q

Check for
updates

Deductively Verified Program Models
for Software Model Checking

Jesper Amilon™ and Dilian Gurov

KTH Royal Institute of Technology, Stockholm, Sweden
{jamilon,dilian}@kth.se

Abstract. Model checking temporal properties of software is algorith-
mically hard. To be practically feasible, it usually requires the creation
of simpler, abstract models of the software, over which the properties
are checked. However, creating suitable abstractions is another difficult
problem. We argue that such abstract models can be obtained with little
effort, when the state transformation properties of the software compo-
nents have already been deductively verified. As a concrete, language-
independent representation of such abstractions we propose the use of
flow graphs, a formalism previously developed for the purposes of compo-
sitional model checking. In this paper, we describe how we envisage the
work flow and tool chain to support the proposed verification approach
in the context of embedded, safety-critical software written in C.

Keywords: Flow graphs - Deductive verification - Model checking

1 Introduction

In previous work [1], we introduced a workflow for software model checking of C
programs, the key point of which being that we utilised deductive verification of
contracts for creating abstract models of C programs. When creating the models
for model checking, we first replaced certain components with a Hoare-style
contract, thus viewing those components purely as state-transformers, ignoring
their intermediate states. The abstraction is justified by deductively verifying
that the components indeed satisfy their contracts.

In [1], we used as tool chain the WP plugin of Frama-C [3] for deductive ver-
ification, and TLC [15] as model checker. The translation from a program with
deductively verified contracts to a TLA™ specification was partially performed
with the support of the C2TLA™ [10] tool. However, much of the translation pro-
cess was carried out manually, in an ad hoc fashion. In this paper, we propose
an explicit model of the artefact corresponding to a given program with deduc-
tively verified contracts. This model, called flow graph, abstracts from the code,
keeping just the information needed to verify temporal properties of the origi-
nal program. The model is independent of the actual model checking technique,

This work has been funded by the FFI Programme of the Swedish Governmental
Agency for Innovation Systems (VINNOVA) as the AVerT?2 project 2021-02519.
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025

T. Margaria and B. Steffen (Eds.): ISoLA 2024, LNCS 15221, pp. 8-25, 2025.
https://doi.org/10.1007/978-3-031-75380-0_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-75380-0_2&domain=pdf
https://doi.org/10.1007/978-3-031-75380-0_2

Deductively Verified Program Models for Software Model Checking 9

and allows automated translations to the input language of the desired model
checker, be it TLC or NUXMV. The model is adapted from previous work on
modular model checking [13].

#define LO O

1
2 #define HI 10
3
4 extern int glob_stee_primary_status; //input
5 extern int glob_stee_sndary_status; //output
6
7 /*@
8 ensures LO <= global_stee_primary_status <= HI && A
9 assigns global_stee_primary_status;
10 */
11 void havoc_input() { ... }
12
13 /*@ ensures \result == glob_stee_status; 0l @i
14 assigns \nothing; */
15 int rtdb_read_primary_stee_status() { ... } //pu
16
17 /*@ ensures \old(stee_info) != 0 ==> \result == 0 && // Ceval
18 \old(stee_info) == 0 ==> \result == 1;
19 assigns \nothing; */
20 int evaluate_stee_status(int stee_info) { ... }
21
22 /*Q@ ensures glob_stee_primary_status == status; Dl @it
23 assigns glob_stee_primary_status; */
24 void rtdb_write_sndary_stee_status(int status) { ... }
25
26 void steering() { //pB3
27 //Read input data from the RTDB
28 // 0 == Flawless; Non-zero == Error
29 int primary_info = rtdb_read_primary_stee_status(); 0] Sz
30
1 //Evaluate the data
2 int sndary_info = evaluate_stee_status(primary_info); 1] S

//VWrite back the result of the evaluation to the RTDB
5 rtdb_write_sndary_stee_status (sndary_info); 1/ Swrit
36 }

38 //scheduler

30 void main() { //p

10 while(1) { //B2

41 havoc_input(); //simulating environment
12 steering () ;

43 }

14}

Fig. 1. STEE example

Running Example. We illustrate our approach on a simplified version of a soft-
ware module from the automotive industry. The module is called STEE, and is
intended to control the secondary steering of a heavy-vehicle, and, in case of
malfunction of the primary steering module, activate the secondary steering
functionality. The STEE function is called periodically by the scheduler of the
embedded system’s control software. This example has been used in earlier work
and is described in more detail in [1]. Figure 1 shows a code skeleton of STEE
and a main function which acts as the scheduler. The example is interesting in

10 J. Amilon and D. Gurov

this context, as it combines the temporal behaviour of the scheduler (the while
loop) with the transformational behaviour of STEE. We use ACSL [2] to specify
certain parts of the program with contracts.

Related Work. The closest work to ours is presented by Beyer et al. [5], which
abstracts programs by automatically computing summaries of loop-free frag-
ments of the code. The difference from our approach is that contracts may also
specify code with loops and procedure calls. Also, the summaries are automati-
cally extracted, whereas we assume contracts provided by, e.g., humans. A sum-
mary can, however, also be viewed as the strongest contract for the code block
it is extracted from. Beckert et al. [4] have developed an approach for (bounded)
model checking of Java programs with JML-contracts. The verification approach
is similar to the one presented here, but model checking is carried out with a
bounded model checker (JBMC), and they do not consider an intermediate (flow
graph) representation. The KRATOS2 tool [7] allows for converting C-programs
into the intermediary K2 language, which can in turn be converted into NUXMV
models to be model checked. It does not, as far as we are aware, handle abstrac-
tions based on contracts or summaries.

The M0oXI [11] language is another intermediate language for symbolic model
checking. M0OXI is more general than the flow graphs presented here and is, for
example, well-adapted also for hardware modelling. Flow graphs are intended
specifically for modelling procedural software that has been deductively verified.

Outline. The paper is structured as follows. In Sect. 2, we present our overall
approach to deductive verification based program abstraction. In Sect.3, we
describe our notation for programs (annotated with contracts) and define the
notion of flow graph, which we use to represent program abstractions, while in
Sect. 4 we show how to extract such flow graphs from annotated programs. Once
a flow graph is extracted, it can be model checked as described in Sect. 5. We
discuss various aspects of our approach in Sect. 6, and conclude with Sect. 7.

2 Deductive Verification Based Program Abstraction

In previous work [1], we introduced a workflow and tool chain for software model
checking of C programs, where we used contracts and deductive verification.
Using contracts as a basis of abstraction, we could utilise the modularity of
deductive verification in the otherwise monolithic model checking setting.

In that work, we relied on the TLA framework [8] to act as the bridging agent
between the realms of deductive verification and model checking. Following this
idea, we considered a translation of C programs, annotated with contracts, into
TLA™ [9] specifications. However, by depending heavily on TLA, we imposed
certain limitations on the considered tool chain. For instance, the TLC model
checker, which is part of the TLA framework, is an explicit-state model checker,
whereas one might expect a symbolic model checker to be more suitable for
models related to symbolic transition systems, such as the TLA™ specifications.

Deductively Verified Program Models for Software Model Checking 11

ith contracts
= > [TLAT model]—>l Model checkl

Verily contracts using (1o graph }— xuXmv model }—{ Model check]
<

deductive verification

Fig. 2. Overview of the verification workflow using flow graphs

In this paper, we generalise our previous work by introducing an interme-
diate step, in which we first translate the program annotated with contracts,
which we henceforth shall call annotated program, into a representation as a flow
graph. The rationale for this is that this representation is independent of the
source language, and can further be used to extract models in different mod-
elling languages depending, for example, on which tool is most suitable for the
verification task at hand. In this work, we consider extractions into TLA' and
the NUXMV language, but we expect that also other modelling languages can be
used. The verification approach, where flow graphs act as an intermediate step
in the model extraction, is illustrated in Fig. 2. In the workflow, the role of the
deductive verification step is to ensure certain soundness properties of the entire
translation and verification chain.

Flow graphs are a formalism previously developed for the purposes of com-
positional model checking [13]. We argue, for two main reasons, that they are
also well-suited for the context presented here. First, there is a natural trans-
lation from a program annotated with contracts into a flow graph. Second, we
believe that flow graphs have a natural translation into the modelling languages
of several existing model checkers.

3 Annotated Programs and Flow Graphs

In this section, we first present our definition of annotated programs as directed
graphs (akin to the standard notion of control flow graphs). We then define a
similar object called a flow graph, which allows certain aspects of the original
directed graph of the program to be abstracted away.

3.1 Annotated Programs

To simplify the presentation, we shall not consider here a specific programming
language with its concrete syntax and semantics, but shall instead assume that
programs are given to us as directed graphs. We consider programs as a set
of procedures, which, in turn, consist of a set of (labelled) code blocks that
map program locations to statements. With such a formalisation, contracts may
specify either the entire procedure or smaller blocks within a procedure.

12 J. Amilon and D. Gurov

Ce

Ce

havocInput ()

return steering()
/ /

(a) Graph for main (b) Graph for steering

@ Cread

return

(¢) Partial graph for
rtdb_read_primary_stee_status

Fig. 3. Directed graph representation of parts of the program in Fig. 1.

The sets of statements Stmt and Boolean expressions BEzpr are left unspec-
ified, and similarly the set of contracts C.

Definition 1. (Annotated Code Block). An annotated code block is a tuple
B = (Va, Eg, Tv,, TE,, Veys Ury, Cg), where Vg is a set of control points, Eg C
Vs x Vg a set of edges, my, : Vg — Stmt a labelling of control points with
statements, and wg, : Eg — BEzpr a labelling of edges with path conditions.
Finally, ve, € Vg is the entry point and v., € Vg is the exit point of the block,
and Cg is the contract for the block.

In the set of contracts, we let c. denote the empty contract, indicating that
the respective block does not been specified. The relation E3 describes the flow
of control between statements, and the labelling 7, is induced from the Boolean
guards of conditional or loop statements. In the set of Boolean expressions
BEzpr, we include an empty expression b.. When 7p,(v,v") = b and b # b,
we say that v’ is guarded by b (or that b is a guard).

In the example program from Fig. 1, we consider the contracts to annotate
the entry block statement of the respective procedure body. A visual depiction
of parts of the graph representation of the program is shown in Fig. 3.

Deductively Verified Program Models for Software Model Checking 13

Definition 2. (Annotated Procedure). An annotated procedure with
name p is a pair P, = (Bp,Bp), where B, is a collection of annotated block
graphs, and (3, is the entry block.

Definition 3. (Annotated Program). An annotated program consists of a
pair (P, main), where P is a collection of annotated procedures, and main the
starting procedure.

The definition of an annotated program puts no constraint on the correctness
of the program relative to its annotations (that is, whether every annotated part
implements its companion contract or not). However, as described in Sect. 2,
verifying that the code fulfils the contracts is key to ensuring soundness of the
abstraction approach considered in this paper. Thus, we shall say that a program
is correctly annotated if every annotated block fulfils the contract annotation
(which can be verified using, e.g., deductive verification tools).

3.2 Flow Graphs

We proceed with a formal definition of flow graphs, adapted, with significant
modifications, from [13].

First, we define the set of program states as State = Stater x Stateg, where
the local states Statey and global states Stateg capture the values of the local
and global variables, respectively. Given a state s € State, we denote with s;
its component in State; and with s, its component in Stateq. Next, we define
the notion of an action. We take the view of the TLA framework and evaluate
actions on pairs of states, thus viewing them as relations between pre-states and
post-states (similar to the well-known notion of a state transformer).

Definition 4. (Action). An action a € A is a Boolean expression over primed
variables ©’' and non-primed variables x.

We do not provide the syntax in full detail here, but follow the idea of
the TLA framework, where actions are logic formulas with variables being
either primed or non-primed, with the intention that non-primed variables are
evaluated in the pre-state and primed variables in the post-state. For exam-
ple, # = x + 1 is an action that holds over all state pairs (s,s’) such that
s'(x) = s(z) + 1. Semantically, an action is defined as a binary relation on
states: [a] C State x State.

Definition 5. (Procedure Flow Graph). A procedure flow graph, for a pro-
cedure with name p, is a finite transition system F,, = (Np, D, —p, A, \p, De, Np,),
where N, is a set of nodes, D a set of procedure names, —,C N,x(DU{e})x N, a
labelled transition relation, A a set of actions over State, A, : N, — A a labelling
of nodes with actions, p. € N, the entry node, and N, C N, a set of return
nodes.

14 J. Amilon and D. Gurov

By labelling nodes with actions, each node can be seen as a state transformer,
which in turn may correspond to, e.g., an assignment statement in the program-
ming language, or to a contract. Edges are labelled either with a procedure name
or with e, the former case corresponding to procedure calls, and the latter to an
intra-procedural transfer of control.

Definition 6. (Flow Graph). A flow graph is a pair (F, main), where F is a
collection of procedure flow graphs, and Fiqi, s the main (or entry) procedure
flow graph.

An example of a flow graph is shown in Fig. 4, which is described in detail
in Sect. 4.

We now proceed by defining the operational semantics of flow graphs by
means of pushdown systems. We first introduce pushdown systems formally.

Definition 7. (Pushdown System). A pushdown system (PDS) is a tuple
S = (S,I,A,I), where S is a set of control states, I a stack alphabet, and
A C(SxT)x(SxTI™*) aset of rewrite rules. Moreover, we refer to S x I'* as
the set of configurations, and I C S x I'* is the set of initial configurations.

Let (s,7) — (s',w) € A be a rewrite rule. Then, for each w’ € I'*, (s',w - w’)
is called an immediate successor of (s,7y-w').

Definition 8. (Run of a PDS). A run of a pushdown system S is an infinite
sequence of configurations (s1,w1)(S2,ws) ... where (s1,w1) € I, and for every
1> 1, (sit1,wir1) is an immediate successor of (s;,w;). Moreover, a state-run
of § is an infinite sequence of states s1So ... such that there exists a run of S of
the form (s1,w1)(s2,wa) ... for some wy,wa,... € I'*.

We are now ready to define how a flow graph induces a pushdown system, as
inspired by Schwoon [12], so that runs of the flow graph can be defined in terms
of runs of the induced pushdown system.

Definition 9. (Induced PDS). Given a set of initial global states Gipe C
Stateq, a flow graph (F, main) induces a pushdown system Sy = (S, I, A\, I),
where:

o S = Stateg, i.e., the global states of the program serve as control states;

o ['= (UFpef N,) x Stater, i.e., we store on the stack pairs of nodes and local
states of procedures;

o A is induced as follows. Every procedure flow graph F, induces the following
sets of rewrite rules, where init;(p) € Stater, captures the initial values of the
local variables in p:

(1) For each silent transition (ny, ,€,ny,), the set of rewrite rules:

{<897 (np178l)> - <S;’ (npws;» | (5’3/) € [[)‘p(npl)]]}

1) For each call transition (n,,,p’,n,,), the set of rewrite rules:
P1 D2

{(sg, (npy s 51)) = (55, (P, initu(p)) - (g 57) | (5,5") € [Ap(np,)]}

Deductively Verified Program Models for Software Model Checking 15

(i11) If p # main, then for each return node n, € N, _, the set of rewrite rules:

{(sg, (np, 1)) = (s, €) | (5,8") € [p(np)]}

The set of transition rules A is then the union of the above rules for each
transition and return node.
o [= {{main., (init;(main),9)) | g € Ginit}-

The idea of the induced pushdown system is to model procedure calls using
a stack. For a call transition (n,,,p’,n,,) in procedure p, we push the next node
in the current procedure graph (i.e., n,,) and the current local variable state to
the stack. Then, for the case when the procedure p’ returns, we simply add a rule
that pops the local state and node from the stack (and discards the current local
state), so that the execution of p can resume from n,,, with correct values for the
local variables. For silent transitions, we simply let the stack be untouched. The
initial configurations are given by the possible initial global states, together with
the entry node of the main procedure.

Definition 10. (Run of a Flow Graph). A run of a flow graph (F, main) is
a state-run of the pushdown system induced by F.

That is, when defining the run of the flow graph, we consider only the global
component of the state. We view linear-time properties of a flow graph F as
properties of its runs.

To illustrate, consider the flow graph in Fig.4. The following sequence of
configurations shows the first three steps of a run in the induced pushdown
system.

<81g7 (nmuslz» <82g7 (nmgstl)> <S2g’ (nsl) Z‘nitl(é’tee)) : (nm3vs2z)> s

where sy, = init;(main), s1, is some initial values of the global variables, and
(51752) € [[ach,amm]]'

4 From Annotated Programs to Flow Graphs

In this section, we sketch a general translation from annotated programs into
flow graphs, which was already hinted at in Sect. 3, where we showed in Fig. 4
the flow graph representation of STEE. We leave a fully formalised definition of
the translation as future work.

For the translation sketch, we assume given a canonical, semantics-preserving
representation of statements, contracts and Boolean expressions as actions,
and use a., as and a, to denote the actions corresponding to the contract c,
statement s, and Boolean guard b, respectively. Then, an annotated program
(P, main) is translated into a flow graph as follows.

For each annotated procedure P, = (B,, (p), in the program, we construct
a procedure flow graph F, = (N,,D,—,, A, X\p,Pe, {pr}). The nodes N, are

16 J. Amilon and D. Gurov

a
€havoc

Qeread

Ceval

Aeyrite

Nmy

1=0 id

(a) Flow graph for main (b) Flow graph for steering

Fig. 4. Flow graph for STEE

initially given by the control points (Js.z V. The node labelling A, is defined as
follows:

ac, if my(v) = (jump B) and cg # c.

ac, if my(v) = s and s is a procedure call to p where the entry
Ap(ny) = block (3, is annotated with cg, # c.

as if my(v) = (s) and s is an assignment statement

id otherwise

That is, we replace annotated blocks, and calls to annotated procedures, with
their respective contract. In addition to the labelling defined above, we also
merge any remaining jumps, i.e., replace jumps to a non-specified block 3 with
the body of 3. Lastly, if s is guarded by b, then a; is added as a conjunct to the
label.

The sources and targets of the transition relation —, for the remaining nodes
are defined canonically from Ejg for each block (3. The labelling e of an edge
(N, > €, M,) is defined as follows:

p if my(v;) = (s) and s is a call to procedure p where the entry
e= block 3, of p is annotated with c,

€ otherwise

That is, we keep as edge labels all calls to procedures where the body is not
specified. Lastly, we also add an e-edge from the final node in the main pro-
cedure to itself, thus modelling terminating executions as ending by stuttering
indefinitely in the final node of main.

In the example in Fig. 4, we see that the nodes n,,,, ns,, ns,, and n,, are
labelled with (the action of) the respective contract. We assume here for sim-
plicity that the actions a._, and a.,,, also describe the assignments to the local
variables primary_info and sndary_info. The remaining nodes are labelled

Deductively Verified Program Models for Software Model Checking 17

with the identity action, and the guarded statements stemming from the while
loop in the main procedure have a conjunct for the guards. The only non-specified
procedure call, the one to steering, is maintained as the label of the transition
from 1y, t0 My

5 Model Checking of Flow Graphs

Once a flow graph has been extracted from an annotated program, it can be
model checked against temporal properties by translating it into the input mod-
elling language of the specific model checking framework at hand. Here, we illus-
trate the idea using two well-known frameworks, TLA and NUXMV.

5.1 Model Checking with TLC

TLC [15] is an explicit state model checker that is part of the TLA [8] framework.
TLC takes as input a TLA™ [9] program, where TLA™ is the language imple-
mentation of TLA. TLC can model check it either for deadlocks, or against tem-
poral properties, which are also specified in TLA™. A beautiful aspect of TLC
is that both the models and the properties are specified in the same language.
The TLA™ language uses actions (see Sect. 3.2) as elementary propositions, and
temporal properties are specified as in LTL, using, e.g., the temporal operators
O (“eventually”) and O (“always”). Programs in TLA™ are defined as symbolic
transition systems, comprised of a unary initial-state predicate Init and a binary
next-state predicate M. Sometimes, a third component, a fairness constraint F
is added explicitly as well. Given a triple (Init, M, F), the corresponding TLA™
program is the formula Init A OM A F.

To model check a flow graph with TLC, we translate the flow graph to a
semantically equivalent TLA™ specification. In particular, we define a variable n
representing the current node in a run, and a variable st representing the stack
in the pushdown system. We also define variables s, and s; corresponding to the
state for the local and global variables.

Definition 11. (Induced TLA™ Specification). Given a flow graph
(F,main), we define, for each procedure flow graph F, € F, a set of actions
as follows:

(i) For each silent transition (np,,€,ny,), an action:
n=mnp, An' =mnp, Ast' = st AAyny,
(i1) For each call transition (ny,,p’,ny,), an action:
n=mnp, An' =ny Ast' = push((p,s),st) A Apnp,
(iit) For each return node n, € Ny, an action:

((n", 1), st") = pop(st) A Ap(ny)

18 J. Amilon and D. Gurov

The full TLA™T specification of the program is then the specification:
Init N\OM

where M is the disjunction of all actions induced as described above, and Init is
the initial constraint on the global variables and sets n, and the local variables
according to Foain -

* Contracts

1

2 c_havoc == glob_stee_primary_status' \in LO..HI /\

3 UNCHANGED (glob_stee_sndary_status)

1 c_read(res_var) == assign_loc(res_var, glob_stee_primary_status)

) /\ fix_globs
6 c_eval(stee_info, res_var) ==
7 (fetch_loc(stee_info) # 0 => assign_loc(res_var, 0))

8 /\ (fetch_loc(stee_info) = 0 => assign_loc(res_var, 1))
9 /\ fix_globs
10 c_write(status) == (glob_stee_sndary_status' = fetch_loc(status))

11 /\ fix_lvars /\ UNCHANGED (glob_stee_primary_status)

12

13 *Main

14 mainl == n = "n_mainl" /\ n' = "n_main2" /\ c_havoc /\ fix_stack /\ fix_lvars
15 main2 == n = "n_main2" /\ n' = "n_maind4" /\ fix_stack /\ fix_lvars /\ 1 = 0
16 main3 == n = "n_main2" /\ n' = "n_steel" /\

17 push("n_main3", lvars) /\ init_stee(lvars') /\ fix_globs /\ 1 # O

18 main4d == n = "n_main3" /\ n' = "n_mainl" /\ fix_stack /\ fix_lvars

19 /\ fix_globs

20 mainb == n = "n_maind4" /\ n' = "n_maind" /\ fix_stack /\ fix_lvars

21 /\ fix_globs

22

23 *Stee

24 steel == n = "n_steel" /\ n' = "n_stee2" /\ fix_stack /\ c_read(primary_info)
25 stee2 == n = "n_stee2" /\ n' = "n_stee3" /\ fix_stack

26 /\ c_eval(primary_info, sndary_info)

27 stee3 == n = "n_stee3" /\ n' = "n_stee4" /\ fix_stack /\ c_write(sndary_info)
28 stee4 == n = "n_steed" /\ pop(n', lvars') /\ fix_globs

0o *Program

1 Init == n = "n_mainl" /\ init_main(lvars) /\ init_stack /\ init_globals
2 == (mainl \/ main2 \/ main3 \/ main4 \/ main5 \/

3 steel \/ stee2 \/ stee3 \/ steed)
1

5 Spec == Init /\ []1[M]_all_vars

Fig. 5. TLA™' model for STEE

In Fig.5, we show the key parts of the TLA™ model induced by the flow
graph in Fig.4. The full code is available in Appendix A.

As TLC is an explicit-state model checker, model checking of the program
is only possible for finite domains for the variables and the stack. In particular,
we cannot model check flow graphs with infinite variable domains or unbounded
recursion.

Deductively Verified Program Models for Software Model Checking 19

5.2 Model Checking with NUXMV

NUXMYV [6] is a symbolic model checker for finite or infinite-state systems, which
takes as input a model in the NUXMV language, and can verify the model against
properties written in either LTL or CTL. Similar to TLA™, a NUXMV model can
also be given as a symbolic transition system, with an initial constraint and tran-
sition constraints, the latter corresponding to the next-state relation in TLA™T.
Transition constraints are, semantically speaking, binary relations over the states
of the transitions system, and are thus similar to TLA™ actions. Syntactically,
they differ from TLA™ actions in that they use the next keyword instead of
primed variables. For readability, NUXMV also allows define declarations, which
function as macros.

To the best of our knowledge, the type system in NUXMV is less flexible than
the one of TLA™. In particular, there is no data type able to represent sequences
of variable size, thus encoding the stack is less straightforward; for example, the
maximum size of the stack must be both finite, and known beforehand. On the
other hand, NUXMV supports model checking of infinite-state models, so that
we may consider infinite domains for the program states.

The following definition shows how a flow graph induces a NUXMV model.
Since both TLA™' and NUXMV are symbolic-transition systems, the translation
below closely resembles Definition 11.

Definition 12. (Induced nuXmv Model). Given a flow graph (F, main), we
define, for each procedure flow graph F, € F, declarations as follows:

(i) For each silent transition (ny,,€,nyp,), a define declaration:
n=n,, Anext(n) = ny, A next(st) = st A Apny,
(i1) For each call transition (ny,,p’,ny,), a define declaration:
n =ny,, A next(n) = ny, A next(st) = push((p, s1), st) A Apnp,
(iit) For each return node n, € Ny, , a define declaration:
next(((n,1), st)) = pop(st) A Xp(nyp)

The NUXMV model is then given as a transition constraint corresponding to the
disjunction of the define declarations in (i) - (iii), and an INIT constraint, which
describes the initial constraints of the global variables, and sets the initial node,
and local variables according to Foqin -

The key parts of the NUXMV model for the flow graph in Fig. 4 are shown in
Fig. 6. The full model is shown in Appendix A.

20 J. Amilon and D. Gurov

1 -- contracts

2 c_havoc := next(glob_stee_primary_status) in 0..10

3 & next(glob_stee_sndary_status) = glob_stee_sndary_status;

| c_read := next(lvars([primary_info]) = glob_stee_primary_status

5 & fix_globs;

6 c_eval := (lvars[primary_info] != 0 -> next(lvars[sndary_infol]) = 0)

7 & (lvars[primary_info] = 0 -> next(lvars[sndary_infol) = 1)

8 & fix_globs;

9 c_write := (next(glob_stee_sndary_status) = lvars[sndary_infol)

10 & fix_lvars

11 & next(glob_stee_primary_status) = glob_stee_primary_status;

12

1

14 -- main

15 Mainil := (n = n_mainl & next(n) = n_main2 & c_havoc & fix_lvars

16 & fix_stack);

17 Main2 := (n = n_main2 & next(n) = n_maind & fix_lvars & fix_stack & 1 = 0);

18 Main3 := n = n_main2 & next(n) = n_main3 & fix_stack & fix_lvars & push

19 & init_stee_lvars & 1 = 0;

20 Main4 := n = n_main3 & next(n) = n_steel & fix_stack & fix_lvars &
fix_globs;

21 Main5 := n = n_main4 & next(n) = n_main4d & fix_stack & fix_lvars &
fix_globs;

22

23 -- stee

24 Steel := n = n_steel & next(n) = n_stee2 & fix_stack & c_read;

25 Stee2 := n = n_stee2 & next(n) = n_stee3 & fix_stack & c_eval;

26 Stee3 := n = n_stee3 & next(n) = n_stee4 & fix_stack & c_write;

27 Stee4d n = n_stee4 & pop & fix_globs;

29 INIT

30 lvars = init_main_lvars & vstack = init_vstack & curr_top = 0 &

31 nstack = init_nstack & init_globals & n = n_mainl;

32

33 TRANS

34

Mainil | Main2 | Main3 | Main4 | Main5 | Steel | Stee2 | Stee3 | Stee4;

Fig. 6. NUXMV model of STEE

6 Discussion

We expect the approach presented in this paper to be particularly applicable to
automotive embedded software. To see why, consider the simplified STEE exam-
ple in Fig. 1. In a real example, the scheduler would periodically call numerous
modules. Thus, if we annotate each module with a contract, we can perform
model checking over the contracts of the modules, taking into account the actual
code only of the scheduler. This also aligns, in our experience, with how require-
ments are specified in the automotive industry, where software modules are typ-
ically accompanied with a number of safety-critical requirements that can be
deductively verified.

When considering the STEE example, as presented here, the use of a push-
down system in the formalisation may seem unnecessary. However, depending
on the property to verify, one may want to abstract away, for example, only a
subset of the procedures in the program model. Then, the pushdown system is
necessary to capture the behaviour of procedure calls which one does not want
to abstract away from.

In the translations considered in this work, the role of deductive verification
is to justify the abstraction for the model checking task. That is, by showing that

Deductively Verified Program Models for Software Model Checking 21

the code satisfies the contracts, we may guarantee certain soundness properties
of the abstraction. We are yet to work out the details of such guarantees, in par-
ticular the interplay between deductive verification and the temporal properties
to be verified with model checking.

In this work, we assumed that the contracts have been provided by some
(likely human) oracle. By taking this approach, we allow the reuse of earlier
results in one domain (deductive verification), for the purpose of abstraction
in another domain (model checking). The validity of this approach is corrob-
orated by experience from an earlier case study on deductive verification of
automotive embedded software [14], where we encountered requirements that
we formalised and verified using deductive verification, and other requirements
that were better suited for verification with model checking.

7 Conclusion

In this paper, we described an approach for deductive verification based program
abstraction, where flow graphs act as an intermediate representation in extract-
ing models from programs annotated with contracts. We have illustrated the
approach on a code skeleton inspired by code from the heavy-vehicle industry,
showing both how a program, annotated with contracts, can be translated into
an abstract flow graph, and how the flow graph, in turn, induces TLA™ and
NUXMV models. We have also presented an operational semantics for flow graphs
by means of an induced pushdown system, which allows semantic preservation
properties of the translations to be established formally.

Future Work. Future work includes first and foremost experimental evalua-
tion of model extraction. In particular, we are interested in exploring how the
abstraction impacts verification times when model checking. We also plan to
show semantic preservation properties of the defined translations, and identify
fragments of LTL for which the verification (model checking) in our approach is
sound. Future work also includes implementing the translation steps described.
Lastly, we also consider combining the contracts-based method presented here
with the large-block encoding presented in [5], to also consider abstraction based
on summaries, which can be automatically extracted from the code.

Acknowledgement. Some of the concepts presented here were discussed at the
Lorentz center workshop on Contract Languages, 4-8 March 2024.

A Full TLAT and NUXMV Model of STEE

A.1 TLAT Model

In the TLA™ model, the stack consists of a tuple of stacks, one that maintains the
node and one that maintains the variables. The model also defines a number of
auxiliary actions, including popping from and pushing to the stack, and reading

22 J. Amilon and D. Gurov

from and writing to variables. The key parts of the model is the contract actions,
which essentially captures the contracts as state transformers, and the program,
which is based on applying Definition 11 to Fig.4. Note that each contract
action and program action must define also what variables are not written to,
as required by TLC.

————————————————— MODULE Stee_isola24--------------———-—————————————
EXTENDS Sequences, TLC, Naturals

VARIABLES
nstack, vstack,
* Global vars
glob_stee_primary_status,
glob_stee_sndary_status,
* Current control state and local vars
n, lvars

*Constants

LO == 0O

HI == 10

stack == <<nstack, vstack>>

primary_info == 1

sndary_info == 2

*Inits

init_main (1) 1 = <<>>

init_stee(l) == 1 = primary_info :> 0 @@ sndary_info :> 0

init_globals == glob_stee_primary_status \in {0,1} /\
glob_stee_sndary_status \in {0,1}

init_stack == nstack = <<>> /\ vstack = <<>>

*Auxiliary funcs

pop(_n, _v) == _n = Head(mnstack) /\ _v = Head(vstack) /\ nstack' = Tail(
nstack) /\ vstack' = Tail(vstack)

push(_n, _v) == nstack' = <<_n>> \o nstack /\ vstack' = <<_v>> \o vstack

assign_loc(x, v) == lvars' = [lvars EXCEPT ![x] = v] *loc_env' = [loc_env
EXCEPT !.lvars = [loc_env.lvars EXCEPT ![x] = v]]

fetch_loc(x) == 1lvars[x]

fix_globs == UNCHANGED (<<glob_stee_primary_status, glob_stee_sndary_status>>)

fix_stack == UNCHANGED (stack)

fix_lvars == UNCHANGED (1lvars)

all_vars == <<glob_stee_primary_status, glob_stee_sndary_status, stack,lvars,
n>>

* Contracts

c_havoc == glob_stee_primary_status' \in LO..HI /\
UNCHANGED (glob_stee_sndary_status)
c_read(res_var) == assign_loc(res_var, glob_stee_primary_status)

/\ fix_globs
c_eval(stee_info, res_var) ==
(fetch_loc(stee_info) # 0 => assign_loc(res_var, 0))

/\ (fetch_loc(stee_info) = 0 => assign_loc(res_var, 1))
/\ fix_globs
c_write(status) == (glob_stee_sndary_status' = fetch_loc(status))

/\ fix_lvars /\ UNCHANGED (glob_stee_primary_status)

*Main
mainl == n = "n_mainl" /\ n' = "n_main2" /\ c_havoc /\ fix_stack /\ fix_1lvars
main2 == n = "n_main2" /\ n' = "n_main4" /\ fix_stack /\ fix_lvars /\ 1 = 0
main3 == n = "n_main2" /\ n' = "n_steel" /\

push("n_main3", lvars) /\ init_stee(lvars') /\ fix_globs /\ 1 # 0
main4d == n = "n_main3" /\ n' = "n_mainl" /\ fix_stack /\ fix_lvars

/\ fix_globs
main5 == n = "n_main4" /\ n' = "n_maind4" /\ fix_stack /\ fix_lvars

60

NN NN
J 0 ooe

N
®

Deductively Verified Program Models for Software Model Checking 23

/\ fix_globs

*Stee
steel == n = "n_steel" /\ n' = "n_stee2" /\ fix_stack /\ c_read(primary_info)
stee2 == n = "n_stee2" /\ n' = "n_stee3" /\ fix_stack

/\ c_eval(primary_info, sndary_info)
stee3 == n = "n_stee3" /\ n' = "n_stee4" /\ fix_stack /\ c_write(sndary_info)
stee4 == n = "n_steed4" /\ pop(n', lvars') /\ fix_globs

*Program
Init == n = "n_mainl" /\ init_main(lvars) /\ init_stack /\ init_globals
== (mainl \/ main2 \/ main3 \/ main4 \/ mainb \/
steel \/ stee2 \/ stee3 \/ stee4d)

A.2 NUXMV model

The NUXMV model is similar to the TLA™ one, but differs slightly as NUXMV
is, for example, more strictly types than TLA™. Since array sizes must be fixed
to a constant in NUXMV, we set the stack to be of size 10, as we know this to be
enough in this model.

MODULE main

VAR
nstack : array 0..1 of {n_mainl, n_main2, n_main3, n_main4, n_main5,
n_steel, n_stee2, n_stee3, n_stee4,dummy};
vstack : array 0..1 of array 0..1 of 0..10;
curr_top : 0..1;
--* Global vars
glob_stee_primary_status : 0..10;
glob_stee_sndary_status : 0..10;
--* Current control state and local vars
n : {n_mainl, n_main2, n_main3, n_main4, n_main5, n_steel, n_stee2,
n_stee3, n_steedl};
lvars : array 0..1 of 0..10;

DEFINE
--loc vars index
primary_info := 0;
sndary_info := 1;

--*Inits
init_main_1lvars := [0,0];
init_stee_lvars := next(lvars[primary_infol) = 0 & next(lvars[sndary_infol)
= 0;

init_globals := glob_stee_primary_status in 0..1 &
glob_stee_sndary_status in 0..1;

init_vstack [[0,0]1,[0,0]1];

init_nstack := [dummy,dummy];

-- Auxiliary funcs

pop := next(lvars[0]) = vstack[curr_top]I[0]
& next(lvars[1]) = vstack[curr_top]l[1] & next(n) = nstack[curr_top]
& next (curr_top) = curr_top - 1;

push := next(vstack[curr_top][0]) = lvars[0]

& next(vstack[curr_top][1]) = lvars[1]
& next(nstack[curr_topl) = n & next(curr_top) = curr_top + 1;

24 J. Amilon and D. Gurov

fix_globs := next(glob_stee_sndary_status) = glob_stee_sndary_status

& next(glob_stee_primary_status) = glob_stee_primary_status;
fix_lvars := next(lvars[0]) = 1lvars[0] & next(lvars[1]) = 1lvars[1];
fix_stack := next(vstack[0][0]) = vstack[0][0]

& next(vstack [0][1]) = vstack[0] [1]
& next(vstack [1]1[0]) = vstack[1][0]
& next(vstack[1]1[1]) = vstack[1][1];

—-—- contracts

c_havoc := next(glob_stee_primary_status) in 0..10
& next(glob_stee_sndary_status) = glob_stee_sndary_status;
c_read := next(lvars[primary_infol) = glob_stee_primary_status
& fix_globs;
c_eval := (lvars[primary_info] != 0 -> next(lvars[sndary_info]) = 0)
& (lvars[primary_info] = 0 -> next(lvars[sndary_infol]) = 1)
& fix_globs;
c_write := (next(glob_stee_sndary_status) = lvars[sndary_info])
& fix_lvars
& next(glob_stee_primary_status) = glob_stee_primary_status;
-- main
Mainl := (n = n_mainl & next(n) = n_main2 & c_havoc & fix_lvars & fix_stack
)
Main2 (n = n_main2 & next(n) = n_maind4d & fix_lvars & fix_stack & 1 = 0);
Main3 := n = n_main2 & next(n) = n_main3 & fix_stack & fix_lvars & push
& init_stee_lvars & 1 = 0;
Main4 := n = n_main3 & next(n) = n_steel & fix_stack & fix_lvars &
fix_globs
Main5 := n = n_main4 & next(n) = n_main4 & fix_stack & fix_lvars &
fix_globs;
-- stee
Steel n = n_steel & next(n) = n_stee2 & fix_stack & c_read;
Stee2 n = n_stee2 & next(n) = n_stee3 & fix_stack & c_eval;
Stee3 := n = n_stee3 & next(n) = n_stee4 & fix_stack & c_write;
Stee4 := n = n_steed4 & pop & fix_globs;
INIT
lvars = init_main_lvars & vstack = init_vstack & curr_top = 0 &
nstack = init_nstack & init_globals & n = n_maini;
TRANS

Mainl | Main2 | Main3 | Main4 | Main5 | Steel | Stee2 | Stee3 | Stee4d;

References

1. Amilon, J., Lidstrom, C., Gurov, D.: Deductive verification based abstraction for
software model checking. In: Leveraging Applications of Formal Methods, Ver-
ification and Validation. Verification Principles (ISoLA 2022). Lecture Notes in
Computer Science, vol. 13701, pp. 7-28. Springer (2022). https://doi.org/10.1007/
978-3-031-19849-6_2

2. Baudin, P., Filliatre, J.C., Marché, C., Monate, B., Moy, Y., Prevosto, V.: ACSL:
ANSI/ISO C Specification Language. http://frama-c.com/acsl.html

3. Baudin, P., Bobot, F., Correnson, L., Dargaye, Z., Blanchard, A.: WP Plug-in
Manual — Frama-C 23.1 (Vanadium). CEA LIST. https://frama-c.com/download/
frama-c-wp-manual.pdf

4. Beckert, B., Kirsten, M., Klamroth, J., Ulbrich, M.: Modular verification of JML
contracts using bounded model checking. In: Margaria, T., Steffen, B. (eds.) Lever-
aging Applications of Formal Methods, Verification and Validation: Verification
Principles, pp. 60-80. Springer International Publishing, Cham (2020)

https://doi.org/10.1007/978-3-031-19849-6_2
https://doi.org/10.1007/978-3-031-19849-6_2
http://frama-c.com/acsl.html
https://frama-c.com/download/frama-c-wp-manual.pdf
https://frama-c.com/download/frama-c-wp-manual.pdf

10.

11.

12.

13.

14.

15.

Deductively Verified Program Models for Software Model Checking 25

Beyer, D., Cimatti, A., Griggio, A., Keremoglu, M.E., University, S.F., Sebastiani,
R.: Software model checking via large-block encoding. In: 2009 Formal Methods
in Computer-Aided Design, pp. 25-32 (2009). https://doi.org/10.1109/FMCAD.
2009.5351147

Cavada, R., et al.: The nuXmv symbolic model checker. In: Biere, A., Bloem, R.
(eds.) Computer Aided Verification, pp. 334-342. Springer International Publish-
ing, Cham (2014)

Griggio, A., Jonas, M.: Kratos2: An SMT-based model checker for imperative pro-
grams. In: Enea, C., Lal, A. (eds.) Computer Aided Verification, pp. 423-436.
Springer Nature Switzerland, Cham (2023)

Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang. Syst.
16(3), 872-923 (1994). https://doi.org/10.1145/177492.177726

Lamport, L.: Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley (2002). http://research.microsoft.com/
users/lamport/tla/book.html

Methni, A., Lemerre, M., Ben Hedia, B., Haddad, S., Barkaoui, K.: Specifying and
verifying concurrent C programs with TLA+. In: Artho, C., Olveczky, P.C. (eds.)
Formal Techniques for Safety-Critical Systems, pp. 206—222. Springer International
Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-17581-2_14

Rozier, K.Y, et al.: MoXI: an intermediate language for symbolic model checking.
In: Proceedings of the 30th International Symposium on Model Checking Software
(SPIN), LNCS, Springer (April 2024). https://doi.org/10.1007/978-3-031-65627-
9.10

Schwoon, S.: Model-Checking Pushdown Systems. Ph.D. thesis, Technical Univer-
sity of Munich (2002)

Soleimanifard, S., Gurov, D.: Algorithmic verification of procedural programs in the
presence of code variability. Sci. Comput. Program. 127, 76-102 (2016). https://
doi.org/10.1016/J.SCIC0.2015.08.010

Ung, G., Amilon, J., Gurov, D., Lidstrom, C., Nyberg, M., Palmskog, K.: Post-hoc
formal verification of automotive software with informal requirements: an experi-
ence report. In: 2024 IEEE 32snd International Requirements Engineering Confer-
ence (RE) (2024). To appear

Yu, Y., Manolios, P., Lamport, L.: Model checking TLA+ specifications. In: Pierre,
L., Kropf, T. (eds.) Correct Hardware Design and Verification Methods, pp. 54-66.
Springer, Berlin Heidelberg, Berlin, Heidelberg (1999)

https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1109/FMCAD.2009.5351147
https://doi.org/10.1145/177492.177726
http://research.microsoft.com/users/lamport/tla/book.html
http://research.microsoft.com/users/lamport/tla/book.html
https://doi.org/10.1007/978-3-319-17581-2_14
https://doi.org/10.1007/978-3-031-65627-9_10
https://doi.org/10.1007/978-3-031-65627-9_10
https://doi.org/10.1016/J.SCICO.2015.08.010
https://doi.org/10.1016/J.SCICO.2015.08.010

	Deductively Verified Program Models for Software Model Checking
	1 Introduction
	2 Deductive Verification Based Program Abstraction
	3 Annotated Programs and Flow Graphs
	3.1 Annotated Programs
	3.2 Flow Graphs

	4 From Annotated Programs to Flow Graphs
	5 Model Checking of Flow Graphs
	5.1 Model Checking with TLC
	5.2 Model Checking with nuXmv

	6 Discussion
	7 Conclusion
	A Full TLA+ and nuXmv Model of Stee
	A.1 TLA+ Model
	A.2 nuXmv model

	References

