem on its corresponding CPN.

Theorem 2 (SyncTask Termination). A SyncTask program terminates iff
its corresponding CPN unavoidably reaches a dead configuration in which the
End place has the same marking as the Start place in the initial configuration.

Proof (Sketch). A CPN declares a place for each SyncTask variable. Moreover,
there is a clear correspondence between the operational semantics of a SyncTask
construct and its corresponding CPN component. It can be shown by means of
weak bisimulation that every configuration of a SyncTask program is matched
by a unique sequence of consecutive CPN configurations. Therefore, if the End
place in a dead configuration has the same marking as the Start place in the
initial configuration, then every thread in the SyncTask program terminates its
execution, for every possible scheduling (note that the non-deterministic thread
scheduler is simulated by the non-deterministic firing of transitions). �

CPN termination itself can be verified algorithmically by computing the
reachability graph of the generated CPN and checking that: (i) the graph has
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Fig. 6. Top-level component and condition variables operations

no cycles, and (ii) the only reachable dead configurations are the ones where the
marking in the End place is the same as the marking in the Start place in the
initial configuration.

4.3 The STaVe Tool

We have implemented the parsing of annotated Java programs to generate Sync-
Task programs, and the extraction of hierarchical CPNs from SyncTask, as the
STaVe [4] tool. We now describe the experimental evaluation of our frame-
work. This includes the process of annotating Java programs, extraction of the
corresponding CPNs, and the analysis of the nets using CPN Tools.
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Our first test case evaluates the scalability of STaVe w.r.t. the size of the
part of program that does not affect the synchronization. For this, we anno-
tated PIPE [3] (version 4.3.2), a rather large CPN analysis tool written in Java.
It contains a single (and simple) synchronization scheme using CVs: a thread
that sends logs to a client via a socket waits for a server thread to establish the
connection, and then to notify. This test case illustrates that synchronization
involving CVs is typically simple and bounded. Manually annotating the pro-
gram took just a few minutes, once the synchronization scheme was understood.
The CPN extraction time was negligible, and the verification process took just
a few milliseconds to establish the correctness.

Our second test case evaluates the scalability of STaVe w.r.t. the number
of threads. We took the example program from Sect. 2, and instantiated it with
a varying number of threads, buffer capacity, and initial value. Table 1 presents
the practical evaluation for a number of initial configurations.

Table 1. Statistics for producer/consumer

We observe an expected correlation between the number of tokens represent-
ing threads, the size of the state space, and the verification time. Less expected
for us was the observed influence of the buffer capacities and initial states. We
conjecture that the initial configurations that model high contention, i.e., many
threads waiting on CVs, induce a larger state space. The experiments also show
how termination depends on the thread composition and the initial state. Hence,
a single change in any parameter may affect the verification result.
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5 Related Work

Leino et al. [14] propose a compositional technique to verify the absence of dead-
locks in concurrent systems with both locks and channels. They use deductive
reasoning to define which locks a thread may acquire, or to impose an obligation
for a thread to send a message. The authors acknowledge that their quantita-
tive approach to channels does not apply to CVs, as messages passed through a
channel are received synchronously, while a notification on a condition variable
is either received, or else is lost.

Popeea and Rybalchenko [16] present a compositional technique to prove
termination of multi-threaded programs, which combines predicate abstraction
and refinement with rely-guarantee reasoning. The technique is only defined for
programs that synchronize with locks, and it cannot be easily generalized to
support CVs. The reason for this is that the thread termination criterion is the
absence of infinite computations; however, a finite computation where a waiting
thread is never notified is incorrectly characterized as terminating.

Wang and Hoang [17] propose a technique that permutes actions of execu-
tion traces to verify the absence of synchronization bugs. Their program model
considers locks and condition variables. However, they cannot verify the prop-
erty considered here, since their method does not permute matching pairs of
wait-notify. For instance, it will not reorder a trace where, first, a thread waits,
and then, another thread notifies. Thus, their method cannot detect the case
where the notifying thread is scheduled first, and the waiting thread suspends
the execution indefinitely.

Kaiser and Pradat-Peyre [9] propose the modelling of Java monitors in Ada,
and the extraction of CPNs from Ada programs. However, they do not precisely
describe how the CPNs are verified, nor provide a correctness argument about
their technique. Also, they only validate their tool on toy examples with few
threads. Our tool is validated on larger test cases, and on a real program.

Kavi et al. [10] present PN components for the synchronization primitives in
the Pthread library for C/C++, including condition variables. However, their
modelling of CVs just allows the synchronization between two threads, and no
argument is presented on how to use it with more threads.

Westergaard [18] presents a technique to extract CPNs for programs in a toy
concurrent language, with locks as the only synchronization primitive. Our work
borrows much from this work w.r.t. the CPN modelling and analysis. However,
we analyze full-fledged programming languages, and address the complications
of analyzing programs with condition variables.

Finally, Van der Aalst et al. [1] present strategies for modelling complex
parallel applications as CPNs. We borrow many ideas from this work, especially
the modelling of hierarchical CPNs. However, their formalism is over-complicated
for our needs, and we therefore simplify it to produce more manageable CPNs.
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6 Conclusion

We presented a technique to prove the correct synchronization of Java programs
using condition variables. Correctness here means that if all threads reach their
synchronization blocks, then all will eventually terminate the synchronization.
Our technique does not avoid the exponential blow-up of the state space caused
by the interleaving of threads; instead, it alleviates the problem by isolating the
synchronization behavior.

We introduced SyncTask, a simple language to capture the relevant aspects of
synchronization using condition variables. Also, we define an annotation scheme
for programmers to map the expected synchronization in a Java program to
a SyncTask program. We establish that the synchronization is correct w.r.t.
the above-mentioned property iff the corresponding SyncTask terminates. As
a proof-of-concept, to check termination we define a translation from SyncTask
programs into Colored Petri Nets such that the program terminates iff the
net invariably reaches a special configuration. The extraction of SyncTask from
annotated Java programs, and the translation to CPNs, is implemented as the
STaVe tool. We validate our technique on some test-cases using CPN Tools.

Our current results hold for a number of restrictions on the analyzed pro-
grams. In future work we plan to address and relax these restrictions, integrate
special-purpose static analyzers for the separate types of required annotations,
incorporate more sophisticated model checkers for checking termination of Sync-
Task programs, and perform a more diverse experimental evaluation and com-
parison with other verification techniques.
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