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Abstract

We present a Gentzen-style sequent calculus for program verification which accommodates both model checking-
like verification based on global state space exploration, and compositional reasoning. To handle the complexities
arising from the presence of fixed-point formulas, programs with dynamically evolving architecture, and cut ruleswe
use transition assertions, and introduce fixed-point approximants explicitly into the assertion language. We address,
in agame-based manner, the semantical basis of this approach, asit applies to the entailment subproblem. Soundness
and completeness results are obtained, and examples are shown illustrating some of the concepts.
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1 Introduction

In this paper we study program verification in terms of provability of general sequents of the
shape
TFA, (1.

where the components of I" and A can be temporal correctness assertions P : ¢. Since
program terms P can involve free program variables, and since assumptions can be stated
concerning these (as assertions in I'), this provides a very general and powerful setting for
program verification which accommodates both model checking-like verification based on
global state space exploration, and compositional reasoning. This sort of approach has been
examined in a number of recent papers, including [1, 2, 5, 6, 12], and traces back to work
by Stirling [13] and Winskel [17]. Severa programming or modelling languages have been
considered, including CCS [5], the w-calculus [2], CHOCS [1], general GSOS-definable lan-
guages[12]. In[6, 8] we presented an approach to handling a core fragment of the distributed
functional programming language Erlang [3] including features such as data types, a fairly
rich sequentia structure, asynchronous buffered communication, and dynamic process cre-
ation. We have implemented an advanced verification tool EVT [9], and demonstrated the
viability of our approach through a number of case studies[4, 8] exhibiting intricate dynamic
behaviour.

The key ideais that the general form of sequent (1.1) allows correctness properties P : ¢
to be stated and proved in a modular fashion, under the assumption of correctness properties
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of congtituents of P, represented by free variables. A general rule of subterm cut of the shape

'cQ:yv,A Tz:pFP:¢,A
'k PlQ/z]: ¢, A

allows such subterm assumptionsto be introduced and used.

The difficulty with this (aswith any other approach to modular verification) isto find away
of supporting temporal properties. In [5] we showed one way of doing this, and built, for the
first time, a compositional proof system capable of handling general CCS terms, including
those that create new processes dynamically (the only source of infinitenessin CCS). In [6]
we used a similar (though considerably improved) approach to address Erlang.

Applied to areal programming language such as Erlang, the verification problem is evi-
dently undecidable. Even so, it is of interest to examine subproblemsfor which completeness
results should be obtainable at least in principle. In [5], weak completeness results were ob-
tained for sequents of the restricted shape - P : ¢ where ¢ is amodal p-calculus formula,
and where P isafinite-state CCS process. But such aresult isnot really adequatetoillustrate
the power of our approach, as it does not improve upon results obtainable using more stan-
dard and well-understood model checking techniques based on global state space exploration
(such as[15, 18]).

On another track, and addressing Hennessy-Milner logic only (so: no temporal properties),
Simpson [12] showed how a proof-theoretical setting like that of (1.1) could be used to pro-
duce compositiona proof systems from arbitrary GSOS operational semantics definitionsin
avery systematic way. Moreover, Simpson was able to obtain strong completeness results
which were outside the scope of our approach. The main idea of [12] was to introduce tran-
sition assertions of the shape P = () as components of sequents on a par with correctness
assertionslike P : ¢. Whereas the presence of transition assertions may be argued (wrongly,
in our opinion) to go against the ‘ spirit of compositionality’, the facts remains that

1. the approach is powerful enough to derive the sorts of compositional rules used in the
previous approachesreferred to above, and

2. the very direct and simple embedding of the operational semantics relates structure and
behaviour in a far more direct and comprehensive way than the other approaches allow.
Thisis reflected by the strong completeness results obtained in [12].

In this paper we take afirst step towards a merge of Simpson’s operational semantics embed-
ding with the sort of treatment of fixed pointswhich we proposedin [5], in particular to obtain
strong compl eteness results that apply to sequents of the shape (1.1) even in the presence of
temporal connectives.

Towardsthe realization of this one can clearly identify a number of subproblems, including
at least the following:

e Model checking: u-calculus, restricted sequents. In this case, like in [15, 18], sequents
(1.1) arerequired to contain exactly one correctness assertion.

e Entailment: p-calculus, restricted program terms. In this case, which is addressed here,
the only program terms P alowed in correctness assertions P : ¢ are variables (so:
no program, or process constructors, making the fragment just as expressive as Kozen's
axiomatization [10]).

e Modal logic. Thiswas the case considered by Simpson [12].
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e General case: u-calculus, general sequents. For what classes of structured program terms
describing infinite-state behaviours can one achieve completeness?

In the last case there are several difficultiesin realizing our program, over and beyond what
must be faced when studying the simpler problems of model checking, entailment, or modal
logic. First, undecidability entails that some sort of restriction upon the general sequent
format must beimposed. But on adlightly deeper level, acentral and very important difficulty
isdue to the subterm cut rule. While thisruleis eliminable (or does not apply) in some of the
simpler settings, in the presence of structured program termsthe rule is essential and causes
severe difficulties for the handling of recursive formulas.

Essentialy, recursive formulas are handled using some form of well-founded induction on
approximation ordinals. In the absence of the subterm cut rule (or other rules with similar
effect, such as the classical cut) approximation ordinals can be guaranteed to occur only in
contravariant positions. In the presence of cut this can, however, no longer be guaranteed. In
our earlier work [5] this caused usto rely on a handling of fixed points which was extremely
syntactical, hedged with side conditions, and also unnecessarily restrictive.

The contribution of the present paper is to show that in fact a far simpler and much more
semantical approach is possible, by introducing approximation ordina variables explicitly
into the proof system. This has not only theoretical implications: the construction introduced
here underpins our treatment of p-calculusinthe EVT tool [9].

In aprevious paper [7] we instantiated our approach to CCS and illustrated the workings
of the proof system by means of examples. In this paper we address the semantical basis, as
it applies to the entailment subproblem. After briefly introducing the logic and proof system
we present, in Section 4, arefutation game providing asemantical characterization of validity
for cyclic proof structures. We provethe derived notion of refutation-game provability sound,
and in Section 5, we prove completeness by reduction to Kozen's axiomatization [10]. For
practical proof search the game-based characterization is unsatisfactory — it does not permit
loop closure to be determined effectively. For this reason we introduce a rule of assumption
discharge in Section 6, and show it sound and complete as well. To illustrate the workings
of the proof system we exhibit two examples, of a sequent which is provable and of another
sequent which is not.

2 Logic

The standard syntax of the modal p-calculusis augmented by adding a form of fixed point
formula approximation, using ordinal variables. Formulas ¢ are generated by the following
grammar, where x ranges over a set of ordinal variables, o over a set of actions, and X over
aset of propositional variables.

o=V o | =0 | (e | X [ X | (uX.0)".

An occurrence of a subformula ¢ in ¢ is positive, if ¢ appears in the scope of an even
number of negation symbols. Otherwise the occurrence is negative. The formation of least
fixed point formulas of one of the shapes uX.¢ or (uX.¢)" is subject to the usual formal
monotonicity condition that occurrences of X in ¢ are positive. We use the symbols U and
V' to range over (unindexed) fixed point formulas 4 X.¢. A formula ¢ is propositionally
closed if ¢ does not have free ocurrences of propositional variables. A formulais pure if it
does not have subformulas of the form U*. Standard abbreviations apply, such asvX.¢ =
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—uX.—(¢[-X/X]). We assume the standard modal u-calculus semantics [10], augmented
by the clause:

0 if p(k) =0
I (nX.9)"[lp = { 161l p[I(nX.0)"|p[3/x]/ X] ifp(k) =p4+1
Ull(uX.9)"[lp[8/K] | B < p(x)} if p(k) isalimit ordinal

where p is an interpretation function (environment), mapping ordinal variables to ordinals,
and propositional variables to sets of states. The use of ordinal approximation hinges on the
following results (of which (1) is the well-known K naster-Tarski fixed point theorem).

THEOREM 2.1
L ||pX.9llp = Ug I(uX.0)"|p[B/ k]
2. |(uX-0)"lp = Ups<p(y 12Nlplll (0 X -0)"[Ip/ X, B/ K]

Observe how this casts the properties U and U* as existential properties: Thisis useful to
motivate the proof rulesfor fixed point formulas given below. Observe also that, for countable
models, quantification over countable ordinalsin Theorem 2.1 suffices.

We implicitly assume a process language for forming process terms E, F' involving pro-
cess variables x, y, and assume a transitional semantics specifying the valid action-labelled
transitions s — s’ between closed process terms called states. We extend environments p to
map process variablesto states.

Sequents, or judgements, mention satisfaction assertions E : ¢, transition assertions £ =
F, and ordinal variable constraints x < &'.

DEFINITION 2.2 (Assertions, Sequents)
1. An assertion is an expression of one of theforms E : ¢, E = F, or k < k', where ¢ isa
propositionally closed formula.
2. Theassertion E : ¢ isvalid for an interpretation function p, if Ep € ||¢||p. The assertion
r < k' isvalidfor p, if p(k) < p(x'). Theassertion E 3 F isvalidfor p, if Ep 3 Fp
isavalid transition.

3. A sequent is an expression of theform I' H A, whereT" and A are sets of assertions. A
sequent is termed pureif it contains only satisfaction assertions of the shape x : ¢.

4. The sequent ' = A isvalid, if for al interpretation functions p, all assertionsin I are
valid for p only if some assertion in A isvalid for p aswell.

3 A proof system for logical entailment

Structural rules
We assume the axiom rule, the rule of cut, and weakening:

TFAA T,AFA

AX T AT AA cut TFA
A A
S W WR 1A

Sincel and A are sets, structural rules like permutation and contraction are vacuous.

Logical rules
Inthe following listing we assumethat U = pX.¢:
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L _LrE:¢A r DE:6FA
- [LE:¢F A - TFE:—¢ A
vl DE:¢rADE:¢gFA R LFE:0E:pA
T,E:gVYFA TFE:¢V,A
) IESz,z:0FA
fa)-L LE:(a)pF A fresh(z)
TrFE3E,ATHE :¢,A
{a)-R F'FE:(a)p,A
[LE:U*FA T+ E:¢[U/X],A
ULt T g.pra fehk) UR TFE:UA
wq D <k E:9U"/X]FA ,
urL T,E-U°FA fresh(x')
e LER <mA T+ E:¢[U /X],A

TFE:U"A

The side condition fresh(z) (fresh(x)) is intended to mean that = (x) does not appear freely
in the conclusion of therule.

Therules for unindexed and indexed fixed point formulas are directly motivated by Theo-
rem2.1.

Ordinal constraints
Finally, we provide arule for reasoning about ordinal constraints.

I <kbr"<rk A

ORDTR e <kbFE'<k,A

THEOREM 3.1 (Local soundness)
All rules for logical entailment are individually sound: the conclusion of each ruleis valid
whenever its premisses are valid.

Observe that the proof system does not include the subterm cut rule. This rule is not
needed, since the only program terms considered in this paper are program variables.

Having transition assertions allows the transitional semantics of a process language to be
embedded directly into the proof system as a separate set of proof rules. This can be done
in a straightforward manner for any GSOS-definable language [12], where the operational
semantics of a process language is given as a closure relation on processes through a set
of transition rules. the transitions that a closed process term (state) can perform are exactly
those derivable by these rules. Hence, the transition rules can be included directly as right
introduction rules into our proof system, while the left introduction rules (stating, in some
sense, what transitions are not possible) come from the closure assumption. See [7] for an
instantiation of our approach to CCS.
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4 Therefutation game

For practical purposes only finite proof trees can be considered as proofs. By themselves the
above proof rules are insufficient, as there is no bound on the number of times fixed point
formulas can be unfolded. We therefore require some mechanism for determining loops,
or repeating nodes, and for determining when proof construction can safely be terminated.
We devise a simple one-player game to account for this, implicitly building in well-founded
ordinal induction.

First we need some concepts concerning proof trees. A proof structure is a finite tree
constructed according to the proof rules set out above. Nodes in proof structures are ranged
over by IV, and the notation N(I" - A) indicates that the node N is labelled by the sequent
'+ A. Write N’ < N if N’ appears on the path from the root to V, but not vice versa.

DEFINITION 4.1 (Repeating node, Arena)
1. Suppose N'(I" + A"y < N(T' + A). Then N isarepeat of N’ up to the substitution o,
if
(@ Ao € T' whenever A € T, and
(b) Ao € A whenever A € A.
2. Anarena, A, isaproof structure for which each leaf node IV is either an axiom instance
or elseto N is associated some node N’ and substitution o such that N isarepeat of N’
uptoo.

Asusual, substitutions o map variablesto terms of the sametype; in the present case we have
process variables and ordinal variables only.

Definition 4.1 is motivated in the following manner. Say that p isafalsifying interpretation
forthesequentT' - A if all A € T" arevalidfor pandal A € A areinvalidfor p.

PROPOSITION 4.2
Suppose N(T" - A) isarepeat of N'(I" - A’) up to the substitution 0. Supposethat p isa
falsifying interpretationfor I' = A. Then p o o isafasifying interpretation for IV = A’.

Proof games are often presented as two-player games (cf. [14]), played between a player,
player I, whose task it is, roughly, to choose a proof rule to apply at some given game con-
figuration, and an opponent, player |1, whose task it is to show that no ‘good’ choices can
be made. In the present setting an arena represents a set of choices for player |, made in a
history-free manner. Since all choices for player | are made statically there is no point in
distinguishing winning game runs from winning strategies. This is similar in spirit to the
two-player game of [11], but is played on finite structures.

The game G(A) is played by a ‘refuter’ R on an arena . A. Thetask of R isto refute the
claim that the arena represents a valid proof of the root sequent. The refuter R shows that an
arenadoes not represent avalid proof by showing that its repeating nodes introduce recursion
into the proof tree in a manner which isill-founded. Thisis achieved by tracing an infinite
path through the game arena, using only sequentswhich are non-trivial in the following sense:

DEFINITION 4.3 (Non-trivial sequent)

Thesequent T - A isnon-trivial for the interpretation function p, if whenever E % F € T
then Ep & Fpisavalid transition, and whenever ' < x € T then p(x') < p(k). The pair
(T A, p) isnon-trivial, if I' = A isnon-trivial for p.

Noticethat I" - A is non-trivial for p whenever p is afalsifying interpretation for I' - A.
Intuitively, non-triviality guarantees, due to well-foundedness of ordinals, that the value of



u-Calculus with Explicit Points and Approximations 261

no ordinal variableis being decremented infinitely often along this path, thusinvalidating any
ordinal induction argument on this arena.

Let an arena A be given, rooted in No(T'y F Ap). Initidly R picks an interpretation
po for which 'y + Ag isnon-trivial. R’s claim is that pg is a falsifying interpretation for
Iy F Ap. Sotheinitial configuration of the game has the shape ( Ny, po). Suppose the game
has reached the configuration (N;, p;). Then R can chose (N;+1,pi+1) & a possible next
configurationif (N;41, pi+1) isnon-trivial and either:

1. N;;1 isachild node of N; in A and p;;.; agrees with p; on al common free variables,
or:

2. N;isarepeat of N’ up to some substitution o in A, and then N, ;1 = N’ and p;11 =
pioo.

A gamerun, II, is afinite or infinite sequence (Ng, po), - - - , (N;, pi), - . . such that for each
J:0<j <4, I(j+1) = (Njt1,pj+1) isapossible next configuration for II(j).

DEFINITION 4.4 (Winning run, Proof)
1. Therefuter R winsagamerun just in caseit isinfinite.

2. A proof isan arenaon which R has ho winning run.

3. Thesequent " - A isrefutation-game provable, denoted T I-,. A, if thereis a proof with
rootT" - A.

The chosen game-theoretic setting should be:

e sound, in the sense that al refutation-game provable sequents are valid; and, conversely,
it should preferably be

e complete, in the sense that all valid sequents are refutation-game provable.

Soundnessis established next, while completenessis considered in the following section.

THEOREM 4.5 (Soundness)
ThesequentT' - A isvalidif T' F,. A.

ProOF. Assume I F,. A. Suppose, for a contradiction, that I' - A isinvalid, and that an
arena A isgiven, rooted in anode N, labelled T' - A. We find a falsifying interpretation pg
forT' - A. We use thisto build awinning run I for R, containing falsifying interpretations
only, thusarriving at a contradiction. Suppose we have already constructed an initial segment
I1(0), ..., II(3) of II, where II(k) denotes (N (I'x - Ag), px) and py, falsifiesTy, = Ay, for
al 0 < k <i. Therearetwo possibilities.

(a) Suppose that V; is aleaf node. Since V; cannot be an axiom instance we find a node
N'(I" + A") and asubstitution o such that N’ < N;, and such that NV; isarepeat of N' up
to 0. We pick

(i + 1) = (Nig1 (" F A7), pj 0 0)

as a possible next configuration for I1(). Clearly p; o o falsifiesT' + A’ by virtue of
Proposition 4.2.

(b) So assume instead that IV; is an internal node. We pick (N1, pi+1) according to the
proof rule applied to concludeT’; F A;. Notethat in the construction below p;, differsfrom
p; only in the values it assigns to variables freshly introduced by the rule applied, and that
pi+1 ischosenso asto falsify I'j 1 F Ajpq.
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AX Impossible, sinceT’; F A; isinvalid.

V-L SupposeI'; = I}, E : ¢ V9. Sincel; is vaidated by p;, soiseither '}, E : ¢
or '), E : ¢. As N;;1 we choose whichever of these two that applies, and let
Pi+1 = Pi-

V-R Suppose A; = E : ¢ V4p, Al. Let N;y; bethe predecessor of N;, and p;+1 = p;.
Since A; isinvalidated by p, SOISE : ¢, E : ¢, Al.

—-L, —-R Trivial.

(a)-L  SupposeT; =T, E : (a)¢ and that z isfresh. Since E : (a)¢ is validated by p;
wefind some Q suchthat Ep % Q and Q : ¢ isvalidated by p;. So, welet p; 1 =
pi[@/x) and let N; 4 bethe predecessor of N; labelledby T, E = z,z : ¢ - A,.

(a)-R  Suppose A; = E : (a)¢, Al Thetwo predecessors of N; arelabelled T; - E 3
E' A andT; - E' : ¢, A, respectively. Let p;11 = p;. Either E S E' or E' : ¢
isinvalidated by p;1+1, 8 E : ()¢ isinvalidated by p;. So pick as N;;1 whichever
one applies.

U-L SupposeI'; =T}, E : U, and let x be fresh. Since E : U isvalid for p; we find
some (3 such that E : U* isvalid for p;[3/k]. Choose then as N;;; the unique
predecessor of N;, and let p; 1 = p;[3/K].

U-R LetA; = E: pX.0,Al. Then E : ¢p[uX.¢/X], A} isinvaidated by p; so we let
N1 bethe unique predecessor of V; and p; 11 = p;.

UrF-L  LetT; =T}, E: (uX.9)" andlet k' befresh. Since E : (uX.¢)" isvalidated by
pi, by Theorem 2.1 wefind a3 such that 8 < p;(k), and E : ¢[(uX.¢)~ /X]is
validated by pi1 = pi[3/K'].

U"-R LetA; = E : (uX.¢)® A. Thetwo predecessors of N; arelabelled T'; - £’ <
k, AL and T; - E : ¢[(uX.¢)* /X], A, respectively. Either ' < k or E :
d[(uX.¢)* /X] must be invalidated by p;. Pick as N;,; whichever applies, and
let piy1 = pi.

Thelimit of this constructionisawinning run for R, which contradictstheinitial assumption
I' . A. Hencel' F A isvalid.

5 Completeness

In this section we present acompl etenessresult, by reduction to Kozen's axiomatization [10],
for the fragment containing pure sequents containing pure formulas only. This fragment is
as expressive as Kozen's system itself. Kozen's axiomatization was shown to be complete by
Walukiewicz [16]. The basic judgement in Kozen's proof system is an equational assertion
of the shape ¢ = 1 where ¢ and v are closed pure formulas. The intended meaning of the
judgment ¢ = 1 isthat ||¢||p = ||v]|p (for some p the choice of which isimmaterial, as ¢
and v are closed).

Thejudgment ¢ < ¢ isan abbreviation of ¢ A ¢ = ¢, and aformula ¢ is Kozen provable,
Fkoz ¢, if thejudgment ¢ = trueis provable.

The axiomatization has the standard axioms and rules EQ of equational logic, and the rule
of subgtitution:

h1 = P
Subst T TXT = 0lgs/ X]
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Besides this the axiomatization has the following six axioms and rules where we, as above,
assumethat U hasthe generic shape 1 X .¢:

=y om v Belal K2 V@ = @)
K3 ATl S @ GA D) K4 “23[22"/%]:%%
. X] <
> HUxT<U K6 =<y

To show completeness using Kozen's axiomatization, by soundness, Theorem 4.5, it suffices
to show that « : ¢ F,. x : ¥ whenever Fkoz ¢ < 9, keeping in mind that this argument
appliesto pure formulas only.

The proof is to large measure routine. The exception is the rule of substitution which we
establish by way of the following lemma:

LEMMA 5.1
Let ¢ beany pureformula. Thenx : ¢  z : ¢ isrefutation-game provable, so that whenever
AX isapplied to asequent of theshapeT',y : ¥ F y : ¢, A then isapropositional variable.

PrROOF. We generalize the statement of the lemma somewhat, to judgmentsof theform [, z :
¢ F x : ¢ whereT isaset of ordina constraints, such that the following (rather severe)
conditions are satisfied:

1. ¢ and ¢ areidentical up to
(a) the replacement of positive unindexed occurrences of formulasU in ¢ by indexed ones
inag,
(b) the replacement of negative unindexed occurrencesof formulasU in ¢ by indexed ones
inay.
2. Whenever k < k' € T then k' does not appear in ¢.
3. If U* and V* are both subformulasof ¢ thenU = V.

Say that ajudgment satisfying these three conditionsisadmissible (cf. admissibility condition
of [12]). Assumethat T'g,zg : ¢o F xo : 1o IS admissible. We build an arena, A, for
Ty, z0 : ¢o F o : g, consisting of admissible sequents only. Assume the construction of
Ahasreachedthenode N(T',z : ¢ -z : ¢). If N(T',z : ¢ b x : ¢) isarepeat of some
Ni(Ty,21 : ¢1 b 21 :4p1) insuchamannerthat ¢ = U* (sothat ¢, = Uf*) andT F & < K,
then IV is said to be terminal by N; and is not developed further. Otherwise the construction
proceeds by induction on the structure of ¢, refining IV by turning NV into the conclusion of
an inference rule instance.

o If » = X thenty = X and N isrefined by rule AX.

o If ¢ = 1 V ¢ then ) hasthe shape i, V 1), and we use V-L, V-R, and W-R to reduce
tothegodsl,z: ¢y Fx: ¢y and T,z : o - @ 2 hs.

e If ¢ = ~¢] then+ = —¢p; and the refinement uses —-L and —-R.

o If p = (a)¢' then ¢ isof theform ¢ = (a)+’, and we use (a)-L, (a)-R, W-L, and AX
toreduceto ', z' : ¢' 2’ : o' wherez' isfresh.

olf p = pX.¢' = U then «) has the shape uX.¢)' = U’, and we use U-L to refine to
Dz :Uf+Fz:U".
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o If ¢ = (uX.¢')" = U" then, due to the syntactic monotonicity restriction on formulas,
1) has the shape uX.¢)’ = U’, and we use U*-L and U-R to refineto I', k' < K,z :
U /X F a9 [U' )] X] where k' isfresh.

Observe that admissibility is preserved by each step in the above construction. The con-
struction of A terminates, by an argument similar to the termination argument of [15], and
hence producesan arena. Conditions (1)—(3) above are used to extend a substitution matching
the property assertions, when thisis possible, to a substitution matching the entire judgment.

Suppose now, for a contradiction, that the refuter has a winning run in G(A). That run
has the shape IT = (N, po), (N1, p1),---,(Ni, ps),-... There must be some arena node
N which is minimal with respect to < which appears infinitely often in II. Suppose for
simplicity that No = N. Thus N; is labelled by a judgment of the shape ',z : Uf° +
x ’L/Jo, and N; will hence be labelled by Fo,lil < Ko, T : (z)g[U(l)ﬂ/X] Fx: ’L/Jo. Leti be
minimal such that N; islabelledT';, k1 < ko, z' : Uy* F &' : ¢; andisterminal by N. By the
definition of terminal by N, N; isarepeat of N = Ny. Hence thereis a substitution o such
that U™ = (Ug®) o, implying k1 = ko 0. Furthermore, N;11 = N and p;11 = p;oo. Since
the interpretations po, p1, . . . , p; agree on common free variableswe have p; (ko) = po(ko),
and since NN; is non-trivial for p; we have p;(k1) < pi(ko). And Since p;11 = p; o o we
ha\/epi+1 (Iﬂ)()) = pi(lﬂ‘,l) < pi(lﬂ‘,()) = p()(lﬂ‘,()), i.e Pit1 (Iﬂ)()) < p()(lﬂ‘,()). But ordinals are well-
founded and therefore IT must be finite, thus yielding a contradiction. The proof of Lemma
5.1 isthus complete. i

COROLLARY 5.2
Let ¢(X) be any pure formula and ¢,1, be formulas. If z : ¢y F,. = : ¥ thenz :

o1/ X i @ P2/ X

PrRooF. Theproof of z : ¢[1)1/X] F z : ¢[1p2/X] isobtained by a simple composition of the
proof of z : ¢ F = : ¢ obtained by Lemma 5.1 with the assumed proof of z : ¢4 F z : 1. |

The notion of refutation-game provability extends to equations as follows: F,. ¢ = o iff
x:obpz:ipandz b x:p. Asareult, . ¢ < Yiffz: ok, x 1.

LEMMA 5.3
If ¢ ispureand Fko; ¢ thent,. z : ¢.

PrROOF. We show that all inference rules of Kozen's axiomatization are admissible in our
proof system, i.e., that the conclusion to a Kozen-rule is refutation-game provable whenever
its premisses are. The result then follows by induction on the size of the Kozen-proof of ¢.

EQ Use Ax and CuUT.

SuBsT Thiscaseisadirect consequence of Corollary 5.2.

K1 It sufficesto note that for Boolean formulas our proof system reducesto the standard
sequent-style formulation.

K2 Toshow z : (a)p V (@) b, z : (a)(p V o) first use V-L to reduce z : ()¢ V
(a)p F z : (a)(¢ V ¢) to the two sequents z : (a)d F z : (a)(¢ V ¢) and
z : {(a) F x: (a)(¢ V). These are handled in the same fashion; e.g., use
(a)-L to reduce the first sequentto = % y,y : ¢ F = : (a)(¢ V ¢). By (a)-R
this sequent reducestoz > y,y : o Fz S yandz S yy: o F y : ¢ V.
Theresult isthen obtained by applying Ax, and V-R followed by AX, respectively.
x:{a)(d V) bz (a)p V (a)y can be shown in asimilar fashion.
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K3, K4 These are proved aseasily asK 2.

K5 z: ¢[U/X] F, x : U isshown by applying rule U-R followed by AXx.

K6 Assumez : g[v/X] k. x : . Wehavetoshow z : U +, z : ¢, SO we start with
x:UF x 1. By ruleU-L thissequent reducesto

z: Uk (5.1

Applying rule CuT with z : ¢[¢/X], followed by weakening, yields the two se-
quentsz : ¢Y/X] F z : Ypandx : U® F z : ¢[¢p/X], the first of which
is refutation-game provable by assumption. The latter sequent can be reduced by
rue U%-L to k' < k,z : ¢[U¥ /X] F = : ¢[y/X]. Using the construction of
Lemma 5.1, this sequent is reduced to a (possibly empty) set of proof goals of the
shape T, k' < k,z' : U* + &' : 1, al of which are repeats of sequent (5.1) up to
substitution o = [z — ',k — £']. Itiseasy to see that the refuter can have no
winning run in the arena obtained, and hencethe arenaprovesz : U . z : . 1

Since Kozen's axiomatization is compl ete, and hence ko, ¢ whenever the pureformula ¢
isvalid, we obtain a compl eteness result for our proof system through the following theorem.
Recall that asequent is called pureif it only contains satisfaction assertions of the shapez : ¢.

THEOREM 5.4 (Completeness)
If the pure sequent " + A involving pure formulasonly isvalid, then " F,. A.

PRrROOF. Let thesequent I' - A involving pure formulas only be pure and valid. The process
variables occurring in the sequent induce a partitioning on the satisfaction assertions, and
thereby induce a set of sequentsT'; F Ay, ..., 'y - A, whereT'; C T"'and A; C A for
1 < i < k, each sequent mentioning one process variable only. At least one of these sequents
must be valid, since otherwise there would be environments py, ..., px invalidating 'y - Ay,
..., I F Ay, respectively, and hence the union p of py, ..., pr (well-defined since pq, ...,
pr assign valuesto digoint sets of variables only) would invalidate T - A thus contradicting
the validity assumption.

Letz : ¢1,...,¢ : ¢ b x : 1,...,x : 9, be one such valid sequent. Then, by
propositional logic, the sequent - = : 6 is valid where 6 is the pure formula —¢, VvV --- V
“pm V1 V- -V ,. ¢From completeness of Kozen's system it follows that kg, = : 6,
implying -, = : 8 by Lemma5.3. But I - A isreducible by applying the two weakening
rulestoz : ¢1,...,¢ ¢ F Y1, ..., x : Yy, Whichisin turn reducible by applying one
cut followed by propositional logic rulesto + z : 8, and henceT I, A. [ |

6 Discharge conditions

The refutation game described in Section 4 gives an abstract condition for when an arenacan
be considered a proof. Due to its generality, however, it is not suitable for the practical pur-
poses of proving validity of a sequent. Rather, it can be used for justifying simpler, possibly
not even complete, conditions for accepting an arena as a proof.

DEFINITION 6.1 (Discharge condition)
A discharge condition is a sufficient condition for an arenato be a proof.

Let us fix an arena A with non-axiom leaves N, ..., N,, and associated nodes Ny, ...,
N, and substitutions oy, ..., oy, respectively. Recall that Ny, ..., N,, arethusrepeatsof Ny,
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..., N/ uptooy, ..., o,. Werefer to V; as discharge nodes, and to N/ as the corresponding
companion nodes. We call two discharge nodes related iff they are members of one and
the same strongly connected component C' of the directed graph obtained from the arena by
identifying the discharge nodes with their respective companions.

DEFINITION 6.2 (Progress, Preservation)
Let 7(V;, N/) bethepathin A fromthedischargenodeI’; - A; denoted N; toitscompanion
nodeI"; - Al denoted N/, and let x be an ordinal variable. We say that:

1. n(NV;, N]) progresses on ordinal variable x with the substitution o; if some approximated
fixed-point formulaU* occursin N/, and I'; - ko; < & isderivable;

2. w(N;, N]) preserves k with o; if some approximated fixed-point formula U* occurs in
N/, and éither ko; = k, or elseI'; F ko; < k IS derivable.

We now present one concrete discharge condition. 1n essence, it guaranteeswell-foundedness
of proofsthrough well-foundedness of ordinal constraints.

DEFINITION 6.3 (DC)

Arena A satisfies condition DC iff for every strongly connected component C' of A thereis
alinearization N;,, ..., N;  of thedischarge nodesin C', and there are ordina variables k1,
...y K Suchthat foral j,1 < j <m,

1 m(Ny, Ni’j) progresses on «; with o, and
2. w(Nij,N;j) preserves k; with o;; for al I suchthat j <1 < m.
We show that DC isindeed a discharge condition in the sense of Definition 6.1.

THEOREM 6.4
If A isan arenasatisfying condition DC then A isa proof.

PROOF. (Sketch) By contradiction. Suppose that A is an arena satisfying condition DC, and
suppose that thereis awinning run II for refuter R on G(.A). Then IT eventually stabilizesin
a strongly connected component C'. By condition DC there is alinearization N, , ..., N;
of the discharge nodes appearing in C'. Conditions 1 and 2 of Definition 6.3 imply that the
value given by theinterpretation functionson I to thetuple (4, . . ., k., ) Of ordinal variables
lexicographically decreaseswhenever I passesfrom arepeat node to acompanionnodein C'.
Hence, this value decreases infinitely often along 11, a contradiction to the well-foundedness
of ordinals. i
THEOREM 6.5 (DC completeness)

If the pure sequent " - A involving pure formulasonly isvalid, then it is provable using the
rules for logical entailment (cf. Section 3) together with DC taken as a rule of assumption
discharge.

PROOF. (Sketch) To obtain the completenessresult of Theorem 5.4, we twice made an argu-
ment about an arena being a proof: oncein the proof of Lemma5.1, and once in the proof of
Lemmab5.3. Theresult follows from the observation that condition DC applies on both occa-
sions, with linearizations as induced by the syntax-tree of the corresponding formula¢. 1l

7 Examples

The following two examples illustrate the use of discharge condition DC for establishing
validity of a sequent.
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EXAMPLE 7.1

Assume an agent has the property that every sequence of a or b actions that it can engagein
containsonly finitely many a actions. This property can beformalized as uX.vY.[a] X A[D]Y
or, equivalently, as uX.—uY.(a)—X V (b)Y using the basic connectivesonly. Then this agent
surely has also the property that every sequenceof a or b actionsthat it can engagein contains
only finite-length subsequences of a actions; a property formaizableas vY.u X .[a] X A [b]Y
or, equivalently, as =uY.—uX.~((a)-X V (b)Y). To prove that the first property logically
entailsthe second we construct an arenarooted at sequent = : ¢ - x : =), using thefollowing
abbreviations:

¢ = pX.—wY.(a)rﬂX VBY ¢ =pY—puX.=((a)-X Vv (I?)Y)
b1 = WY@ VO = pXem((a)n XV (B
¢2 = pY(a)=¢" V(B)Y  thy = pX.o({a) XV (b)),

The arena is shown in Figure 1, with the companion node, which is common to both
dischargenodes, being indicated by .. inthe sequent, and substitutionsoy, = [z — &', kg —
Ky, kg, = kgl and og = [z = 2,6y = Ky, Ky Ky for the left and right leaves,
respectively. Annotation RS1 stands for —-R, V-R, V-L, W-R, and RS2 for (a)-L, (a)-R,
AX, W-L.

Thisarenasatisfies condition DC for any choice of linearization of the two discharge nodes,
since the left path progresses on «;, and preserves r;,, and the right path progresses on «;,
and preserves ;. Thearenais henceaproof of z : ¢ -z : <.

ok xiy

—_-

¢,z F

—U-L,U-L
T ¢, 2"V

U~-L,U"-L
Ky < kg, Ky <Ky, T:m¢1, @91

-
Kiy <Kg, Ky <ty Fa @:01,2:91

- — U-R, U-R
K<k, Ky <ty F 2:(a)=6" ¢ V (D)d1, 2 ~((a) 1 V (B)Y"¥)

RS1
! !
Kiy<tg, ki <ty,o:{a)=1 F 2:(a)-¢"? Ky <tg, iy <ty,o: (D)"Y = a: (Y1
7 RS2 7 RS2
! ' e "iagpe ! ! e "
n¢<n¢,n¢<n¢,z wlrFm ¢ L, =R N¢<n¢,n¢<n¢,z P Fa'ipr —
n;,<nd,,n:p<n¢.,z':¢n¢ Fa' iy - Nfb<n¢,n:£<n:p,n:p<n¢,z':—|¢2 Fa':pr .
n;<n'¢,n'¢<n¢,nlp<n¢,,z':—u¢2 Fa' iy L N'¢<n¢,n;<nlp,nlp<n¢ Fa' i,z i1

ng<n'¢,nfb<nd,,n;}<n¢. Fa':pa,x i
FIGURE 1. Arenaforz:¢ - z:—p

EXAMPLE 7.2
L et usnow attempt to provethe opposite, namely validity of sequent z:: ) - x: ¢. Intuitively
this should fail, but let us see how close one can come to a proof. We use the abbreviations:

¢ = uX.—pY(a)=X VY ¢ =puY.—uX.~({(a)=X V (h)Y)
$1 = pY.(a)=¢ Vv (b)Y Y1 = pX.=((a) =XV (D))
Thearenais shownin Figure 2. Thetwo substitutionsare o, = [z — ', kg — K, Ky —

kylandop = [z = o', kg = Ky, Ky = k). Annotation RS stands here for —-L, V-R,
V-L, W-R, and RS2 is as in the previous example.



268 pu-Calculus with Explicit Points and Approximations

This arena does not satisfy condition DC for any choice of linearization of the two dis-
charge nodes, since the left path progresses on «,, but does not preserve x4, and the right
path progresses on «4 but does not preserve k..

z:oYpExig
Fa:p,
—U-R,U-R
Faingr, -y
- T R R
17:¢17.t:¢'1 [
— Y ULUL
x:¢1¢,x:¢1w F
Py Py UK'L, U~-L
n;,<nd,,nip<n¢.z:(a)—|d> \% (b)¢>1¢,$:—|((a)—|¢1¢ Vv (b)y) + RSt
T T
Koy <Kg, Ky <ty,z:(a)m¢ z:(a)—'wlw Rk Ky <Ky, & <b)d>1¢ Faz:(b)y
K, RSZ K, RSZ
Ky <K, Ky <ty, &' :m¢ a -, Y Ky <K, Ky <ty, ' (0P Faly
oy —--L, =R — U-R
nfb<n¢,n2p<n¢.,z':¢l¢ Fz':¢ UR Nfi,<nd,,nip<n¢,z':¢1¢Fz':—uzpl R
! - Py —-
n;,<n¢,mlp<m,/,,w':z/zl’/’ Fa'iagr H;<m¢,n;<n¢,x':¢l¢,z':¢1 =
! —-R Py L U-L
n'¢,<n¢,,nip<m¢,w':¢1,z’:1j;l"’ = oL H:i,<n¢,,mil)<n¢,,z':¢1¢,z’:z/;1¢ -

T T
K ~
n'¢<n¢,nlp<n,¢,,$':d>1¢,z':¢1¢ [

FIGURE 2. Arenaforz:— - z:¢

8 Conclusion

We presented a Gentzen-style sequent calculus for program verification suitable for both
model checking-like verification based on global state space exploration, and compositional
reasoning. Its novelty liesin the generality of the proof judgements allowing parametric and
compositional reasoning, in the complex setting of the modal u-calculus. Thisis achieved,
in part, by the use of explicit fixed point ordinal approximations, and in part by a complete
separation, following Simpson [12], in the proof system of the rules concerning the logic
from the rules encoding the operational semantics of the process language. We addressed, in
a game-based manner, the semantical basis of this approach, and presented a soundness and
acompletenessresult asit applies to the entailment subproblem.

The introduction of explicit variables for states and approximation ordinals seems use-
ful and semantically clear from the point of view of practical verification. This has been
confirmed by experience with developing a toolset for practical verification of concurrent
programs written in the Erlang programming language [6, 4, 8, 9]. On the other hand, it
also raises foundational issues not addressed in this paper, such as various completeness
and decidability problems. For instance, can explicit state and ordina variables be help-
ful in obtaining a direct completeness proof, i.e. without reduction to Kozen's system, of
the proof system for logical entailment considered here, which is simpler than the one by
Walukiewicz [16]? And how general a completeness result can be obtained for settings in-
volving structured states?
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