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ABSTRACT
Automatic analysis of variability is an important stage of Software
Product Line (SPL) engineering. Incorporating quality information
into this stage poses a significant challenge. However, quality-aware
automated analysis tools are rare, mainly because in existing solu-
tions variability and quality information are not unified under the
same model.

In this paper, we make use of the Quality Variability Model
(QVM), based on Category Theory (CT), to redefine reasoning op-
erations. We start defining and composing the six most common
operations in SPL, but now as quality-based queries, which tend
to be unavailable in other approaches. Consequently, QVM sup-
ports interactions between variant-wise and feature-wise quality
attributes. As a proof of concept, we present, implement and execute
the operations as lambda reasoning for CQL IDE – the state-of-the-
art CT tool.

CCS CONCEPTS
• Software and its engineering → Abstraction, modeling and
modularity; Software product lines; Software performance;
Requirements analysis; • Theory of computation → Automated
reasoning; • Computing methodologies → Representation of
mathematical objects.
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1 INTRODUCTION
The features of Software Product Lines (SPLs) and their relationships
are represented as Variability Models (VMs) [25], being FeatureMod-
els (FMs) the de facto standard. How to include quality information
in these VMs, and how to perform quality analyses of SPLs, are two
of the main challenges that remain open. Unfortunately, the lack of
a broad consensus about how to embed Quality Attributes (QAs) in
a VM has led to entirely different solutions, which in most cases
are not materialised in a tool [18, 32].

Consequently, quality-aware reasoning (e.g., cost or energy con-
sumption) is not directly supported by current SPL solvers and
approaches, and hence, the literature eludes this issue [2]. Many
workarounds assume that all QAs can be represented as attributes
linked to single features (i.e., feature-wise approach) and that the
product quality can be computed with simple equations such as ad-
dition [10]. Or, rather, they use a combination of solvers connected
with external applications such as databases storing QA values or
use domain learning procedures to predict the quality of config-
urations [15], all separate from the VM. All these works propose
non-unified solutions, are not efficient, and with limited reasoning
capabilities [21]. Most importantly, QAs whose measures (e.g., the
energy consumption of a piece of code) depend on many features
(e.g., CPU, OS, programming language), cannot be quantified at
the VM feature level and need to be measured at the configuration
level, i.e., they are product variant-wise QAs [26]. Indeed, in [26]
authors claim that using feature attributes to store QAs is only valid
for feature-wise QAs (e.g., the Cost associated with a feature). So,
VMs and analysis operations should include quality information
supporting both feature-wise and product variant-wise approaches.
Unfortunately, state-of-the-art tools do not adequately support this
yet.

The SPL community need to achieve a formal representation
that unifies VMs and quality models (QMs), extensible and fully
supported by an automated reasoner. With this objective, we lever-
aged the modelling and reasoning flexibility of Category Theory
(CT) which captures the common aspects of seemingly dissimilar
algebraic structures [1]. We published a preliminary work at [19]:
an open-source SPL framework that unifies numerical VMs (i.e.,
supports both boolean and numerical features) with QAs related as
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Figure 1: Unification of Extended Variability Models and Quality Models into a Category

an SPL category. Both VM’s features and QAs are CT objects, while
hierarchical cross-tree constraints and QAs are CT arrows. But,
that work needed to be adjusted for the complete set of operations
that exploit any type of quality information instantiated in the SPL
category.

Consequently, in this work, we are defining the newQuality Vari-
ability Model (QVM), which directly supports quality-reasoning
operations on SPL configurations. Extending the published pro-
posal with Section 2, we now allow developers to perform richer
variability analyses focused on quality, using common operations
on VMs.

Having reviewed the state-of-the-art tools and literature in Sec-
tion 3, we identified six basic operations that can be combined
and extended into more complex ones. Two of them (satisfiability
and counting) are considered essential self-analysis operations over
VMs. The remaining ones (filtered search, limited search, randomise
and an operation combining feature-wise and variant-wise interac-
tions) are standard operations for generating configurations, which
we reformulated to include QAs-related queries to be resolved na-
tively by a CT framework (e.g., count the number of configurations
within an energy consumption rate interval without listing them,
or generate ten configurations with an energy consumption lower
than a particular amount).

The main contribution of this work is that these operations can
natively analyse the functional variability and its correlations with
the non-functional (i.e., quality) requirements for a VM enriched
with quality measures, i.e., our QVM. In the proof of concept of
Section 6, we first present our lambda-function implementation for
the CT editor Categorical Query Language Integrated Development
Environment (CQL IDE) to show its potential for SPL stakeholders.
CQL is a user-friendly IDE that allows categories to be defined as

functional programming databases which are faster and more flexi-
ble than classical databases [6]. Then, and for illustrative purposes,
we analyse a full scenario of a use case from the intelligent net-
work and edge computing domain, specified through a variability
model of network functionalities (i.e., Virtual Network Functions
or VNFs) enriched with quality measurements of energy footprint
and monetary cost. Additionally, we measured reasoning times of
our implementation in CQL IDE. Its results indicate that CQL IDE
flexibility and scalability for modelling and reasoning are promising
as a tool for both the CT and the SPL communities.

2 QUALITY VARIABILITY MODEL CATEGORY
This section provides some background on the fundamentals of CT
and present the unified Quality Variability Model (QVM).

2.1 Fundamentals of Category Theory
Category Theory (CT) is an algebraic theory of mathematical struc-
tures [1]. It allows to capture and relate similar aspects of structures
while abstracting from the individual specifics of their dissimilari-
ties. A category C represents spaces as a collection of objects related
to one another via arrows (i.e., morphisms). Two examples are the
categoriesV𝑒𝑐 , where the objects are vector spaces and the arrows
are linear maps, and S𝑒𝑡 where objects are sets and arrows are
functions from one set to another. The main concepts of CT are:

• Object: a structured class 𝑋 ∈ Ob(C), graphically depicted
as a node •𝑋 .

• Arrow: a structure-preserving function 𝑎 ∈ Arr(C) with
source and target objects 𝑋 = 𝑠𝑟𝑐 (𝑎) and 𝑌 = 𝑡𝑔𝑡 (𝑎), respec-
tively, depicted

𝑋• 𝑎−→ 𝑌•.
– Identity: for every𝑋 ∈Ob(C), we have the arrow𝑋• id−−→ 𝑋• .
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– Composition: if
𝑋• 𝑎1−−→ 𝑌• and

𝑌• 𝑎2−−→ 𝑍•, then 𝑋• 𝑎2 ◦ 𝑎1−−−−−−→ 𝑍•.
Composition is associative, i.e.,
𝑎1 ◦ (𝑎2 ◦ 𝑎3) = (𝑎1 ◦ 𝑎2) ◦ 𝑎3.

• Category: consists of Ob(C) ∪ Arr(C) in a labelled directed
graph.

• Functor: a process F between categories 𝐶 = 𝑠𝑟𝑐 (𝐹 ) and
𝐷 = 𝑡𝑔𝑡 (𝐹 ), depicted 𝐶• 𝐹−→ 𝐷• , which preserves identity and
function composition.

Also, we shall introduce algebraic data integration CT concepts [6]:

• Path: a finite sequence of composed arrows:
𝑋0• 𝑎1−−→ 𝑋1• · · ·𝑋𝑛−1• 𝑎𝑛−−→ 𝑋𝑛• .

• Element: for 𝑋 ∈ Ob(C), a generalised element of 𝑋 is a

morphism
𝑈• elem−−−−→ 𝑋• , where𝑈 is a select “unit” object.

• Instance: a set-valued functor Inst that assigns values to
elements.

2.2 Unifying Variability and Quality in a
Categorical Model

In [19], we presented a preliminary SPL framework that unifies
numerical VMs with QAs as a category where features and QAs
are objects, and data-types, hierarchical relationships, and quality
and feature constraints are arrows. We now extended that model to
provide an alternative framework to abstract anyQVMas a category
QVM. This framework allows QAs modelling at the feature-wise
and also variant-wise levels. Hence, by supporting varian-wise QAs
we solve the known challenge of complex QAs with many feature
interactions – unfeasible to accurately distribute feature-wise by
managing a complex aggregation function.

The framework and its equivalences are graphically represented
in Figure 1, being the basis for the formalisation of the quality-aware
operations further presented in this paper. Concretely, QVM com-
prises 3 data-type objects (i.e., B for Boolean, Z for integer, and
S𝑡𝑟𝑖𝑛𝑔 for characters sets) and 5 structured objects:

(1) F 𝑠: It hosts the extended VM as arrows F 𝑠 → S𝑡𝑟𝑖𝑛𝑔 for
the name and domain, F 𝑠 → B for optionality, F 𝑠 → Z for
a numerical value, F 𝑠 → F 𝑠 for hierarchical (i.e., Parent)
and cross-tree constraints, and additional arrows depending
on the number of QAs at the feature-level.

(2) Q𝑠: It hosts the quality model as the arrows Q𝑠 → S𝑡𝑟𝑖𝑛𝑔
for quality name and domain, Q𝑠 → Z for a quality value,
and Q𝑠 → Q𝑠 for hierarchical and quality self-constraints.

(3) CC𝑠: It links the leaf features of specific complete configu-
rations by CC𝑠 → F 𝑠 instances. Please note that non-leaf
features can be trace back to the root by Parent arrows.

(4) QA𝑠: It links QAs forming sets. It identifies sets of QAs as
QA𝑠 → Q𝑠 instances and QA𝑠 → QA𝑠 constraints.

(5) QMC: It is a list of identifiers pairs algebraically linking
configurations with sets of variant-wise QAs. It comprises
two arrows, QMC → CC𝑠 to identify each configuration
and QMC𝑠 → QA𝑠 to identify their variant-wise QAs.
Similarly, Quality Constraints are QAs limiting features of a
CC, and vice-versa (e.g., WiFi requires Energy < 3 seconds).

3 RELATEDWORK
In this section, we summarise the related work that has motivated
this work. We list and compare academic and industrial tools, focus-
ing on their support for variability modelling, quality modelling and
automatic reasoning. Then, we discuss a motivating usage scenario
to illustrate the shortcomings of existing works and the benefits of
our approach.

Variability Modelling. Its first formalisation dates back to
Feature-oriented Domain Analysis (FODA) [16], which proposes
Feature Models (FMs) to specify a product family commonality and
variability, and external solvers to automatically generate the prod-
uct variants. FMs are represented as a rooted tree graph consisting
of features such as Boolean variables and relationships (see Figure 1,
left).

Relationships among features are specified in propositional logic,
including tree (e.g., And, Or) and cross-tree constraints. Any SPL
approach should provide at least the basic features and constraints
defined in FODA. However, more than 45 extensions have been
proposed for different needs [7]. The most relevant ones for our
approach are: numerical features [20] that are features that can take
integer or real numerical values, attributes [4] that allow associating
a set of quality attributes to a feature, and complex constraints
involving numerical features, attributes, etc. [14] concluded that
current SPL tools do not support all the FM extensions and this
prevents the adoption of them by SPL development processes.

As discussed in Section 2, the use of categories in our approach
simplifies incorporating these extensions [19]. In this paper, we will
show that QVM supports all the variability modelling extensions and
a set of quality-aware operations.

Quality Modelling. There is no consensus on how to enrich
variability models with quality information to reason about the
quality of configurations [14, 30]. Typically, an SPL engineer would
like to obtain the configurations with a quality attribute below a
threshold (e.g., get configurations that consume less than 3 Joules),
or to generate the best-qualified configuration (e.g. trade-off be-
tween energy consumption and performance). In summary, we
consider two different approaches - one that extends traditional
FMs, either with attributes or with an FM sub-tree, and one that
defines a quality model and links quality measures with configura-
tions.

In the first approach, quality information is provided at feature-
wise level by attributes - i.e., each feature contributes individually
to the system QA. In this case, quality measures are linked to sin-
gle features using attributes [4] (e.g., the WiFi feature consumes
3 Joules). To compute the quality of feature configurations an ag-
gregation function is defined, such as addition, minimum or max-
imum [26]. This approach is supported by Clafer, AAFM Python
framework [8] (and the formerly FAMA), FeatureIDE, pure::variants
and SPL Conqueror, all described in [14]. The most advanced exten-
sion formalisation is the Universal Modelling Language (UVL) [29].
However, it does not consider variant-wise QAs, nor there men-
tioned state-of-the-art solvers are UVL ready.

An alternative is to extend the FM by incorporating QA-specific
features in a subtree. This is the case of QAMTool [33]. But [26]
demonstrates that using attributes is only valid for feature-wise
QAs, such as footprint or cost, where we can either measure a single
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Figure 2: Motivating usage scenario

feature directly or infer the results of the measurement of a product
variant to single features. Another problem is the difficulty of cor-
rectly distributing the quantitative value measured for a product
variant to the attributes of the individual features [27], mainly due
to not considering the feature interactions.

However, even defining better distribution algorithms, the prob-
lem remains for those QAs, such as performance and energy con-
sumption, that do not make sense to measure at the feature-level
(e.g., the energy consumption of WiFi feature depends on other
features like data length, package size, distance to the access point,
etc.). For these QAs, it is impossible to quantify their influence on
individual features because the measurements have meaning only
for a concrete configuration variant. These QAs are classified in [26]
as variant-wise QAs, and several works consider that the set of mea-
surements of a QA should be univocally linked to a configuration
variant [9, 11, 13].

In some cases, an external quality model is defined (e.g., a goal
model); and the QAs measurements are usually linked to the con-
figurations through a database.

In [19], we highlighted the benefits and drawbacks of approaches
to defining an external quality model, with two important conclu-
sions: (1) most existing solutions are not directly compatible with
automated quality-reasoning, and (2) SPL reasoning lacks a “unified”
model that appropriately supports quality metrics. Sometimes these
two approaches (i.e., feature-wise and variant-wise) are combined,
as in QAMTool that uses the NFR framework [32] to externally
represent QAs in a goal model and also an FM subtree to include
quality information as part of the tree.

Our approach QVM is representative of the latest approach defining
a unified model using a category theory framework with native sup-
port for quality reasoning. Also, QVM supports both the feature-wise
and variant-wise approaches by associating at the configuration level
the result of the feature-wise aggregate function. To the best of our
knowledge, there is currently no proposal providing quality-aware
reasoning of product variability, similar to QVM.

Automatic reasoning All tools offer some level of automatic
reasoning. Some provide their implementations of all or a subset of

the operations for self-analysis and basic generation of configura-
tions defined in [3]. Others use a third-party modelling language
that provides such support.

The number of provided operations considerably depends on the
support provided by solvers. Regarding quality-aware operations,
current approaches do not natively support the full set of quality-
aware operations due to different reasons: incompatibility of SAT
solvers with non-Boolean features such as quantified QAs [14], limi-
tations of Constraint Programming (CP) solvers, which do not make
assumptions on the algebraic properties of a solution space [12],
limitations of the modelling language like the feature-level QAs in
MOO Clafer tool [23], intrinsic complexity to adapt or extend the
specific searching algorithms like counting in Satisfiability Modulo
Theories (SMT) solvers [5], and/or scalability and other reasoning
issues like in the extended VMs [22].

For instance, only Clafer, FeatureIDE and SPL Conqueror allow
sampling configurations, and the process is not entirely random [20].
Moreover, these tools use quality information only to optimise
configurations and to calculate the overall impact on a QA. Thus,
the main contribution of this paper is the uncovering of a quality-
aware version of the operations typically defined for a VM, more than
those typically supported in other approaches, as part of a unified
QVM.

4 MOTIVATING USAGE SCENARIOS
We now present a usage scenario in an EDGE case study.

As shown in Figure2.a), the system comprises 3 different con-
figurable network interfaces (namely Mobile, WiFi and Ethernet),
3 sizes of Antennas, and 3 different Virtual Network Functions
(VNFs) (namely Monitor, Firewall, Encryption). EDGE contains the
cross-constraint that Ethernet excludes Antenna, since it is a wired
system. Alice can select a VM approach discussed in Section 3, but
only those supporting numerical features, attributes and complex
constraints.

But Alice is also interested in performing certain quality analyses
based on 3 QAs: Runtime, Energy Rate and Cost. Thus, she needs to
relate the QAmeasurements with the features and/or configurations
of the VM. Hence, there are two different scenarios:
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Scenario 1.1. Alice decides to use existing solutions:

• She can easily integrate the Cost measurements into the vari-
ability model as features’ attributes because Cost is measured
feature-wise (see Figure2.a)).

• However, she cannot do the same for the Runtime and Energy
Rate, which are measured at the configuration level. This
implies that she has to design, implement and use an ad-hoc
external mechanism (e.g., a DB) to store these measures and
link them to configurations in the FM (Figure2.b).

Scenario 1.2. Alice decides to use our approach:

• We are offering Alice an integrated approach that will allow
her to model variability with numerical features and complex
constraints and, more importantly, to store both feature-wise
and product variant-wise QAs using the same framework (Fig-
ure 3).

However, although relating QA measurements and VMs is im-
portant, what Alice really needs is a list of quality-aware operations
to perform the quality-analysis of her system. For instance, she first
wants to check that the variability model is correct and that the
reasoner can produce solutions that have Energy Rate and Runtime
QAs information and thus she needs a SATISFY operation with re-
gards to QAs. Then, she wants to count configurations, and not just
the number of valid ones, but the number of configurations mea-
sured for both Runtime and Energy Rate values, needing a COUNT
operation that considers QAs. Further, she wants to have a first
idea of the kind of features and performance behaviour of EDGE
instances andwants to bound the number of configurations to 5 con-
figurations with Energy Rate, using for that a BOUND_RANDOM
operation with QAs. This guides her to realise that the company
only works with mobile networks interfaces, so the WiFi and Eth-
ernet alternatives are meaningless.

As a consequence, she wants to filter the VM, having Mobile
feature as a requirement (FILTER operation). She notices that the
QA cost is indicated only at the feature level and that there are too
many solutions yet. Consequently, she runs FILTERwith constraints
Mobile and not 3G, alongsideAGGREGATEwith the sum-aggregated
function for Cost. At this point, she notices that some configurations
are too costly for the performance that they provide. Finally, she
runs again FILTER_AGGREGATE with an additional constraint:
(Cost ≥ 40 $)⇒ ((Energy Rate ≤ 18Watts)∧ (Runtime ≤ 10 Seconds)).
The solver returns several instances, showing her that a 5G network
with a large antenna is optimal, besides for the Monitor virtual
function, inwhich 4G networkswith a small antenna behave equally
with a fraction of the cost.

In order to perform the kind of analysis described above, there
are two options:

Scenario 2.1. Alice decides to use existing solutions:

• Since operations implemented using current solvers (SAT-
ISFY, COUNT, FILTER, ...) do not take into account QAs,
she has to provide her implementations of quality-aware
operations (Figure 2.b)).

• In her implementations she needs to consider the different
representations for feature-wise and variant-wise QAs.

Scenario 2.2. Alice decides to use our approach:

• We are offering Alice a list of defined and implemented quality-
aware operations using the native support provided by the
framework used to model variability and QAs. We provide
more of its details in the next section.
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5 QUALITY-AWARE REASONING
OPERATIONS

In this section, we identify the basic operations to reason over QAs
variant-wise. More complex operations can then be formed by com-
bining and extending the basic ones. To illustrate these, we provide
examples based on the instantiated EDGE category of Figure 3,
which is graphically presented following the olog standard - the CT
knowledge representation framework for real-world systems [28].
EDGE is our standard case study and comprises the categorical
QVM of the edge-computing scenario described in Section 4.

5.1 Basic Operations on Quality Variability
Models

We shall focus here on the operations typically needed to perform
advanced reasoning over QVMs. We have selected 6 operations; all
other operations are obtained as a composition of those. Operations
1. and 2. are analysis over the QVMs themselves, while the rest
generate solution spaces of valued QAs.

(1) Satisfiability, SATISFY [31]: Check that there exists at least
one measured configuration of a QVM with regards to the
given QAs. For instance, is EDGE satisfiable? Checking sat-
isfiability allows detecting inconsistent relational patterns.

(2) Counting, COUNT [20]: Count the instances of a QVM
measured solution space without generating them. For ex-
ample, how many configurations are in EDGE, measured
for Runtime in Seconds, and for Energy Rate in Watts?

(3) Filtered search, FILTER [14]: State advanced variability
and QAs requirements over a QVM and generate its corre-
sponding reduced solution space. For example, generate all
EDGE configurations with their valued QAs matching the
requirement:
(5G+ ∧ (Runtime ≥ 2 Seconds)) ⇒ (Energy Rate ≤ 1 Watt)

(4) Bounded search, BOUND [14]: Restrict the size of a QVM
measured solution space. For example, generate 10 configu-
rations of EDGE of the measured space for a certain QA.

(5) Randomise, RANDOM [20, 24]: Randomise the generation
of a QVM measured solution space for any operation. For
example, generate EDGE measured configurations starting
from a random seed.

(6) Aggregate, AGGREGATE: Transform QAs at the feature
level into QAs at the configuration level based on aggregation
functions. E.g., the aggregated value of the cost of an EDGE
configuration is the sum of the leaf features’ costs.

6 IMPLEMENTATION IN CQL IDE AS LAMBDA
FUNCTIONAL ALGORITHMS

In this section, we first provide details of our implementation of the
six formalised QVM operations. They are presented as functional
algorithms based on lambda functions.

For our implementation, we chose a state-of-the-art tool to model
and reason over categories: the Categorical Query Language (CQL)
IDE 1. CQL is a functorial language used for functional program-
ming with lambda functions; for background details, we kindly
point the readers to [17].
1CQL IDE main website: https://www.categoricaldata.net/

Some details of CQL are:
• Basic data types and functions are defined as element type
arrows between objects.

• A structured category is a schema of objects, and element or
path types of arrows.

• A functor is a query over a source schema to a RES schema.
• A literal instance generates variables and assigns the values.
• The reasoning is an eval instance of a schema literal.

If any reasoning is undefined, the IDE halts and informs of the
error; for instance, that CC𝑠 is not functorial due to a non-existing
referenced feature. Otherwise, CQL IDE correctly computes what
is specified in the instances and queries.

We now follow by presenting an overview of our implementation
in CQL IDE of the identified QVM operations. We start with the
Algorithm 1 implementing the SATISFY operation. Algorithm 1
is a single lambda function that returns True if any configuration
(i.e., 𝜑) and QA (i.e.,𝜓 ) relationship exists. As it is only computed
over the QMC object, it completely abstracts from features or QAs
names and values.

Algorithm 1: SATISFY for QVM𝑠 in CQL IDE
Input: Populated QMC
Result: 𝜆(𝑥 ∈ QMC) = (𝑥 .𝜑 > 0) ∧ (𝑥 .𝜓 > 0);

Algorithm 2 implements operation COUNT. Similarly to Algo-
rithm 1, it is composed of a single lambda function, but in this case,
it adds 1 to a counter any time that there is a relationship between
CCs and QAs in QVM𝑠 .

Algorithm 2: COUNT for QVM𝑠 in CQL IDE
Input: Populated QMC
Result: Add(𝜆(𝑥 ∈ QMC) : 1 If (𝑥 .𝜑 > 0) ∧ (𝑥 .𝜓 > 0));

Algorithms 3 to 5 share some code, as they generate configu-
rations with their respective QA values. Hence, in the three algo-
rithms, besidesQMC, we also need CC𝑠 andQA𝑠 objects as inputs.
On line 1 we initialise the result as the empty set Res, which is then
filled in a forall loop iterating over each instance (i.e., relationship)
of QMC. Due to the if clause on line 3, just configurations related
to QAs and vice-versa are considered in each iteration. Two lambda
functions are filling Res. The first one is on line 4, and it retrieves
the features associated with the configuration of a specific iteration.
The second one is on line 5, and likewise retrieves the data of the
set of qualities of a specific iteration. Finally, in each iteration, the
features and QAs are copied to Res on lines 6 (7 for aggregation).

Continuing with the differences, for FILTER in Algorithm 3 we
need to consider an additional input in the form of a set of features
or quality constraints, which are then considered in the if clause of
line 3 to filter the selected configurations and QAs. In Algorithm 4
we merged BOUND and RANDOM operations forming a random
sampling. For that, we find two new inputs, a Limit (L) of solutions
and a random Seed (S). On line 3, L restricts the number of tested
loop iterations, and on Line 2 QMC is shuffled based on S.

Finally, in Algorithm 5 we have an extra input in the form of an
aggregation Function (F) for QAs at the feature-level (e.g., addition

https://www.categoricaldata.net/
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Algorithm 3: FILTER for QVM𝑠 in CQL IDE
Input: Populated QMC, CC𝑠 , QA𝑠 , and Constraints (C)

1 Res = 𝜆 [features, qas] : forall 𝑥 ∈ QMC do
2 if (𝑥 .𝜑 > 0) ∧ (𝑥 .𝜓 > 0) ∧ (𝐶𝐶𝑠 ∉ 𝐶) ∧ (𝑄𝐴𝑠 ∉ 𝐶) then
3 features = (𝜆𝑦 ∈ 𝐶𝐶𝑠.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 : (𝐶𝐶𝑠.𝑖𝑑 = 𝑥 .𝜑));
4 qas = (𝜆𝑧 ∈ 𝑄𝐴𝑠.𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 : (𝑄𝐴𝑠.𝑖𝑑 = 𝑥 .𝜓 ));
5 end
6 end
Result: Res

Algorithm 4: BOUND+RANDOM for QVM𝑠 in CQL IDE
Input: Populated QMC, CC𝑠 , QA𝑠 , Limit (L), and Seed (S)

1 Res = 𝜆 [features, qas] : forall 𝑥 ∈ SHUFFLE(QMC, 𝑆) do
2 if (𝑥 .𝜑 > 0) ∧ (𝑥 .𝜓 > 0) ∧ (𝑅𝑒𝑠.𝑠𝑖𝑧𝑒 ≤ 𝐿) then
3 features = (𝜆𝑦 ∈ 𝐶𝐶𝑠.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 : (𝐶𝐶𝑠.𝑖𝑑 = 𝑥 .𝜑));
4 qas = (𝜆𝑧 ∈ 𝑄𝐴𝑠.𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 : (𝑄𝐴𝑠.𝑖𝑑 = 𝑥 .𝜓 ));
5 end
6 end
Result: Res

Algorithm 5: AGGREGATE for QVM𝑠 in CQL IDE
Input: Populated QMC, CC𝑠 , QA𝑠 , and Function (F)

1 Res = 𝜆 [features, qas] : forall 𝑥 ∈ QMC do
2 if (𝑥 .𝜑 > 0) ∧ (𝑥 .𝜓 > 0) ∧ (𝑅𝑒𝑠.𝑠𝑖𝑧𝑒 ≤ 𝐿) then
3 features = (𝜆𝑦 ∈ 𝐶𝐶𝑠.𝑓 𝑒𝑎𝑡𝑢𝑟𝑒 : (𝐶𝐶𝑠.𝑖𝑑 = 𝑥 .𝜑));
4 qas = (𝜆 𝐹 (𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠 ∈ 𝑓 𝑒𝑎𝑡𝑢𝑟𝑒𝑠),

𝑧 ∈ 𝑄𝐴𝑠.𝑞𝑢𝑎𝑙𝑖𝑡𝑖𝑒𝑠 : (𝑄𝐴𝑠.𝑖𝑑 = 𝑥 .𝜓 ));
5 end
6 end
Result: Res

of costs). Consequently, F is transformed into its correspondent
lambda function on line 6, and adds additional calculated QAs to the
results. This algorithm shows how feature-wise and variant-
wise QAs can be treated uniformly in our approach. Notice
that running the AGGREGATE operation before any of the
other ones allows disposing of the feature-wise information
at the configuration level.

After testing them by running CQL IDE, its reasoning time aver-
ages to 0.13 seconds for Figure 3 QVM. Consequently, we guess
that CQL IDE is scalable due to its characteristic combination of
reasoners: an automated theorem prover with Knuth-Bendix com-
pletion, and hashing, balanced binary search trees, and chasing
algorithms. This selection comes from different fields: formal meth-
ods, SAT solving and relational algebra respectively.

7 PROOF-OF-CONCEPT
In this section, we revisit the usage scenario of the EDGE case
study presented in Section 3 to show how Alice uses our approach
to perform the QAs analysis of her EDGE scenario. First, Alice
wants to check that the QVM is correct and that the reasoner can
produce solutions. She runs SATISFY, and the CQL IDE returns

an instance of RES with the value True, implying satisfiability
without reasoning ambiguities.

Then, she runs COUNT to learn how many configurations the
system has. CQL IDE returns an instance of RES with the value
63. Further, she wants some idea of the kind of features and perfor-
mance behaviour of EDGE instances, she runs a BOUND_RANDOM
of 5 configurations. Since her company only works with mobile
interfaces, she runs FILTER selecting the Mobile feature. CQL IDE
returns 36 instances of RES comprising the same number of con-
figurations with 2 valued QAs each, runtime and energy rate.

Since the QA cost is indicated only at the feature level, there are
toomany solutions. Consequently, she runs FILTERwith constraints
Mobile and not 3G, alongsideAGGREGATEwith the sum-aggregated
function for cost. CQL IDE returns 27 instances of RES comprising
the same number of configurations with the respective values of
the 3 QAs – runtime, energy rate and cost.

As she notices that some configurations are too costly for the
performance that they provide, she reruns FILTER_AGGREGATE
with an additional constraint:
(Cost ≥ 40 $)⇒ ((Energy Rate ≤ 18Watts)∧ (Runtime ≤ 10 Seconds)).
CQL IDE returns 6 RES instances, showing her that a 5G network
with a large antenna is the best option, besides for the Monitor
virtual function, in which 4G networks with a small antenna behave
equally with a fraction of the cost.

8 CONCLUSION
Before the unifying CT framework for SPLs [19], variability, qual-
ity, and the relationship between configurations and valued QAs
have been modelled separately. This paper highlights the lack of
methods and tools designed explicitly for QAs values at the feature
and configuration levels. To address this, we identify the basic op-
erations to quality-reason over QVMs: satisfiability, count, filter,
bound, randomise, and aggregate.

Then, we present the categorical functional algorithms based on
lambda functions for QVM𝑠 . They are a guidance for CT reasoners
implementation based on queries to a category. These operations
over QVM𝑠 mainly operate on its object of binary relationships
QMC, as it provides complete configurations with valued QAs
pairs. Additionally, we show how to combine operations to form
complex ones. Further, we implement them in CQL IDE and perform
a performance test for EDGE QVM with several casuistic.

CQL IDE QMC suggests scalability and hence a promising tool
for the modelling and reasoning SPLs. We end with a usage scenario
analysing the use of our approach in the EDGE case study.

In future work, we plan to properly perform a scalability test with
large QVM𝑠 and more advanced queries (e.g., guided sampling,
prediction). In addition, we are considering QVM implementa-
tions in other CT environments such as Haskell.
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