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Abstract. Structured peer-to-peer overlay networks are a class of algo-
rithms that provide efficient message routing for distributed applications
using a sparsely connected communication network. In this paper, we
formally verify a typical application running on a fixed set of nodes.
This work is the foundation for studies of a more dynamic system.

We identify a value and expression language for a value-passing CCS
that allows us to formally model a distributed hash table implemented
over a static DKS overlay network. We then provide a specification of the
lookup operation in the same language, allowing us to formally verify the
correctness of the system in terms of observational equivalence between
implementation and specification. For the proof, we employ an abstract
notation for reachable states that allows us to work conveniently up to
structural congruence, thus drastically reducing the number and shape
of states to consider. The structure and techniques of the correctness
proof are reusable for other overlay networks.

1 Introduction

In recent years, decentralised structured peer-to-peer (p2p) overlay networks
[OEBHO03, SMK*01, RD01, RFHT01] have emerged as a suitable infrastructure
for scalable and robust Internet applications. However, to our knowledge, no
such system has been formally verified.

One commonly studied application is a distributed hash table (DHT), which
usually supports at least two operations: the insertion of a (key,value)-pair and
the lookup of the value associated to a given key. For a large p2p system (millions
of nodes), careful design is needed to ensure the correctness and efficiency of
these operations, both in the number of messages sent and the expected delay,
counted in message hops. Moreover, the sheer number of nodes requires a sparse
(but adaptable) overlay network.
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The DKS System

In the context of the EU-project PEPITO, one of the authors is developing a de-
centralised structured peer-to-peer overlay network called DKS (named after the
routing principle distributed k-ary search), of which the preliminary design can
be found in [OEBHO03]. DKS builds upon the idea of relative division [OGEAT03]
of the virtual space, which makes each participant the root of a virtual spanning
tree of logarithmic depth in the number of nodes.

In addition to key-based routing to a single node, which allows implementation
of the DHT interface mentioned above, the DKS system also offers key-based
routing either to all nodes in the system or to the members of a multicast group.
The basic technique used for maintaining the overlay network, correction-on-
use, significantly reduces the bandwidth consumption compared to its earlier
relatives such as Chord [SMK™01], Pastry [RD01] and Can [RFHT01].

Given these features, we consider the DKS system as a good candidate infras-
tructure for building novel large-scale and robust Internet applications in which
participating nodes share computing resources as equals.

Verification Approach

In this paper, we present the first results of our ongoing efforts to formally
verify DHT algorithms. We initially focus on static versions of the DKS system:
(1) they comprise a fixed number of participating nodes; (2) each node has access
to perfectly accurate routing information. As a matter of fact, already for static
systems formal arguments about their correctness turn out to be non-trivial.

We consider the correctness of the lookup operation, because this operation is
the most important one of a hash table: under all circumstances, the data stored
in a hash table must be properly returned when asked for. (The insert operation
is simpler to verify: the routing is the same as for lookup, but no reply to the
client is required.)

We analyse the correctness of lookup by following a tradition in process al-
gebra, according to which a reactive system may be formulated in two ways.
Assuming a suitably expressive process calculus at our disposal, we may on the
one hand specify the DHT as a very simple purely sequential monolithic pro-
cess, where every (lookup) request immediately triggers the proper answer by
the system. On the other hand, we may implement the DHT as a composition
of concurrent processes—one process per node—where client requests trigger
internal messages that are routed between the nodes according to the DKS al-
gorithm. The process algebra tradition says that if we cannot distinguish—with
respect to some sensible notion of equivalence—between the specification and
the implementation regarded as black-boxes from a client’s point of view, then
the implementation is correct with respect to the specification.

Contributions

While the verification follows the general approach mentioned above, we find the
following individual contributions worth mentioning explicitly.
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1. We identify an appropriate expression and value language to describe the
virtual identifier space, routing tables, and operations on them.

2. We fix an asynchronous value-passing process calculus orthogonal to this
value language and give an operational semantics for it.

3. We model both a specification and an implementation of a static DKS-based
DHT in this setting.

4. We formally prove their equivalence using weak bisimulation. In detail:

— We formalise transition graphs up to structural congruence.

— We develop a suitable proof technique for weak bisimulation.

— We design an abstract high-level notation for states that allows us to
succinctly capture the transition graphs of both the implementation and
the specification up to structural congruence.

— We establish functions that concisely relate the various states of specifi-
cation and implementation.

— We show normalisation of all reachable states of the implementation in
order to establish the sought bisimulation.

The proofs are found in the long version of the paper, which is accessible
through http://lamp.epfl.ch/pepito.

Paper Overview

In Section 2 we provide a brief description of the DKS lookup algorithm, and
identify the data types and functions used therein. In Section 3, we introduce
a process calculus that is suitable for the description of DHT algorithms. More
precisely, we may both specify and implement a DKS-based DHT in this calculus,
as we do in Section 4. Finally, in Section 5 we formally prove that DKS allows to
correctly implement the lookup function of DHTs by establishing a bisimulation
containing the given specification and implementation.

Related Work

To our knowledge, no peer-to-peer overlay network has yet been formally veri-
fied. That said, papers describing such algorithms often include pseudo-formal
reasoning to support correctness and performance claims.

Previous work in using process calculi to verify non-trivial distributed algo-
rithms includes, e.g., the two-phase commit protocol [BH00] and a fault-tolerant
consensus protocol [NFMO3]. However, in these algorithms, in contrast to overlay
networks, each process communicates directly with every other process.

Other formal approaches, for instance I/O-automata [LT98] have been used
to verify traditional (i.e., logically fully connected) distributed systems; we are
not aware, though, of any p2p-examples.

Future Work

Peer-to-peer algorithms in general are likely to operate in environments with high
dynamism, i.e., frequent joins, departures and failures of participating nodes.
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This case gives us increased complexity in three different dimensions: a more
expressive model, bigger algorithms and more complex invariants.

To cope with dynamism, structured peer-to-peer overlay networks are de-
signed to be stabilising. That is, if ever the dynamism within the system ceases,
the system should converge to a legitimate configuration. Proving, formally, that
such a property is satisfied by a given system is a challenge that we are currently
addressing in our effort to verify peer-to-peer algorithms.

The work present in this paper is a necessary foundation for the more chal-
lenging task of formal verification of the DKS system in a dynamic environment.

Conclusions

The use of process calculi lets us verify executable formal models of protocols,
syntactically close to their descriptions in pseudo-code. We demonstrate this
by verifying the DKS lookup algorithm. Our choice to work with a reasonably
standard process calculus, rather than the pseudo-code that these algorithms are
expressed in, made it only slightly harder to ensure that the model corresponded
to the actual algorithm but let us use well-known proof techniques, reducing the
total amount of work.

Other overlay networks, like the above-mentioned relatives of DKS, would
require changes to the expression language of the calculus as well as the details
of the correspondence proof; however, we strongly conjecture that the structure
of the proof would remain the same.

2 DKS

In this section we briefly describe the DKS system, focusing on the lookup al-
gorithm. More information about the DKS system can be found for instance
in [OEBH03, OGEA103].

For the design of the DKS system, we model a distributed system as a set
of processes linked together through a communication network. Processes com-
municate by message passing and a process reacts upon receipt of a message;
i.e., this is an event-driven model. The communication network is assumed to
be (i) connected, each process can send a message directly to any other process
in the system; (ii) asynchronous, the time taken by the communication network
to forward a message to its destination can be arbitrarily long; (iii) reliable,
messages are neither lost nor duplicated.

2.1  The Virtual Identifier Space

For DKS, as for other structured peer-to-peer overlay networks [SMK 01, RD01],
participating nodes are uniquely identified by identifiers from a set called iden-
tifier space. As in Chord and Pastry, the identifier space for DKS is a ring of size
N that we identify with Zy, where we write Z,, for {0,1,--- ,n — 1}. To model
the ring structure, we let @ and © be addition and subtraction modulo N, with
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the convention that the results of modular arithmetic are always non-negative
and strictly less than the modulus. For simplicity, it is assumed that N = k¢
for k > 1, d > 1, where k will be the branching factor of the search tree. We
work with a static system, with a fixed set of participating nodes Z C Zy with
|Z] > 1.

2.2  Assignment of Key-Value Pairs to Nodes

As part of the specification of a DHT, we assume that data items to be stored
into and retrieved from the system are pairs (key, val) € N x N where the keys
are assumed to be unique. We model the data items currently in the system
as a partial function data : N — N. Using some arbitrary hashing function,
H:N — Zy, the key of a data item is hashed to obtain a key identifier H(key)
for the pair (key, val).

In DKS (as well as in Chord), a data item (key, val) is stored at the first node
succeeding H(key). That node is called the successor of H(key), and is defined as
suc(i) e {j €Z|joi=min{h&i| h € Z}}. Note that suc(-) is well-defined
since h © 1 = j 6 i iff h©j = 0. Dually, the (strict) predecessor of a node
ie€Zispre(i) e {jeZ|joi=max{hSi|h € I}}. Local lookup at node
n is a partial function data,(j) := data(j) if suc(j) = n, i.e., returning the
value data(j) associated to a key j only on the node n responsible for the item
(key, val).

2.3 Routing Tables

The DKS system is built in a way that allows any node to reach any other node
in at most log,(N) hops under normal system operation. To achieve this, the
principle of relative division of the space [OGEAT03] is used to embed, at each
point of the identifier space, a complete virtual k-ary tree of height d = log (N).
We let £:={1,2,---,d} be the levels of this tree, where 1 is the top level (the
root). At a level [ € £, a node n has a view V' of the identifier space. The view
V! consists of k equal parts, denoted I!, 0 < i < k — 1, and defined below level
by level.

Atlevel : V=Wl wIiw---wIl |, where I = [z}, z1), I = [z, 23),

Ik =r g xl), -—n@zk,for0<z<k—1

At level 2 < I < d: VI =LwllWwilw . Wil |, where I} = [z},2}),
I = [z}, 2b), ---,I,iflz[xﬁcfl,:cll b, xﬁzn@i%,for()gigk—l.

To construct the routing table, denoted Rt,,, of an arbitrary node n of a DKS
system we take for each level [ € L: and each interval ¢ at level [ a pointer to the
successor of zl, as defined above.

Routing Table Example. As an example, consider an identifier space of size
N = 42 ie.,d = 2 and k = 4. Assume that the nodes in the system are
7 :={0,2,5,10,13}. In this case, using the principle described above for building
routing table in DKS, we have that node 0 has the routing table in Figure 1.
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Level|Interval|Responsible | Level|Interval|Responsible
1 [0,4) 02 [0,1) 0
1,8) 5 1,2) 2
8,12) 10 2,3) 2
[12,0) 13 3,4) 5

Fig. 1. Routing table for node 0

Formally, the routing tables of the nodes are partial functions

N j !
Rty (4,1) := suc (n ® (kl {WJ)) ifjon< k™ landl<d,

where Rt,,(j,1) is the node responsible for the interval containing j on level [
according to node n. We also define the lookup level for an identifier at a given
node as Ivl,(j) := d — |log,(j ©n)], and let lookup in the routing table be
Rt,,(7) := Rty (4,1v1,(4)), which is defined for all n, j.

2.4  Lookup in a Static DKS

The specification of lookup is common to all DHTs: A lookup for a key key at
a node n should simply return the associated data value (if any) to the user on
node n. Moreover, the system should always be available for new requests, and
the responses may be returned in any order.

In DKS, the lookup can be done either iteratively, transitively or recur-
sively. These are well-known strategies for resolving names in distributed sys-
tems [Gos91]. In this paper, we present a simplified version of the recursive
algorithm of DKS.

Briefly and informally, the recursive lookup in the DKS system goes as fol-
lows. When a DKS node n receives a request for a key key from its user, u, node
n checks if the virtual identifier associated to key is between pre(n) and n. If
so, node n performs a local lookup and returns the value associated to key to
the user. Otherwise, node n starts forwarding the request, such that it descends
through the virtual k-ary tree associated with node n until the unique node z
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such that H(key) is between pre(z) and z is reached. We call z the manager of
key.

When the manager of key is reached, it does a local lookup to determine
the value associated with key. This value is returned, back-tracing the path
taken by the request. In order to do this, a stack is embedded in each internal
request message, such that at each step of the forwarding process, the node n’
handling the message pushes itself onto the stack. The manager z then starts
a “forwarding” of internal response messages towards the origin of the request.
Each such message carries the result of the lookup as well as the stack.

When a node n receives an internal response message, node n checks if the
stack attached to the message is empty. If not, the head of the stack determines
the next step in the “backwarding” of the message towards its origin. If the stack
is empty, then n was the origin of the lookup. Then node n returns the result of
the response to its user, u.

The back-tracing makes the response follow a “trusted path”, to route around
possible link failures, e.g., between the manager of the key and the originator
of the lookup. The stack also provides some fault-tolerance: If the node at the
head of the stack is no longer reachable, the nodes below can be used to return
the message.

A formal model of this lookup algorithm can be found in Section 4, using the
process calculus defined in Section 3.

3 Language

We use a variant of value-passing CCS [Mil89, Ing94] to implement the DKS
system described above. To separate unrelated features and allow for a simple
adaptation to the verification of other algorithms, we clearly distinguish three
orthogonal aspects of the calculus.

Values and Expressions: The values V are integers, lists in nil [] and cons
v1 1 vg format and the “undefined value” 1. The expressions £ contain some
standard operations on values, plus common DHT functions and DKS-specific
functions seen in Section 2.

We extend the domain and codomain of F' € {data,lvl,,data,,Rt, | v € T}
to V by letting F'(v) := L for the values v on which F' was previously undefined.
We extend the domain of H to V by letting H take arbitrary values in Zy for
values not in N. Expressions are evaluated using the function J-K: & — V.

For boolean checks B, we have the matching construct e; =es and an interval
check e; € (ea, e3] modulo N. Boolean checks are evaluated using the predicate
ep(+). Values and boolean checks are defined in Table 1, both J-K and ey, (-) are
defined in Table 2. We do not use a typed value language, although the equiva-
lence result obtained in Section 5.2 intuitively implies that the implementation
is “as well-typed as” the specification.
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We use tuples € of expressions (and other terms), where é := ey, ..., e that
may be empty, i.e., |é] = 0. To evaluate a tuple of expressions, we write JeK for
the tuple of values Je1K, ..., Jez K.

As a more compact representation of lists of values, we write [u?] for w:: [7],
and also define last([v1,ve, -+ ,v,]) = v, if n > 0.

Parallel Language: We use a polyadic value-passing CCS, with asynchronous
output and input-guarded choice. We assume that the set of names a,b € A and
the set of variables x,y € W are disjoint and infinite. The syntax of the calculus
can be found in Table 1.

As an abbreviation we write }_.. ; G; for 0+Gj, + Gj, + -+ Gj, and
[ljcs Pj for O Py | Py, |-+ P, where J = {j; | 0 <i < n} (J may be 0).

o

Control Flow Structures: We use the standard if ¢ then P else Q and a
switch statement caseeof{j — P; | j € S} for a more compact representation
of nested comparisons of the same value. In all case statements, we require
S C V to be finite.

To gain a closer correspondence to the method-oriented style usually used
when presenting distributed algorithms, we work with defining equations for
process constants A(€) rather than recursive definitions embedded in the process

terms. If a process constant A does not take any parameters, we write A for both
A() and A().

Table 1. Syntax

wyo ==0,1,2,--- | [] | L | wuzu values V
e u=u | =z expressions &
| head(e) | taille) | e:xe (lists)
| data(e) | H(e) (global)
| Ivl,(e) | datay(e) | Rtu(e) (local)
¢, = e=e boolean tests BB
| e€ (e €] (interval check)
G ==0 input-guarded sums G
| a(z).P (input prefix)
| G+G (choice)
PQ: =G processes P
| a(e) (asynchronous output)
| P|P (parallel)
| (P)\a (restriction)
| A(e) (process constant)
| if ¢ then P else P (if statement)
| caseeof{j— P;|je€ S} (case statement)
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3.1 Semantics

The set of actions A > p is defined as u = 7|a®|@?d. The channel of an
action, ch : A — N U {L}, is defined as ch(r) := L, ch(a?) := a and ch(ad) :=
a. The variables  are bound in a(Z).P. Substitution of the values v for the
variables Z in process P is written P [*1/,,,...,"" /., ] and performed recursively
on the non-bound instances of & in P. We use a standard labelled structural
operational semantics with early input (see Table 2). To compute the values to be
transmitted, instantiate process constants and evaluate if and case statements
we use an auxiliary reduction relation > (see Table 2).

Structural congruence is a standard notion of equivalence (cf. [MPW92]) that
identifies process terms based on their syntactic structure. In a value-passing
language, it often includes simplifications resulting from the evaluation of “top-
level” expressions (cf. [AG99]). In our calculus, top-level evaluation is treated by
the reduction relation >, which is contained in the structural congruence.

Definition 1 (Structural Congruence). Structural congruence = is the least
equivalence relation on P containing > and satisfying commutative monoid laws
for (P,],0) and (G,+,0) and the following inference rules.

S-PAR S-sum S-RES
P15P1/ GlzGll PEP/
P1|PQEP1/|P2 G1+GQEG11+G2 (P)\GE(P/)\G

Depending on the actual structural congruence rules at hand it is well known,
and can easily be shown, that structurally congruent processes give rise to the
“same” transitions (leading to again structurally congruent processes) according
to the operational semantics. Thus, transitions can be seen as a relation between
congruence classes of processes. To simplify descriptions of the behaviour of
processes, we define a related notion where we instead work with representatives
for the congruence classes.

Definition 2 (Transition Graph Up to Structural Congruence). A tran-
sition graph up to structural congruence is a labelled relation = C OxAxQ for
Q C P such that for all Q € Q we have that

— IfQ & P, there is Q' such that Q é Q and P' = Q.
- IfQ % Q' there is P' such that Q % P’ and P' = Q.

We say that = is a transition graph up to = for Q if Q € Q.

According to this definition, it is sufficient to include just one representative
for the congruence class of a derivative; however, one may include several.

Weak bisimulation is a standard equivalence [Mil89] identifying processes
with the same externally observable reactive behaviour, ignoring invisible inter-
nal activity. We define this process equivalence with respect to a general labelled
transition system; this allows us to interpret the notion also on transition graphs
up to =.
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Table 2. Semantics

Expression evaluation and boolean evaluation are defined as follows:

v ife=veVy
vi  if e = head(e’) and Je'K = vy 1 v
ve ife=tail(e’) and Je'K = vy v
vive ife=e;iea and JerK = w1, JesK = v,
F(Je'K) if e=F(e’)  and F € {data, H, Ivl,,data,,Rt, | v € T}
1L if otherwise

JeK =

ep(e1=ez ) is true iff Je1 K = Jeo K #.L
ep(er € (ez, e3]) is true iff Je;K =n; € N for ¢ € {1,2,3}
and 0 < n1 ©ny < ngSns

The (top-level) reduction relation > is the least relation on P satisfying:
a(é) > a(®) if JeK = o.
AE) > P [y " ] if A@E) E P, |€] = |& =n and JEK = 3.
if ¢ then Pelse Q > P if ey(¢).

if ¢ then Pelse Q > Q if —en(¢).
casecof {j— P; |j€ S} > P, if JecK=veS.

CUh W e

The structural operational semantics are given by the following inference rules, where
the symmetric versions of CoM-L, PAR-L and SUM-L have been omitted.

(IN) — — if |9] = |z (ouT) ————
a(Z).P— P[Mor, " e a(v) —0
pLLp 2% pPLp
(com-L) = 6,2 - @ (PAR-L) ————
PlQ— P[Q PIQ% P|Q
G 2% P/ P p
(sum-L) — (RES) m - if a # ch(p)
G1+G2 — P (P)\a = (P')\a
P>Q Q5qQ
(RED) T
P = Q

Definition 3 (Weak Bisimulation). If ~ C PxAxP then a binary relation
S CPxP is a weak ~>-bisimulation if
whenever P S Q and P ¥ P’ there exists Q' such that P' S Q' and
— if =17 then Q ~* Q';
—ifu# T then Q(") b (%1)Q),
and conversely for the transitions of Q.
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The notion usually deployed in process calculi is weak —-bisimilarity: P is
weakly —-bisimilar to @, written P ~ @, if there is a weak —-bisimulation S
with P S Q*.

Next, we use the concept of =-bisimilarity as simple proof technique: two
processes are weakly —-bisimilar if they are weakly =-bisimilar.

Proposition 1. If S is a weak =-bisimulation, then =S= is a weak —-
bisimulation.

4 Specification and Implementation

We now use the process calculus defined in Section 3 to specify and implement
lookup in the DKS system.

Specification. In the specification process Spec, lookup requests and results are
transmitted on indexed families of names request,, response; € N, where the
index corresponds to the node the channel is connected to. The request; channels
carry a single value: the key to be looked up. The response; channels carry the
key and the associated data value.

Spec & Z request, (key).(Tesponse; (key, data(key)) | Spec).
ieT

Implementation. The process implementing the DKS system, defined in Table 3,
consists of a collection of nodes. A node Node; is a purely reactive process that re-
ceives on the associated request;, req; and resp; channels, and sends on response;,
req; and resp; for j € range(Rt;(-)). The reg; channels carry three values: the
key to be looked up, a stack specifying the return path for the result, and the
current lookup level. The resp; channels carry the key, the found value and the
remaining return path.

Requests, i.e., messages on channels request, and req;, are treated by the
subroutine Req;, which decides whether to respond to the message directly or to
route it towards its destination. This decision is naturally based on whether it is
itself responsible for the key searched for, as defined in Section 2; in this case, it
responds with the value of a local lookup. Responses, i.e., messages on channels
resp,, are treated by the subroutine Resp,, which decides to whom precisely to
pass on the response; depending on the call stack, it either returns itself the
result of a query to the application, or it passes on the response to the node
from whom the request arrived earlier on.

The implementation of the static DKS system, Impl, is then simply the par-
allel composition of all nodes, with a top-level restriction on the channels that
are not present in the DHT API. We use variables key, stack, value, level € W.

! The knowledgeable reader may note that although we find ourselves within a calculus
with asynchronous message-passing, we use a standard synchronous bisimilarity,
which is known to be strictly stronger than the notion of asynchronous bisimilarity.
However, our correctness result holds even for this stronger version.
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Table 3. DKS Implementation

Node; % request,(key).(Node; | Req, (key, []))
+ req;(key, stack, level).(Node; | Req, (key, stack))
+ resp,(key, value, stack).(Node; | Resp, (key, value, stack))

Req, (key, stack) “9f  H(key) € (pre(d), 1]
then Resp, (key, data; (key), stack)
else case Rt;(H(key))
of {jw Teq;(key,i:: stack,vl;(H(key))) | j € T}
Resp, (key, value, stack) < if stack =]
then 7esponse; (key, value)
else case head(stack)
of  {j + 7esp,(key, value, tail(stack)) | j € I}

Impl & (H Node¢> \ {reqi,resp; | i € I}

i€l

5 Correctness

Our correctness result is that the specification of lookup is weakly bisimilar
to its (non-diverging) implementation in the DKS system. We show this by
providing a uniform representation of the derivatives of the specification and
the implementation, and their transition graphs up to =, allowing us to directly
exhibit the bisimulation.

5.1 State Space and Transition Graph

Since nodes are stateless (in the static setting), we only need to keep track
of the messages currently in the system. For this we will use multisets, with
the following notation: A multiset M over a set M is a function with type
M — N. By spt(M) := {& € M | M(z) # 0}, we denote the support of M. We
write 0 for any multiset with empty support. We can add and remove items by
S+a:={a— S(a)+1}U{z — S(x) | x € dom(S) \ {a}} when a € dom(S) and
S—a:={a— S(a)-1}U{x +— S(z) | z € dom(S)\ {a}}, where S — a is defined
only when a € spt(S). More generally, we define the sum of two multisets with
the same domain as S + 7T := {x — S(z)+T(x) | x € dom(S)}.

Specification. The states of the lookup specification are uniquely determined by
the undelivered responses. To describe this state space, we define families of
process constants Responses, and Spec,, where o ranges over multisets with
domain Z x V and finite support. We write t < n for t € Z,,.

Responses,, = H H response, (kv, data(kv))
(i,kv) €spt(a)  t<a(ikv)
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Let Spec,, := Responses, |Spec. Note that Spec = Spec,,.

Lemma 1. Spec has the following transition graph up to =.

request; kv
1. Spec, === SpeC, (; i) ifi € and kv €V
Tesponse, kv,data(kv)

2. Spec, Specq (i k) if (i, kv) € spt(w)

Implementation. For the implementation, we also have to keep track of resp; and
req; messages and the values that can be sent in them. Since the routing tables
are correctly configured, there is a simple invariant on the parameters of the
Teq, (kv, L, m) messages in the system: Such messages are either sent to the node
responsible for kv, or to the node responsible for the interval containing H(kv)
on level m as discussed in Section 2. To capture this invariant we let list[Z] :=
{lt1,12,-- ,in] | i, €T A n €N}, and define R CZ x V x list[Z] X Zgqy; as

R:={(,kv,Lym) | L#[] A
(suc(H(kv)) =i V ep(H(kv) € (i, i@ k™™o 1]))}.

To model the internal messages in the DKS system, we define families of
process constants Reqsg and Resps, where « is as above, (3 ranges over multisets
with domain R and finite support and v ranges over multisets with domain
T x V x list|Z] and finite support as follows.

Reqsg £ H H Teq,; (kv, L, m)
(i,kv,L,m) €spt(B)  t<B(i,kv,L,m)

Resps., d H H Tesp, (kv, data(kv), L)

(i,kv,L) €spt(y)  t<vy(i,kv,L)

The behaviour of the implementation is captured by the constants Impl,, 5 ..

Impl,, 5., S (ResponsesaReqsﬁ|Resps,y| H Node¢> \ {req;, resp; | i € T}
ieT

Note that Impl = Imply ¢ .
Lemma 2. Imply o has the following transition graph up to =.

request; kv

1. Impl, 5., == Implo (i k)54
if 1 € T and en(H(kv) € (pre(i), i])
request; kv
2. Imply, 5., === IMpl,, 51 (Re,(H(kv)),kv,[i], VL, (H(kv))) v
ifi €T and —( ep(H(kv) € (pre(i), i]))
Tesponse; kv,data(kv)

3. Impl,, 5. |mP|a7(i,kv),ﬁ,w

if (i, kv) € spt(a)
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4- Impl@,ﬁ,ﬁy = Impla,ﬁ—(i,k’u,h::L,m),'y—&-(h,/w,L)
if (i, kv, h::L,m) € spt(B) and e,(H(kv) € (pre(i), i])

5. 1mply g o = IMPly, 5 (i kv, Lm)+(Res (H(ko)) kv, ic: LyIvL (H (ko)) oy
if (i, kv, L,m) € spt(8) and —( en,(H(kv) € (pre(i), i]))

6. Imply, 5. = IMply 5 (i ko ki L)+ (k. L)
if (i, kv, h::L) € spt(y)

7. 1mplg g5 = 1MPlay (i ko), 8,90k, []) o
if (Zv kv, H) € Spt(’}/)

Having found the transition graphs of both the specification and the imple-
mentation up to structural congruence, we restrict ourselves to working with
this transition system.

Definition 4. Let = be the union of the relations in the statements of Lemma 1

and Lemma 2.

Note that = is as transition graph up to structural congruence for both Spec,
and Implg o 5.

5.2  Bisimulation

To relate the state spaces of the specification and the implementation, we define
two partial functions Tye, : R — (Z X N) and Ty 1 (Z X N x list[Z]) — (Z x N)
that map the parameters of req and resp messages, respectively, to those of the
corresponding response messages as follows.

Theq (i, kv, L,m) := (last(L), kv)
ko L) e (last(L), kv) if L # []
Tresn (i kv, L) : {(i,kv) if L =[]

Note that Ty, is well-defined since dom(T,ey) = R, thus L # []. We then
lift these functions to the respective multisets of type g and 7.

—

Treg(B) = Y {Treg(x) — B(2) }

z€spt(B)
T’resp(W) = Z {Tresp(w) = 7(1‘) }
z€spt(7)

Here ) denotes indexed multiset summation. Finally, we abbreviate the ac-
cumulated expected visible responses due to pending requests by:

T(a, B,7) = a+ 'fr;(ﬁ) + T/re?p('Y)

The implementation has a well-defined behaviour on internal transitions, as
the following two lemmas show. First, internal transitions does not change the
equivalence classes under the equivalence induced by the T-transformation.
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Lemma 3. IfImpl, 5 é Impl, g then T(a,ﬂm) = T(o/,ﬁ’,y’).

Next, we investigate the behaviour of the implementation when performing
sequences of internal transitions. We prove that Impl, 3 . is strongly normalizing
on T-transitions: it may always reduce to Implf(a,ﬁ,w),o,ov and does so within a
bounded number of 7-steps.

Lemma 4 (Normalization). For all Impl we have that

B,y

Impl, 5. 2 iff spt(8) = 0 = spt(7).

-
there exists n € N such that whenever Impl =F I, then k < n.

1.

2. a,B,y
3. iflmpl, 5., =% 1 %, then I = |mp|T(a 8.79),0,0°
4.

T

Imply 5., =" Implf(aﬂ,’v),O,O'

We now proceed to the main result of the paper, stating that the reachable
states of the specification and of the implementation—in each case captured
by the respective transition systems up to structural congruence—are precisely
related.

Theorem 2. The Binary Relation.

{ (Speciy g.): IMPlo g ) | Imply, 5., is defined }
is a weak = -bisimulation.
Corollary 3. Spec = Impl.

Proof. Since Spec = Spec, and Impl = Implg g, this follows from Theorem 2
and Proposition 1.

This equivalence does not by itself guarantee that the implementation is free
from live-locks since weak bisimulation, although properly reflecting branching
in transition systems, is not sensitive to the presence of infinite 7-sequences.
However, their absence was proven in Lemma 4(2).
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