
Machine-Checked Compositional 
Specification and Proofs for Embedded 

Systems 

Karl Palmskog1(B), Mattias Nyberg2, and Dilian Gurov1 

1 KTH Royal Institute of Technology, Stockholm, Sweden 
{palmskog,dilian}@kth.se 

2 Scania CV AB, Södertälje, Sweden 
mattias.nyberg@scania.com 

Abstract. The effort of formal verification of large heterogeneous sys-
tems needs to scale linearly with the number of interacting components, 
to be feasible in industrial practice. This is made possible by composi-
tional specification methods and proof systems. In this paper, we demon-
strate how trustworthy verified decomposition can be performed for an 
industry-relevant embedded system: a fuel level display. We first formal-
ize the underlying theory in the HOL4 theorem prover, and augment 
this theory to allow specifications using Metric Interval Temporal Logic 
(MITL). We then state a top-level specification for our system using 
MITL and decompose it down to the system components. Our HOL4 
formalization provides a corrected and extended restatement of a gen-
eral specification language and proof system from previous work and 
showcases its usefulness for verified decomposition of systems. 

Keywords: Compositional proof · formal verification · embedded 
systems · HOL4 

1 Introduction 

A fundamental problem in applying formal verification to large-scale, heteroge-
neous industrial systems is the complexity of performing reasoning across many 
independent interacting components [ 11]. If the complexity grows with the size 
of the global state space, e.g., as defined by a product of many automata, then 
such verification quickly becomes unfeasible. The promise of compositional spec-
ification methods and proof systems is that the complexity of reasoning may 
instead grow only linearly with the number of components in the system, thanks 
to contract-based reasoning at each individual component, e.g., in the assume-
guarantee style. 

To this end, Nyberg et al. proposed a theory for compositional specifica-
tion and proof, based on first-order logic [ 9]. Although motivated by industrial 
requirements, the theory is general and abstract, even eliding commitment to 
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logical formulas for describing the behavior of individual components. However, 
this also means that there is a significant gap between the theory as initially 
presented and its application to specify and verify concrete systems relevant to 
industrial practice. Moreover, the theory is only demonstrated on small running 
examples, which may be insufficient to guide application to real systems. 

In this paper we consider decomposition of formal verification for an industry-
relevant embedded system: a vehicle fuel-level display (FLD). To enable trust-
worthy decomposition of a correctness proof, we first formalize the theory of 
Nyberg et al. in the HOL4 theorem prover [ 13] and instantiate it with a notion 
of timed words in place of its abstract set of (unstructured) system runs. This  
enables us to provide a natural top-level specification of the system using Metric 
Interval Temporal Logic (MITL) [ 1, 8] that can be soundly decomposed. Besides 
paving the way for more automated tools for compositional specification and ver-
ification, our HOL4 formalization corrects several issues in the original account 
of the specification and proof theory and puts its connection to first-order logic 
on firm ground. 

In summary, we make the following contributions: 

(i) We formalize the abstract compositional specification theory and proof sys-
tem of Nyberg et al. in the HOL4 theorem prover, including its interpreta-
tion in (sorted) first-order logic and soundness of the proof system. 

(ii) We instantiate the theory and proof system for timed words, and augment 
specifications to allow occurrences of MITL formulas. 

(iii) We further instantiate the theory of timed words for an embedded fuel 
level display system, and demonstrate how its verification can be soundly 
decomposed. The system design and structure is derived from a real indus-
trial system implemented in Scania trucks. 

We provide the code that comprises the HOL4 formalization (around 6000 lines) 
as supplementary material to the paper [ 10]. 

2 Fuel Level Display System Description 

We apply the theory of Nyberg et al. [ 9] for compositional specification and 
verification of a cyber-physical embedded system that measures, processes, and 
displays the fuel level in a vehicle, as illustrated in Fig. 1. 

The system consists of a fuel tank equipped with a sensor (left), a digital 
controller (top), and an analog fuel level meter (right). The tank sensor has a 
slider connected to a “floater” that measures the fuel (sensed) level Sl, trailing 
the (actual) level Al in the tank. The position of the slider maps to an analog 
voltage Avin. This voltage is converted to a digital representation Dvin by an 
Analog-to-Digital Converter (ADC) inside the controller. The digital voltage is 
processed by the program in the controller, which consists of infrastructure soft-
ware and application software. Periodically, Dvin is transformed by the program 
into Dvout, which is then converted to an analog voltage Avout by a Digital-
to-Analog Converter (DAC). This analog voltage then maps to a (displayed) 
level Dl, shown by the meter.



Machine-Checked Compositional Specification and Proofs 69

Fig. 1. Fuel level display (FLD) system architecture, diagram by Jonas Westman 

In summary, the relevant variables of the fuel level display (FLD) system and 
their ranges and kinds are as follows: 

Al , actual level, range 0–100, percentage. 
Sl , sensed level (position of floater), range 0–100, percentage. 
Av in , analog voltage (w.r.t. ground), range ≥0, volts. 
Dv in , digital voltage, non-negative decimal number. 
Esl , estimated sensed level, range 0–100, percentage. 
Ol , output level, range 0–100, percentage. 
Dvout , digital voltage, non-negative decimal number. 
Avout , analog voltage out (w.r.t. ground), range ≥0, volts. 
Dl , displayed level, range 0–100, percentage. 

3 Specification Language and Proof System 

In this section, we informally present our reformulation of the compositional 
specification language and proof system of Nyberg et al. [ 9], which we have 
formalized in HOL4, while highlighting some changes compared to the original 
presentation. 

3.1 Syntax 

The specification language syntax is divided into components c, specifications S, 
and predicates P , as shown in Fig. 2. To enable translation to a first-order logic 
theory (signature), components and specifications may be represented using both 
constants and variables. Intuitively, constants and their meaning depend on the 
system and context we are trying to describe, while variables are used when 
predicates about components and specifications contain quantification.
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Component and Specification Syntax. A component is either a constant 
name c, a variable  q, or a composition c1 × c2 of two components c1 and c2. A  
specification is either a constant S, a variable V , or a combination of two specifi-
cations S1 and S2 in the form of a conjunction S1�S2, an assume-guarantee pair 
(S1, S2), also referred to as contract, or a parallel composition S1 || S2. Special 
specification constants include c© for “compatibility” and T|| for “top”, whose 
meaning is elaborated below. Finally, Assertional(S) is meant to capture when 
the implementation of S is monotonic with respect to component composition. 

Predicate Syntax. The predicate syntax expresses assertions about compo-
nents and specifications. A component c may implement (“satisfy”) a specifica-
tion S, written c : S, and a specification S1 may refine another specification 
S2, written S1 � S2. In contrast to the initial presentation [ 9], we distinguish 
quantification over components from quantification over specifications by writ-
ing ∀C and ∀S , respectively. Moreover, we explicitly allow predicates expressing 
equality between two components (=C) or two specifications (=S). 

Fig. 2. Component, specification, and predicate syntax 

Example 1. Consider the predicate c1 × c2 : (A � c©, G � c©) in the specification 
language. This predicate expresses that the composition of the components c1 
and c2 implements an assume-guarantee pair, where A � c© is the assumption 
and G� c© is the corresponding guarantee. The occurrences of the compatibility 
specification c© ensure, intuitively, that the contract is not vacuously satisfied, 
i.e., that there exist corresponding system runs that are consistent with the 
(allowed) behaviors of both components. 

3.2 Semantics 

We define the semantics of the specification language from Fig. 2 in terms of an 
abstract set Ω, whose elements are not given an explicit structure, but intuitively 
represent runs (or executions) of the system we are considering. For example, 
the elements of Ω may be (finite or infinite) sequences of system states, where
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each adjacent pair is connected by a label describing a state transition, or timed 
words, as described in Sect. 4. To give meaning to constants, we use models M 
that map component constants to subsets of Ω, and  map  specification constants 
to sets of subsets of Ω. Analogously, we use substitutions σ to assign meaning 
to variables. 

Semantics of Components. Following our definition of models, we define 
the semantics of components by mapping them to subsets of Ω, as shown  in  
Fig. 3. Intuitively, the set of runs of a component describes its possible runtime 
behaviors. As hinted at in Example 1, the set may be empty for two composed 
components when they are incompatible. 

Fig. 3. Semantics of components  

Semantics of Specifications. We define the semantics of specifications by 
mapping them to subsets of the powerset P(Ω) of Ω, as shown in Fig. 4. Intu-
itively, describing specifications as sets of sets of runs (as opposed to simply sets 
of runs) means that we can capture relational properties over runs, e.g., security 
properties such as noninterference. We use the auxiliary definition below for the 
parallel operator ||. 
Definition 1. The double intersection of the two sets of sets s1 and s2, written 
s1 � s2, is the set {a ∩ b | a ∈ s1, b  ∈ s2}. 

Fig. 4. Semantics of specifications
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Semantics of Predicates. We define the semantics of predicates in Fig. 5 by 
mapping them to propositions in the metalanguage (bool in HOL4). We use 
the notation σ[x 	→ s] for the substitution σ updated with a mapping from the 
variable x to the set s. The translation uses the following auxiliary definition to 
define predicates of the form Assertional(S). 

Definition 2. A set  s is downward closed when for every e ∈ s and e′, if  e′ ⊆ e, 
then e′ ∈ s. 

From the basic semantic definitions, we can straightforwardly define derived 
predicate operators such as disjunction (∨), implication (→), and existential 
quantification (∃C and ∃S), which is deferred to the supplementary material. 

Fig. 5. Semantics of predicates. 

Example 2. The predicate c1 × c2 : (A � c©, G � c©) from Example 1 is true 
precisely when, for every behavior B �= ∅ that is allowed by A, the intersection 
of B and the behaviors of c1 and c2 are allowed by nonempty behaviors in G. 
Or more formally, the predicate is true for M and σ when for every B ∈ �A�σ 

M 
such that B �= ∅, it holds that �c1�

σ 
M ∩ �c2�

σ 
M ∩ B ∈ �G � c©�σ 

M. 

3.3 Translation to First-Order Logic 

Our translation of the specification language to first-order logic (FOL) is intu-
itively based on first interpreting predicates as formulas in two-sorted FOL and 
then leveraging the standard translation of sorts to obtain unsorted formulas [ 4]. 
Our first sort is C, the sort of components, whose domain is P(Ω), and the sec-
ond sort is S, the sort of specifications, whose domain is P(P(Ω)). The trans-
lation from specification language predicates to unsorted FOL formulas was not 
explicitly defined in the work of Nyberg et al. [ 9]; here, we briefly sketch the 
translation and its correctness, and defer the full details to the supplementary 
material, where we use Harrison’s formalized theory of FOL inside HOL4 [ 5].
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Given a specification language model M and substitution σ, we construct  
a corresponding FOL model L(M) and FOL substitution L(σ), whose domain 
is the disjoint union of P(Ω) and P(P(Ω)). In this construction, we consider 
component and specification syntax as FOL function symbols, and predicate 
syntax as FOL predicate symbols, defining functions c2t and S2t that convert 
components and specifications to FOL terms, and a function P2f (using c2t and 
S2t) that translates predicates to FOL formulas. Quantification in predicates is 
handled by adding an implication using the additional predicate symbols isc and 
isS , which express that a term is a component or specification, respectively. Using 
this translation, Theorem 1 expresses how specification language predicates are 
interpreted in FOL. 

Theorem 1 (Soundness of predicate translation to FOL). For every 
model M, substitution σ, and specification language predicate P , �P �σ 

M holds 
precisely when L(M), L(σ) |= P2f (P ), where  |= is the first order satisfaction 
relation. 

The proof is deferred to supplementary material [ 10], so we give an example 
that highlights the general idea of the translation. 

Example 3. Consider a quantified version of the predicate from Example 1: 

∀C q. ∀S V1. ∀S V2. q  : (V1 � c©, V2 � c©) 

The corresponding unsorted FOL formula obtained by P2f is 

∀ q. isc(q) → ∀  V1. isS (V1) → ∀  V2. isS (V2) → 
impl(q, ag(conj (V1, compat), conj (V2, compat))) 

where impl is a predicate symbol corresponding to the implementation operator 
“:”, and ag , conj , and  compat are function symbols corresponding to the assume-
guarantee, conjunction, and compatibility specification operators, respectively. 

3.4 Specification Language Metatheory 

In this section, we state some key formalized meta-theoretic results about the 
specification language, which are mostly reformulations of results from the work 
of Nyberg et al. [ 9]. The first three properties are useful for rewriting when 
performing proofs in the system in Sect. 3.5. 

Property 1. Component composition is idempotent, associative, and commuta-
tive. That is,  for all  M and σ, �c × c =C c�

σ 
M, �c1 × (c2 ×c3) =C (c1 × c2) × c3�σ 

M, 
and �c1 × c2 =C c2 × c1�σ 

M. 

Property 2. Specification conjunction is idempotent, associative, and commuta-
tive. That is,  for all  M and σ, we have �S � S =S S�σ 

M, �S1 � (S2 � S3) =S 
(S1 � S2) � S3�

σ 
M, and �S1 � S2 =S S2 � S1�

σ 
M.
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Property 3. Parallel composition of specifications is associative and commuta-
tive. That is,  for all  M and σ, it holds that �S1 || (S2 || S3) =S (S1 || S2) || 
S3�

σ 
M and �S1 || S2 =S S2 || S1�

σ 
M. Idempotency does not hold. 

The following five properties are the basis (in the form of introduction and 
elimination rules) for the proof system in Sect. 3.5. 

Property 4 (Refinement/REF introduction/elimination). For all M and σ, if
�∀C q. q : S1 → q : S2�

σ 
M , then �S1 � S2�

σ 
M (intro); if �c : S1�

σ 
M and �S1 � S2�

σ 
M, 

then �c : S2�
σ 
M (elim). 

Property 5 (Assertional/ASSN introduction/elimination). For all M and σ, if  
q1 �= q2 and �∀C q1. ∀C q2. q1 : S → q1 × q2 : S�σ 

M, then �Assertional(S)�σ 
M (intro); 

if �Assertional(S)�σ 
M and �c1 : S�σ 

M, then �c1 × c2 : S�σ 
M (elim). 

Property 6 (Conjunction/CONJ introduction/elimination). For all M and σ, if
�c : S1�

σ 
M and �c : S2�

σ 
M, then �c : S1 � S2�

σ 
M (intro); if �c : S1 � S2�

σ 
M, then

�c : S1�
σ 
M and �c : S2�

σ 
M (elim). 

Property 7 (Parallel/PAR introduction/elimination). For all M and σ, if �c1 : 
S1�

σ 
M and �c2 : S2�

σ 
M, then �c1 × c2 : S1 || S2�

σ 
M (intro); if variables q1, q2 do 

not occur in c for q1 �= q2, and �c : S1 || S2�
σ 
M, then �∃C q1. ∃C q2. q1 : S1 ∧ q2 : 

S2 ∧ c =C q1 × q2�σ 
M (elim). 

Property 8 (Contract/CONT introduction/elimination). For all M and σ, if  q1 
does not occur in c2 and �∀C q1. q1 : S1 → q1 × c2 : S2�

σ 
M, then �c2 : (S1, S2)�σ 

M 
(intro); if �c1 : S1�

σ 
M and �c2 : (S1, S2)�σ 

M, then �c1 × c2 : S2�
σ 
M (elim). 

Finally, the two properties below shed some light on specifications, in partic-
ular conjunction, the top specification and assertional contracts. 

Property 9 (Conjunction vs. parallel composition). For all M and σ, �S1 � S2 �
S1 || S2�

σ 
M; if �Assertional(S1)�σ 

M and �Assertional(S2)�σ 
M, then �S1 || S2 �

S1 � S2�
σ 
M. 

Property 10 (Generality, assertional contracts). For all M and σ, �S =S 
(T||, S)�σ 

M holds, and if �Assertional(S2)�σ 
M, then �Assertional((S1, S2))�σ 

M. 

3.5 Proof System 

We define a proof system for the specification language as an inductive rela-
tion Γ � P , where  Γ is a set of predicates used as premises. The proof system 
rules are shown in Fig. 6, where we use the notation vars(c) for the set of vari-
ables in a component c, and  P [c/q] for the capture-avoiding substitution of the 
component c for the variable q in P (and P [S/V ] analogously for specifications). 

Theorem 2 (Proof system soundness). The proof system in Fig. 6 is sound 
with respect to the predicate semantics in Fig. 4. That is, whenever Γ � P , then 
for all M and σ, if �P ′�σ 

M for all P
′ ∈ Γ , then �P �σ 

M.
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Fig. 6. Proof system rules. 

Compared to the original proof system by Nyberg et al. [ 9], we define and 
prove sound rules for the sorted quantifiers and other standard FOL operators 
as part of the supplementary material, and also add equality elimination rules 
for rewriting, which were previously used implicitly. 

Example 4. Let A, A1, A2, G, G1, G2 be specifications in the set 

Γex = {Assertional(A), A � A1, A � G1 � A2, G2 � G} 

and also 

Δex = {∀C q. ∀C q
′. ∀C q

′′. (q × q′) × q′′ =C q × (q′ × q′′), 
G1 � A =S A � G1, G1 � (A � c©) =S (A � G1) � c©} 

Define the predicate Pex as 

∀C q1. q1 : (A1 � c©, G1 � c©) → 
∀C q2. q2 : (A2 � c©, G2 � c©) → q1 × q2 : (A � c©, G � c©)
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As shown formally in HOL4 in the supplementary material, it holds that 
Γex ∪ Δex � Pex ; this corrects the previous non-mechanized proof [ 9]. Since 
the premises in Δex are true for any M and σ, we can conclude using Theo-
rem 2 that �Pex �σ 

M whenever �P �σ 
M for every P ∈ {Assertional(A), A � A1, A �

G1 � A2, G2 � G}. 

Finally, using proof system soundness we can obtain decomposition corollar-
ies such as the following: 
Corollary 1. For all M and σ, whenever it holds that 

– �S1||S2||S3 � S�σ 
M, 

– �P �σ 
M for every P ∈ Γ , 

– Γ � c1 : S1, Γ � c2 : S2, and  Γ � c3 : S3, 

then �c1 × c2 × c3 : S�σ 
M. 

In other words, to establish that the composed system c1 × c2 × c3 satisfies the 
specification S, it is sufficient to establish that some “component” specifications 
S1, S2, and  S3 together refine S, and then use the proof system to establish that 
each component satisfies its corresponding specification. 

4 Specifications on Timed Words 

The specification language of Sect. 2 is parameterized on an abstract set of system 
runs Ω, intuitively representing all possible executions of systems in the domain 
being modeled. As a first step towards reasoning about the FLD system (Fig. 1), 
we instantiate Ω as an (abstract) set ΩTW of timed words, where each element 
may be viewed as an infinite sequence of samples of system states from a real-
valued timeline, as made precise below. We also extend the specification language 
to include Metric Interval Temporal Logic (MITL) formulas [ 1, 8]. In contrast to 
proof systems based simply on sets of runs (or traces) for temporal logics, the 
instantiation allows relational properties over timed words. 

4.1 Specification Language Extension 

To allow expressing properties at the level of individual timed words, we enrich 
the specification language with MITL formulas as shown in Fig. 7. Specifically, 
we add MITL formulas as a form of specification language constant S, using  the  
notation ̂φ to indicate that the MITL formula φ is used as a specification. For-
mulas may contain closed or open intervals I, bounded by non-negative integers 
a and b. The MITL syntax is parameterized on “atomic” formulas p that may 
express properties of individual system states in runs. 

Intuitively, a formula φ1UIφ2 states that φ1 is true until φ2 becomes true 
inside the interval I (measured from the current point in time). Conversely, for 
φ1SIφ2, φ1 is true since φ2 was true in the  past.  

Following this pattern, �Iφ and �−Iφ state that φ is always true inside the 
interval I, forward and backward in time, respectively. ♦Iφ and ♦−Iφ state that 
φ is true at some point inside I, again forward and backward in time.
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Fig. 7. Extended specification syntax for timed words. 

4.2 Semantics of MITL Formulas and Extended Specifications 

This section describes our semantics of the specification language extension from 
above, which assigns sets of timed words to MITL formulas. This can be viewed 
as an adaptation of MITL from previous work [ 8] to our setting. 

Definition 3 (Timed words). Let A be a set of system states, and  let  τ 
be a function from natural numbers N to tuples A ×  R≥0. We call  τ a timed 
word, and  for  k ∈ N, we write aval(τ(k)) for the first component of the tuple, 
the system state at k, and  tval(τ(k)) for the second component, representing the 
state’s moment in time. 

Our intention is intuitively for a timed word τ to describe a (countable) set 
of samples of a system’s state over real-valued time, and for this intuition to 
make sense, we must have tval(τ(i)) < tval(τ (j)) whenever i < j. 

Before defining the semantics of MITL formulas, we define operations on 
intervals, following previous work using MITL. 

Definition 4 (Positive and negative shift). The positive shift operator ⊕ 
takes a real number t and an interval I and returns sets of non-negative real 
numbers, as defined below. The negative shift operator � is defined analogously. 

t ⊕ [a, b] =  { r ∈ R≥0 | t + a ≤ r ≤ t + b } 
t ⊕ (a, b] =  { r ∈ R≥0 | t + a < r  ≤ t + b } 
t ⊕ [a, b) =  { r ∈ R≥0 | t + a ≤ r <  t  + b } 

t ⊕ [a, ∞] =  { r ∈ R≥0 | t + a ≤ r } 
t ⊕ (a, b) =  { r ∈ R≥0 | t + a < r  <  t  + b } 

t ⊕ (a, ∞) =  { r ∈ R≥0 | t + a < r} 

Using shifts, we define the semantics of a MITL formula φ by mapping the 
formula and a natural number i (indicating the word position) to a set of timed 
words in ΩTW , as shown in Fig. 8. The semantics is parameterized on a rela-
tion |= which defines which MITL atomic propositions are true in a system state. 
Finally, we define the semantics of the extended specifications from Fig. 7 follow-
ing the definitions in Fig. 3 (instantiating Ω to ΩTW ) by adding �̂φ�σ 

M = P(�φ�0). 
Intuitively, this means that MITL formulas in specifications denote the set of 
sets of timed words that satisfy the formula.
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Fig. 8. MITL semantics 

4.3 Proof System Extension 

Rather than extending our proof system from Fig. 6 with rules for general rea-
soning about MITL, we introduce the rule below to allow proofs to use MITL 
formulas as premises. We expect that MITL formula premises in proofs could be 
discharged in many ways, such as via semantic reasoning in a theorem prover or 
using a model checker. 

φ1 → φ2 

Γ � ̂φ1 � ̂φ2 

mitl 

5 Fuel Level Display Verification Decomposition 

In this section, we describe the application of specifications on timed words from 
Sect. 4 to the Fuel Level Display (FLD) system outlined in Sect. 2. 

5.1 System Runs and Variables 

To enable reasoning about the FLD system, we restrict the set of runs ΩTW per 
Definition 3 to obtain the set ΩFLD , where atomic propositions pFLD express 
properties of individual FLD system states inside timed words. More specifically, 
we let pFLD contain all propositions of the form x = v, x < v  and x > v  (and 
conjunctions of them) in the expected way, where x is an FLD variable and v a 
value, e.g., between 0 and 100. Moreover, we define an FLD system state as a 
mapping of all FLD variables to corresponding values. 

Definition 5. The set of possible runs of the FLD system is a set ΩFLD of 
timed words τ such that: 
– for all i, j ∈ N and all τ ∈ ΩFLD , if  i < j  then tval(τ(i)) < tval(τ(j)). 
– for all i ∈ N and all τ ∈ ΩFLD , aval(τ(i)) maps variables to allowed values.
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5.2 Specification 

The top-level FLD specification intuitively says that if the display level Dl shows 
r (a percentage), then at some recent point in the past, the actual level Al was 
also approximately r (a percentage). Using a MITL formula we call φFLD , we  
express this intuition more formally as follows:

�[0,∞) (Dl = r → ♦−[0,t] (Al ≈m r)). 

Here, x ≈m v is a shorthand for the absolute difference of x and v being less 
or equal to a predetermined margin of error m, e.g., 3% points. Further, t is a 
positive integer that is similarly a predetermined margin of error, expressed in 
units of time (e.g., milliseconds) that gives an upper bound on the reaction time 
of the system. We then define the specification term SFLD as ̂φFLD . 

This means that if we consider the FLD system abstractly as a component 
cFLD , to  verify FLD, we need to establish that cFLD : SFLD . 

5.3 Decomposition 

Based on the system structure, the FLD system can be viewed as a composition 
of three components cmeter , cctrl , and  ctank , i.e., 

cFLD = cmeter × cctrl × ctank . 

We can then give MITL formulas for each major component with corresponding 
intervals t1, t2, and  t3 (that together must add up to t or less): 

φmeter : �[0,∞) (Dl = f(v) → ♦−[0,t1] (Avin 
≈m v)) 

φctrl : �[0,∞) (Avin 
≈m v → ♦−[0,t2] (Avout 

≈m v)) 
φtank : �[0,∞) (Avout 

≈m v → ♦−[0,t3] (Al ≈m f(v))) 

where we assume  f is a function translating analog voltages to percentage points. 
To enable trustworthy compositional verification of the whole FLD system, 

we would like to reduce the verification of cFLD : SFLD to verification of its 
components. Using Corollary 1, we therefore reduce verification of cFLD : SFLD 

to obtaining proofs of the following: 

– Smeter ||Sctrl ||Stank � SFLD , which reduces to reasoning on the semantics 
of MITL formulas—specifically, showing inclusion in the FLD specification 
timed word set for the intersection of the three component specification timed 
word sets. 

– cmeter : Smeter where Smeter = ̂φmeter , whose proof can use the proof system. 
– cctrl : Sctrl where Sctrl = ̂φctrl , whose proof can use the proof system. 
– ctank : Stank where Stank = ̂φtank , whose proof can use the proof system.
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6 Formalization in the HOL4 Theorem Prover 

The HOL4 formalization of the specification language and its metatheory and 
instantiation for timed words is around 6000 lines of code and is available as 
supplementary material to the paper [ 10]. We used the Ott tool [ 12] to define 
the specification language and proof system and exported them to HOL4. We 
mainly chose HOL4 due to its easily accessible and trustworthy formalization of 
first-order logic and corresponding model theory, translated from the HOL Light 
system [ 5, 6]. For convenience, we defined a syntax and semantics of FOL which 
uses strings for symbols such as atomic propositions rather than natural numbers 
as used by Harrison. However, we prove this string-based semantics equivalent 
to the numbers-based semantics that is part of the examples distributed with 
HOL4, release trindemossen-1. 

7 Limitations and Challenges for Applications 

The formalized specification language and metatheory (and its instantiation for 
timed words) aims provide a foundation for sound decomposition of correct-
ness proofs for embedded systems consisting of many components to correctness 
proofs about individual components. We believe the specification language is 
sufficiently general to account for many practically relevant notions of “system 
runs” in addition to timed words, and also capture common idioms for contract 
based specifications of components in embedded systems, e.g., as expressed by 
Cimatti and Tonetta [ 3] or Benveniste et al.  [  2]. 

However, while the specification language and proof system can already be 
practically used in a sound way inside the HOL4 theorem prover, we do not 
believe this mode of use is feasible for large-scale applications due to the con-
siderable training and expertise required for using interactive theorem provers. 
Instead, the HOL4 formalization can be viewed as a guide and ground truth for 
standalone practical tools for specification decomposition and proof search. For 
example, the HOL4 formalization could be used to provide a certified checker of 
proof system proofs encoded in some intermediate textual format. Such inter-
mediate textual format proofs could be produced by actual users through some 
untrusted graphical manual proof tool, or by an untrusted automated proof tool 
using unverified heuristics. By having text-format proofs certified by a checker 
directly connected to the formalized theory, trust in such proofs is reduced to 
trust in HOL4, which uses the so-called LCF approach of a small trusted proof 
kernel [ 13]. Another option is to directly exploit the connection to FOL by using 
automated FOL solvers such as Vampire [ 7] to prove specification predicates, 
but we expect this approach to be less trustworthy unless the FOL proofs can 
also be reconstructed in HOL4, which may be difficult. 

The specification language and proof system is meant to abstract from details 
about real-world embedded system components by allowing them to be repre-
sented by opaque constants, e.g., cmeter . We expect that during practical appli-
cation, users will assume (by adding to the set of premises) that component con-
stants satisfy a certain specification, and possibly later establish this fact using
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some independent appropriate method such as model checking. Another way to 
control the complexity is by representing some (real-world) composed compo-
nents by a single component constant. In this way, usage of the specification 
language and proof system can scale to large systems with many components. 
Nevertheless, to preserve trustworthiness, the metatheory of language should 
ideally be instantiated to the required notion of system run, which requires inter-
active theorem prover expertise. In addition, applications should validate that 
the formal definition of system run (given by the set Ω) corresponds to what is 
meant by run in practice, which might only be feasible to do experimentally. 

8 Conclusions 

We presented a general theory of compositional specifications which we formal-
ized, along with its metatheory and proof system, in the HOL4 theorem prover. 
We also instantiated the general system to decompose verification for a fuel level 
display system. 

Previous work on the specification language did not explicitly consider vari-
ables and substitutions, or explicitly elaborate the connection to FOL [ 9]. Most of 
our corrections to the language and proof system are related to variable manage-
ment, but we also add predicates and rules for (sorted) equality and demonstrate 
that they are crucial for practical use, in particular for rewriting specification 
terms to assume the proper shape. 

Following this abstract validation of the language, several tool-related devel-
opments become possible that enable practical use of the language and system 
in a trustworthy way. Most directly, it becomes possible to perform automatic 
proof search (inside or outside HOL4), e.g., using proof search strategies to 
automatically perform decomposition of a top-level specification. Thanks to the 
translation to first-order logic, automated semantic reasoning could also be per-
formed using existing automated solvers. 
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