Reducing Behavioural to Structural Properties
of Programs with Procedures

Dilian Gurov®* and Marieke Huisman?-**
! Royal Institute of Technology, Stockholm, Sweden
2 University of Twente, Netherlands

Abstract. There is an intimate link between program structure and
behaviour. Exploiting this link to phrase program correctness problems
in terms of the structural properties of a program graph rather than
in terms of its unfoldings is a useful strategy for making analyses more
tractable. This paper presents a characterisation of behavioural program
properties through sets of structural properties by means of a transla-
tion. The characterisation is given in the context of a program model
based on control flow graphs of sequential programs with possibly re-
cursive procedures, and properties expressed in a fragment of the modal
p-calculus with boxes and greatest fixed-points only. The property trans-
lation is based on a tableau construction that conceptually amounts to
symbolic execution of the behavioural formula, collecting structural con-
straints along the way. By keeping track of the subformulae that have
been examined, recursion in the structural constraints can be identified
and captured by fixed-point formulae. The tableau construction termi-
nates, and the characterisation is exact, i.e., the translation is sound and
complete. A prototype implementation has been developed. We discuss
several applications of the characterisation, in particular compositional
verification for behavioural properties, based on maximal models.

1 Introduction

The relationship between a program’s syntactical structure and its behaviour is
fundamental in program analysis. For example, type systems analyse the struc-
ture of a program to deduce properties about its behaviour, while program syn-
thesis studies how to realise a program structure for a desired program behaviour.
The relationship is often exploited to phrase program correctness problems in
terms of the structure of a program rather than in terms of its behaviour, in
order to make analyses more tractable. If program data is abstracted away, and
only the control flow of programs with (possibly recursive) procedures is con-
sidered, the relation between structure and behaviour is well-understood in one

* Partially funded by the IST FP6 programme of the EC, under the IST-FP6-STREP-
27004 S3MS project.

** Work done while at INRIA Sophia Antipolis. Partially funded by the IST FET
programme of the EC, under the IST-2005-015905 MOBIUS project.

N.D. Jones, M. Miiller-Olm (Eds.): VMCAI 2009, LNCS 5403, pp. 136-[[50, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Reducing Behavioural to Structural Properties of Programs with Procedures 137

direction: program structure, essentially a finite “program graph”; can be repre-
sented by a pushdown system that induces program behaviour as an “unfolding”
of the structure in a context-free manner. This representation has been exploited
widely, for example for interprocedural dataflow analysis (e.g., in [I7]) and for
model checking of behavioural properties (e.g., in [§]). However, in the other
direction, this relationship is much less understood: given a program behaviour,
how can one capture the program structures that admit this behaviour?

Both program structure and behaviour can be specified by temporal logic
formulae: structural properties are concerned with the textual sequencing of in-
structions in a program, while behavioural properties consider their executional
sequencing. The relationship between structure and behaviour is naturally ex-
pressed at the logic level through the following two questions:

(1) when does a structural property entail a behavioural one and,
(2) can a behavioural property be characterised by a finite set of structural ones?

This extended abstract (the accompanying report [II] contains proofs and more
examples) addresses this characterisation problem in the context of a program
model based on control flow graphs of sequential programs with procedures (i.e.,
program data is abstracted away), for properties expressed in a fragment of the
modal p-calculus with boxes and greatest fixed-points only. This temporal logic is
suitable for expressing safety properties (cf. [4]) in terms of sequences of method
invocations, such as security policies restricting access to given resources by
means of API method calls (¢f. [18]). In previous work [12], we showed how this
logic can be used for the specification and compositional verification of safety
properties, both on the structural and on the behavioural level, and provided
tool support and case studies. In particular, we derived an algorithmic solution
to problem (1) stated above (see [12], p. 855]). Here, we give a precise solution to
the (more complex) problem (2), showing that every disjunction-free behavioural
formula can be characterised by a finite set of structural formulae: a program
satisfies the behavioural formula if and only if it satisfies some structural for-
mula from the set. For example, the results of this paper allow to derive that
the behavioural property “method a never calls method b” is characterised by
the (singleton set) structural property “in (the text of) method a, every call-
to—b instruction is preceded by some call-to—a instruction” (and hence, due to
recursion, control never reaches a call-to—b instruction).

Our solution is constructive, by means of a translation II from behavioural
properties into sets of structural properties. The translation has been imple-
mented in Ocaml and can be tested online [I0]. It conceptually amounts to
a symbolic execution of the behavioural formula, collecting induced structural
coustraints along the way. A counsiderable difficulty is presented by (greatest
fixed-point) recursion in the behavioural formula, which has to be captured by
recursion in the structural ones (in the absence of recursion it is considerably
easier to define such a translation, as we show in [14]). We handle recursion
by means of a tableau construction that maintains (during the symbolic execu-
tion) a symbolic “call stack” indicating which subformulae have been explored
for which method. We use this stack to (1) identify when a (sub)formula has

138 D. Gurov and M. Huisman

been sufficiently explored, so that a branch of the tableau can be finished, and
(2) to identify recursion in the collected structural constraints and capture this
by fixed-point formulae. We prove that the construction terminates. Moreover,
we show that the construction is sound, and in case the behavioural formula is
disjunction-free, also complete, by viewing the tableau system as a proof system.

Applications. In addition to its foundational value, the characterisation is use-
ful in various ways. In earlier work, we defined a mazimal model construction for
the logic considered here, and adapted it to the construction of maximal program
structures from structural properties [12]. The combination of this construction
with the property translation IT provides a solution to the problem of computing
maximal program structures from behavioural properties. As Section [shows,
this can be exploited to extend the compositional verification technique of [12],
where local assumptions are required to be structural, to local behavioural prop-
erties. Further, the translation can be used to reduce infinite-state verification of
behavioural control flow properties to finite-state verification of structural prop-
erties. Thus, tools supporting structural properties only can in effect be used for
verifying behavioural properties. Moreover, in a mobile code deployment scheme,
where the security policies of the platform are given as behavioural control flow
properties, translating these into structural properties of the loaded applications
enables efficient on-device conformance checking via static analysis.

Related Work. Our property translation has been motivated by our previous
work on adapting Grumberg and Long’s approach of using maximal models for
compositional verification [9] in the context of control flow properties of sequen-
tial programs with procedures [I12]. Maximal models can also be constructed for
the full p-calculus, but require representations beyond ordinary labelled tran-
sition systems, such as the focused transition systems proposed by Dams and
Namjoshi [7]. Our research is also related to previous work on tableau systems for
the verification of infinite-state systems [6/19], model checking based on push-
down systems [BI8] or recursive state machines [2], temporal logics for nested
calls and returns [13], interprocedural dataflow analysis [17], and abstract inter-
pretation (cf. e.g., the completeness result of [16]). However, these analyses infer
from the structure of a given program facts about its behaviour; in contrast, our
analysis infers, for all programs satisfying a certain behaviour, facts about the
structure from facts about that behaviour.

Organisation. Section [2] formally defines the program model and logic. Next,
Section Bldefines the translation, by means of the tableau construction. Section M
uses the characterisation to develop a sound and complete compositional verifi-
cation principle for local behavioural properties, while Section [l concludes with
a discussion of possible extensions and optimisations.

2 Preliminaries: Program Model and Logic

This section summarises the definitions of program model, logic and satisfac-
tion. These are first defined gemnerally, and then instantiated at structural and
behavioural level. We refer the reader to [12] for more details.

Reducing Behavioural to Structural Properties of Programs with Procedures 139

2.1 Specification and Logic
First, we define the general notions of model and specification.

Definition 1. (Model, Specification) A model is a (Kripke) structure M =
(S,L,—, A, \), where S is a set of states, L a set of labels, — C Sx L xS a
labelled transition relation, A a set of atomic propositions, and A: S — P(A) a
valuation, assigning to each state s the set of atomic propositions that hold in s.
A specification S is a pair (M, E), with M a model and E C S a set of entry
states.

As property specification language, we use the fragment of the modal u-calcu-
lus [I5] with boxes and greatest fixed-points only. This fragment is suitable for
expressing safety properties and is capable of characterising simulation (cf. [12]).
Throughout, we fix a set of labels L, a set of atomic propositions A, and a set
of propositional variables V.

Definition 2. (Logic) The formulae of our logic are inductively defined by:
du=p|p| X |d1ANDa| 1 Vo |[a]d | vX.¢, wherep € A,a € L and X € V.

Satisfaction on states (M, s) = ¢ (also denoted s ="1¢) is defined in the stan-
dard fashion [15]. For instance, formula [a] ¢ holds of state s in model M if ¢
holds in all states accessible from s via a transition labelled a. A specification
(M, E) satisfies a formula if all its entry states F satisfy the formula. The con-
stant formulae true (denoted tt) and false (ff) are definable. For convenience, we
use p = ¢ to abbreviate —p V ¢. In our translation of simulation logic formulae
we allow sequences « of labels to appear in box modalities, with the obvious

—_—

translation .~ to standard formulae: [¢]4 = ¢ and [l -] = [I] [a] v, where €
denotes the empty sequence, and v is already a standard formula.

2.2 Control Flow Structure and Behaviour

Our program model is control-flow based and thus over—approximates actual
program behaviour. This approach is sound, since we focus on safety properties.
We define two different views on programs: a structural and a behavioural view.
Both views are instantiations of the general notions of model and specification.
Notice in particular that these instantiations yield a structural and a behavioural
version of the logic.

Control Flow Structure. As we abstract away from all data, program struc-
ture is defined as a collection of control flow graphs (or flow graphs), one for each
of the program’s methods. Let Meth be a countably infinite set of method names.
A method specification is an instance of the general notion of specification.

Definition 3. (Method specification) A flow graph for m € Meth over a set
M C Meth of method names is a finite model My, = Vi, Lin, —my Amy Am),
with V,, the set of control nodes of m, L,, = M U {e}, A, = {m,r}, and
Am: Vin — P(An) so that m € Ay, (v) for all v € V,,, (i.e., each node is tagged

140 D. Gurov and M. Huisman

class Number {

public static boolean even(int n) { v0) @ even 0dde® v5
if (n == 0)
return true; € €
else
) return odd(n-1); vl @ even odde_v6
3 €

public static boolean odd(int n) {
if (n == 0)

return false; V2 @ even € € od v7
else
return even(n-1); odd|] even
v4 v8
1} v3 @ even,r even,r odd, r odd,r@ v9

Fig. 1. A simple Java class and its flow graph

with its method name). The nodes v € V,,, with v € A\, (v) are return points. A
method specification for m € Meth over M is a pair (M, Ey), s.t. My, is a
flow graph for m over M and E,, C V,, a non—-empty set of entry points of m.

Next, we define flow graph interfaces. These ensure that control flow graphs can
only be composed if their interfaces match.

Definition 4. (Flow graph interface) A flow graph interface is a pair I =
(I, 17), where I, I~ C Meth are finite sets of names of provided and required
methods, respectively. The composition of two interfaces Iy = (IfL,If) and I, =
(L5, I;) is defined by L U Iy = (I UL, I; UL,). An interface I = (I*,17) is
closed if I— C IT.

The flow graph of a program is essentially the (disjoint) union of its method
graphs. To formally define the notion flow graph with interface, we use the notion
of disjoint union of specifications S; WSs, where each state is tagged with 1 or 2,
respectively, and (s,7) —s,ws, (t,1), for i € {1,2}, if and only if s %, t.

Definition 5. (Flow graph with interface) A flow graph G with interface I,
written G : I, is defined inductively by

- My, En) - ({m}, M) if (Mo, Er) is a method specification for m € Meth
over M, and
- glL‘HgQ 2[1UIQ ngl 2[1 ansz :12.

A flow graph is closed if its interface is closed (i.e., it does not require any
external methods), and is clean if return points have no outgoing edges. In the
sequel, we shall assume, without loss of generality, that flow graphs are clean.
Satisfaction, instantiated to flow graphs, is called structural satisfaction |=s.

Ezample 1. Figure [Il shows a Java class and its (simplified) flow graph with
interface ({even,odd}, {even,odd}). This contains two method specifications,
for method even and for method odd, respectively. Entry nodes are depicted
as usual by incoming edges without source. For this flow graph, the structural
formula vX. [even] r A [odd] r A [¢] X expresses the property that “on every path
from a program entry node, the first encountered call edge leads to a return
node”, in effect specifying that the program is tail-recursive.

Reducing Behavioural to Structural Properties of Programs with Procedures 141

Control Flow Behaviour. Next, we instantiate specifications on the
behavioural level. We use transition label 7 to designate internal transfer of con-
trol, label m; call ms to designate an invocation of method ms by method mq,
and label mg ret my for a corresponding return from the call.

Definition 6. (Behaviour) Let G = (M, E) : I be a closed flow graph where
M = (V,L,—,A,)). The behaviour of G is defined as model b(G) = (My, Ep),
where My = (S, Ly, —b, A, M), such that S, = V x V*| i.e., states (or con-
figurations) are pairs of control points v and stacks o, Ly = {m1 k ma | k €
{call,ret}, m1,mq € ITYU{7}, Ap = A, Mp((v,0)) = A(v), and —,C Sy x Ly X S
is defined by the rules:

[transfer] (v,0) = (v',0) iftmelt, v, v,vE-r

[call] (v1,0) ww (vo,v] o) ifmy,meel™, vy fﬁ";ml vy, v By
Vo ': ma, Uy € FE

mo ret my
N

[return] (ve,v1 - 0) p (v1,0) fmi,mael™ va EmaAr, v1 |Emy

The set of initial states is defined by Ep = E x {¢}.

Flow graph behaviour can alternatively be defined in terms of pushdown au-
tomata (PDA) [12] Def. 34]. This can be exploited by using PDA model checking
for verifying behavioural properties (see for instance [5lg]).

Also on the behavioural level, we instantiate the definition of satisfaction:
we define G =, ¢ as b(G) = ¢. The resulting behavioural logic is sufficiently
powerful to express the class of security policies that can be defined by means
of finite-state security automata (cf. e.g. [18]).

Ezxzample 2. Consider the flow graph from Example [Il Because of possible un-
bounded recursion, it induces an infinite-state behaviour. One example run (i.e.,
linear execution) through this behaviour is represented by the following path
from an initial to a final configuration:

even call odd odd call even
—_— —_

b (1)571)3) L’b (06703) L’b (07703)

even ret odd odd ret even
—— (v9,v3) ———

(UO, 6) L’b (11176) L’b (0276)

(U07U9 '1/3) L’b (1/171)9 : Us) L’b (U47U9 'Us) b (1/376)

For this flow graph, the behavioural formula even = vX. [even call even] ff A
[7] X expresses the property “in every program execution that starts in method
even, the first call is not to method even itself”.

More example properties and realistic program specifications can be found in [12].

3 Mapping Behavioural into Structural Properties

This section defines a mapping IT from interfaces and behavioural properties
to sets of structural properties. As mentioned above, the implementation of
the mapping can be tested online. Throughout the section we assume that be-
havioural properties are disjunction-free; in Section [5l we discuss how II can be

142 D. Gurov and M. Huisman

extended to behavioural formulae with disjunction, though at the expense of
completeness. We show that II computes, from a behavioural property ¢ and
closed interface I, a set of structural formulae that characterises ¢ and I. That
is, for any (closed) flow graph G with interface I and any behavioural formula ¢
that only mentions labels that are in the behaviour of G (i.e., Ly in Definition [6]):

G ¢ & Ixel(9).G Fs x (1)

To deal with the fixed-point formulae of the logic, mapping II is defined
with the help of a tableau construction. A behavioural formula ¢ gives rise to a
(maximal) tableau that induces a set of structural formulae through its leaves.
The constructed tableau is finite, i.e., tableau construction terminates.

3.1 Tableau Construction

Our translation is based on a symbolic execution of the behavioural property by
means of a tableau construction. When tracing a symbolic execution path, we
tag all subformulae of the formula with unique propositional constants from a
set Const. We use a global map S : ¢ — Const to map formulae to their tags.
We consider S as an implicit parameter of the tableau construction. The tableau
construction operates on sequents of the shape gy ¢ ¢ parametrised on:

— a non-empty history stack H € (I" x (I~ U {e} U Const)*)*, where each
element is a pair (¢, F') consisting of a method name i € IT (called the
current method) and a sequence F € (I~ U {e} U Const)* of edge labels
and propositional constants abbreviating subformulae of ¢ (called frame).
For any frame F', we use F to denote this frame cleaned from propositional
constants X € Const:

—~—
~ —~— ~ — ~

€E=c¢ m-o=m-o E-0=¢-0 X.o=0
— a fized-point stack U, defining an environment for propositional variables
by means of a sequence of definitions of the shape X = vX.). An open
formula ¢ in a sequent parametrised by U can then be understood via a
suitable notion of substitution, based on the standard notion of substitution
{0/X} of a formula 6 for a propositional variable X in a formula t): the
substitution of ¢ under U is inductively defined as follows:

dled=¢ Ol(X =vXy) Ul = (o{vX.y/X})[U]

— a store C, used for accumulating structural constraints during symbolic ex-
ecution.

We use @y m, Dy and F¢ to denote the single-element history stack (m, €) and
the empty fixed-point stack and store, respectively.

For a given closed behavioural formula ¢ and method m, we construct a max-
imal tableau with root Fg, . &, @ ¢ that induces a set of structural formulae
through its leaves, as described below. We denote the set of induced structural

Reducing Behavioural to Structural Properties of Programs with Procedures 143

formulae for ¢ and m with 7,,(¢). We then define the translation of ¢ w.r.t. a
given interface I:

I (¢) = {/\mel+ Xm | Xm € 7"'771(925)}

During tableau construction, the history stack, fixed-point stack and store are
updated as follows, provided the current sequent is not a repeat of an earlier
sequent (see below):

1. First, if ¢ is not a fixed-point formula, the propositional constant S(¢) tag-
ging the behavioural property ¢ of the current sequent is appended to the
end of the frame of the top element of H;

2. Next,

— if the behavioural property ¢ prescribes an internal transfer, then ¢ is
appended to the end of the frame of the top element of H;

— if ¢ prescribes a call from a to b, and the top element of H is in method a,
then b is added at the end of the frame of the top element of H, and a
new element (b, €) is pushed onto H;

— if ¢ prescribes a return from a to b, the top element of H is in method a
and the next element is in method b, then a new structural constraint is
added to the store, reflecting the possibility of currently not being at a
return point, and the top element is popped from H; and

— if ¢ is a fixed-point formula v X.¢, then a new equation X = vX.¢ is
pushed onto the fixed-point stack U, if not already there; this conditional
appending is denoted by (X =vX.¢) o U.

Notice that non-emptiness of the history stack and closedness of ¢[U] are invari-
ants of the tableau construction.

Tableau System. The tableau system is given in Figure [2] as a set of goal-
directed rules. Axioms are presented as rules with an empty set of premises,
denoted by —’. The condition Ret(i,a,b, H) used in the return rules is defined
asi=aANH#eNIF,H .H= (b, F)-H', i.e., control is currently in method a,
the call stack is not empty, and the control point on the top of the stack is in
method b. Formally, a tableau T = (T,)\) is a tree T equipped with a labelling
function A mapping each tree node to a triple consisting of a sequent, a rule
name (of the rule applied to this sequent), and a set of triples of shape (i, F, q)
where ¢ are literals (that is, atomic propositions in positive or negated form or
propositional variables). The triple sets are non-empty only at applications of
axiom rules; such leaves are termed contributing, and the set of triples is depicted
(by convention) as a premise to the rule. A tableau for formula ¢ and method m
is a tree with root Fg,, .. &, 2. ¢ obtained by applying the rules. A tableau is
termed mazimal if all its leaves are axioms.

If in a tableau there is a leaf node t;).z v,c ¢ for which there is an internal
node =(; pry.pr,ur,cr ¢ such that F' is a prefix of F, U’ is a suffix of U, and C" is
a subset of C, we term the former node a pseudo-repeat; any node of the latter
kind we term a companion. An internal tableau node is said to be stable if all its

144 D. Gurov and M. Huisman

G, F).H U CP G, F).-=H,UTP
P IGO0 F.m(7 . F)eHJ U0 P @Ol FL (7 FIEHIUC
Fimy. vX.p ey, X
(i,F)-H,U,C (i,F)-H,U,C _

vX Xunf —=——== (X =pX.

F(i,F) H,(X=vX.¢)oU,CcX u F,F-s(x))-H,UC? (¢) el

G, Ry B U, P12 - Fa,ry.H,U,clT]®
F(i,F-S(¢1A¢9))-H,U,CP1 F(i,F-S(61nd2))-H,U,C P2 F i, F.S([r]¢)-e)-H,UCP

. . a call b . Fe . a call b .
(i, F) H,U;C[Ik i#a (i,F).H,U,C| l¢ i—a

(4,F-S([a call b]p)-b)-H,U,CP =

callg cally Fog

i th) F o, th ,
reto w —Ret(i,a,b, H) rety #m Ret(i,a,b, H)

Fa Py, o] . = . @ .
IRep 55757700 IntRep(S(9), (i, F)-H) CRep LI HUCP C4lRep(S(9), (i, F)-H, c)

RRep —P0-C% RetRep(S(), (i, F) - H, c)

Fig. 2. Tableau system

descendant leaves are axioms or pseudo-repeats. A tableau is stable if its root
node is stable.

Tableau construction proceeds as follows. First, a minimal stable tableau is com-
puted, i.e., if a node is a pseudo-repeat, it is not further explored. If all pseudo-
repeats in this tableau satisfy some repeat condition for any of their companions
(see below), the tableau is maximal and construction is complete. Otherwise,
all pseudo-repeats that are not satisfying any of the repeat conditions are si-
multaneously unfolded, using a breadth-first exploration strategy, and tableau
construction continues until the tableau is stable again, upon which the checking
for the repeat conditions is repeated. This process is guaranteed to terminate,
as we state later, resulting in a finite maximal tableau.

Repeat Conditions. We now formulate the three repeat conditions used in the
tableau system, giving rise to three types of repeat nodes. Only repeats of the
first type, i.e., internal repeats, contribute to triples, giving rise to recursion in
structural formulae. In contrast, the other two repeat conditions only recognise
that a similar situation has been reached before, and thus no new information will
be obtained by further exploration. The first repeat condition requires merely
the examination of the top frame of the history stack of the current sequent;
the second requires the examination of the whole path from the root to the
pseudo-repeat; while the third requires the examination of all remaining paths.

Internal repeat. Tableau construction guarantees that every tableau node of
shape Fg.(;, rr.5(¢)-F). 07, U,c @ Possesses an ancestor node b pry.grur o @
such that U’ is a suffix of U and C’ is a subset of C. As a consequence, every
node of shape F; rr.s(¢).F).m,U,c ¢ is a pseudo-repeat (with some ancestor
node of shape ¢ pr).q,u7,c’ ¢ as companion); such pseudo-repeats are termed
internal repeats. Intuitively, an internal repeat indicates that a regularity in the

Reducing Behavioural to Structural Properties of Programs with Procedures 145

structure of method ¢ has been discovered, and thus this regularity should be
reflected in the structural formulae. Therefore, in this case (i, F'-S(¢)-F",S(¢))
is added to the triple set of the IRep axiom. (Notice that in fact the propositional
coustant S(¢) is mapped to a fresh propositional variable, here, and in the
construction of the structural formulae. However, for clarity of presentation, we
overload the symbols themselves, as their intended meaning should be clear from
the context.)

Call repeat. A pseudo-repeat (; r).g,u,c ¢, which has an ancestor node as
companion but is not an internal repeat, is a call repeat if H matches the call
stack of the companion upto the latter’s return depth (where matching means
that the same methods are on the stack, with identical frames); in the special case
where both stacks are shorter than the return depth, they have to be identical.

The return depth of a node is only defined if the subtableau of the companion
is complete (i.e., the pseudo-repeat is the only open branch). When we construct
a tableau for a formula with multiple fixed-points, it can happen that two pseudo-
repeats occur in the subtableaux of their respective companions. In this case, if
both nodes are call repeats exploration terminates (for the current return depth);
otherwise, by virtue of the tableau construction, the pseudo-repeat that is not
a call repeat will never become one when continuing the tableau construction.
Therefore, we can explore this node further, and break the mutual dependency.

The return depth of a tableau node n, denoted p(n), is defined as the maximal
difference between the number of applied return rules and the number of applied
call rules on any path from n to a descendant node. Formally, where r and 0
range over rule names and sequences of rule names, respectively, while rules(m)
denotes the sequence of rule names along a tableau path m:

pPo)+1 if r € {reto, ret; }
p'e)=0 pr-8)=<p0)—1 if r € {callp, call; }
p'(9) otherwise
p(n) = maz {p’'(rules(w)) | = a path from n to a descendant node} U {0}

Return repeat. A pseudo-repeat is called a return repeat if it has a companion
on a different path from the root, such that its history stack is identical to the
one of the companion.

Formally, the repeat conditions are defined as follows, where X is §(¢), and ¢
is the companion node of the pseudo-repeat with history stack H..

IntRep(X, (i, F) - H) < X € F
CallRep(X, (i, F) - H,c) & X & FAtake(p(c) + 1, (4, F)-H)=take(p(c) + 1, H,)
RetRep(X, (¢, F) - H,¢) < (i, F)- H = H,
Termination. The repeat conditions ensure termination of tableau construction.

Theorem 1. Mazimal tableauz are finite.

The proof of this and the remaining results can be found in [11].

146 D. Gurov and M. Huisman

3.2 Structural Formulae Induced by a Tableau

A maximal tableau for ¢ and m induces, through the sets of triples accumulated
in the leaves, a set of structural formulae 7,,,(¢) in the following manner:

1. Let £ be the set of non-empty triple sets collected from the leaves of the
tableau. Build a collection of choice sets A(L), by choosing one triple from
each element in L.

2. For each choice set A € A(L),

(a) Group the triples of A according to method names: for each i € I, define
(b) For each ¢ € I such that =; # @, build a formula i = 2(=;), where

2(=) = /\¢eﬁ’(5) ¢

(¢ (6q) € 5}

(¢) The induced formula x for A is the conjunction of the formulae obtained
in the previous step.

3. The set 7, (¢) is the set of induced formulae for A € A(L).

For example, the choice set A = {(a, X - b, —r), (a, X - b, X)} induces (by step 2)
the structural formula a = vX. [b] (-r A X). Notice that all induced formulae
are closed and guarded whenever the original behavioural one is.

Ezample 8. Consider formula ¢ = vX.[acallb] X A [breta] (-r A X), i.e., for
every program execution consisting of consecutive sequences of calls from a to b
followed by a return, the points at which control resumes in a are never return
points themselves. Figure] shows the mapping S from the subformulae of ¢
to propositional constants, and the tableau that is constructed for this formula.
The first node where a triple is produced is the one labelled ret;; the triples then
propagated to the two leaves that result from application of the rule for atomic
propositions, and simple repeat, respectively. The tableau has two leaves with
non-empty triple sets; £ thus consists of two sets of two triples each.

Thus, to construct the set of structural formulae, we compute structural for-
mulae for the four choice sets resulting from L:

{(CL,X4 . Xl . X2 -b- X5,_"I”), (CL,X4 . Xl . X2 . b'X5,X4)}
{(a,X4 -X1 . X2 -b- X5,ﬁ7‘), (b, X4 . Xl,ﬁT‘)}

{(b,X4 . Xl,ﬁT‘), (a,X4 -X1 -X2 -b- X5,X4)}

{(b,X4 . Xl,ﬁT‘)}

The first set gives rise to the structural formula a = v X4.vX1.vXs. D] v X5.(—rA
X4), which simplifies to x1 = a = vX.[b](—r A X): in the text of a, no initial
sequence of consecutive call-to-b instructions ends in a return instruction. The

Reducing Behavioural to Structural Properties of Programs with Procedures 147

XolvX. [acallb] X A [breta] (—=r A X)||X2]|[acall)] X X4|X Xe |
Xi|lacall b)) X A [breta] (-r A X) Xs|[breta] (-r A X)|| Xs|-r A X

Fla,e), 0y 8¢ vX-[acallb] X A [breta] (-1 A X)

vX

"a,0), X=¢.85 X

X unf
Fla,X4) . X=¢, 0 lacall Bl X Albreta] (-r A X)

A

Fla,X4-X1),X=0,8 [0@D X Fla,X4-X1),X=0,0 [bretal (-r A X)

cally

retq

Fbhe)(a, X4 X1 X3:0),X=0¢,05 X

X unf

F(b,X4) (0, X4 X1 Xo-b),X=¢, 0 [0l bl X Albreta] (-r A X)

A

F(b,X4-X1) (a,X4 X1 - Xg:b),X=6,85 [@lb] X callg *)

)

A

F(b,X4-X1) (0, X4-X1-X:b), X=¢,0o [Pretal (Gr A X)

retq

Fla, X4 X1 X2:0),X=0{(b,X4-X1,-1)} T7AX

A

Fla,X4 X1 Xgb:X5),X=0,{(b,X4-X1,-7)} 7" Fa,X4 X1 Xg:0:X5),X=6,{(b,X4-X1,-1)} X
-r IRep(*)
(a, X4 X1 -Xo -b-X5,-r) (a, Xy X1 - Xg b X5,Xy)
(b, X4 - X1, -7) (b, X4 - X1, =7)

Fig. 3. Tableau for vX.[acallb] X A [breta](—-r A X) and a, giving rise to {a =
vX.[b)(-rAX),b= —r}

last set gives rise to the formula y2 = b = —r (again after simplification): the
text of b does not begin with a return instruction. The formulae constructed
from the second and third set are subsumed by x2, and hence 7,(¢) = {x1, x2}-
For ¢ and method b there is a single tableau, which has no leaf triples, and hence

(@) = {tt}. Thus, II(¢) = {x1, X2}

More property translations and example tableaux illustrating the various repeat
conditions can be found in [II].

3.3 Correctness of the Translation

Because of space limitations, we cannot present here the full soundness and
completeness proofs; instead, we refer to the accompanying report [I1]. The main
idea is the construction of a proof system that allows to show that a structural
formula x implies a behavioural formula ¢. The rules of the proof system stand
in a one-to-one correspondence with the rules of the tableau system, except for
the handling of fixed-point formulae, which are unfolded (so proof trees can
be infinite). The proof tree that corresponds to the unfolding of a tableau for
behavioural formula ¢ inducing structural formula y, constitutes a legal proof
of x implying ¢ (i.e., soundness of IT). Moreover, any formula x’ that implies ¢
is subsumed by a formula induced by the tableau (i.e., completeness of IT).

Theorem 2. Translation II from behavioural to structural formulae is sound
and complete.

148 D. Gurov and M. Huisman

4 Application: Compositional Verification

The original motivation for the present work has been the wish to extend an ear-
lier developed compositional verification method [12] to behavioural properties.
The compositional verification method is based on the computation of maximal
models: a model is said to be mazimal for a given property ¢, if it satisfies ¢
and simulates (w.r.t. a property-preserving simulation relation) all other models
satisfying ¢. Due to the close connection between simulation and satisfaction in
our logic, we obtain the following compositional verification principle: showing
G1 WGy = 9 can be reduced to showing G1 = ¢ (i.e., component G; satisfies a
local assumption @) as long as G, WGy = 9 (i.e., component Ga, when composed
with the maximal flow graph G, for ¢, satisfies the global guarantee v).

Thus, the compositional verification problem is reduced to finding maximal
flow graphs. However, given a property ¢ over a flow graph (behaviour), there
is no guarantee that the maximal model of ¢ is a valid flow graph (behaviour).
At the structural level this problem can be solved, because we can precisely
characterise legal flow graphs w.r.t. an interface I by a structural formula 6; in
our logic. Then, if ¢ is an arbitrary structural formula, the maximal model of
the formula ¢ A 07 is a flow graph G4 ; which represents all flow graphs with
interface I that satisfy ¢.

However, there is no such way to precisely characterise flow graph behaviour
in our logic (cf. [12]), and thus one cannot directly apply the above compositional
verification principle to behavioural properties. In [12], we proposed a “mixed”
rule where global guarantees are behavioural, but local assumptions are struc-
tural. With the results of the present paper, however, this rule can be combined
with the characterisation () to yield the following sound and complete compo-
sitional verification principle, where both the global guarantee (required to be
disjunction-free) and the local assumption are behavioural.

Gi v ¢ {gXng © G2 = Z/J}xeﬂzg (¢)

G1 WG =y ¥
Notice that when applying the rule, instead of showing G = ¢ it suffices to
show G; |=s x for some x € IIj; (¢). Completeness of the principle guarantees
that no false negatives are possible: if the second premise fails, then there is
indeed a legal flow graph G with interface Ig, such that G |=p ¢ but GW Gy =y 1.
An alternative way of using characterisation () for compositional verification

is to apply it to the global guarantee (see [11]).

G closed

5 Conclusions and Future Work

This paper presents a precise characterisation of (disjunction-free) behavioural
formulae as sets of structural formulae, in a context where programs are ab-
stracted as flow graphs, and properties are expressed in a fragment of the modal
p-calculus with boxes and greatest fixed points only. As one significant appli-
cation, we state a sound and complete compositional verification principle for

Reducing Behavioural to Structural Properties of Programs with Procedures 149

behavioural properties based on maximal models. Another possible application is
the reduction of infinite-state verification of behavioural control flow properties
to finite-state verification of structural properties.

Extensions. Unlike the other connectives of the logic, validity of sequents is
not, compositional w.r.t. disjunction in our tableau system. Disjunction can still
be handled, though at the expense of completeness, by adding two symmetric
tableau rules that simply “drop” the right respectively the left disjunct. A be-
havioural formula and a method will thus give rise to a set of tableaux, for which
we take the union of their induced sets of structural formulae. Alternatively, to
potentially obtain a complete translation (if such exists), we plan to generalise
the sequent format, e.g., in the style of Gentzen sequents, and then also tableau
construction and formula extraction. We also plan to study whether the charac-
terisation can be extended for the logic with diamonds and least fixed points, and
for richer program models (e.g., with exceptions, or multithreading, as in [13]),
and whether the compositional verification principle can be generalised to open
components. For the last extension, two different approaches will be considered:
(i) the translation is generalised to formulae over open interfaces, requiring the
generalisation of Definition [6] for open flow graphs, and (ii) every open compo-
nent is “closed” by composing it with a most general environment before the
characterisation is applied.

Implementation. An implementation of the translation has been developed
in Ocaml, and is available via a web-based interface [I0]. It returns a tableau
per method, plus a set of structural formulae (after applying some basic logi-
cal simplifications, e.g., removing unused fixed-points, to make the output more
readable). It has been applied on all examples in the paper and the accompa-
nying technical report [I1I]. In all cases, the output is produced within seconds.
Various optimisations of the translation are possible. For instance, since logi-
cally subsumed formulae are redundant in the characterisation, the construction
of choice sets can be optimised as follows: if a triple is picked from a contribut-
ing leaf, then the same triple must be selected from all other contributing leaves
containing it.

In future work, the complezity of the tableau construction will be studied by
finding upper bounds for the size of generated tableaux, and for the number and
size of generated formulae.

References

1. Alur, R., Arenas, M., Barcelo, P., Etessami, K., Immerman, N., Libkin, L.: First-
order and temporal logics for nested words. In: Logic in Computer Science (LICS
2007), Washington, DC, USA, pp. 151-160. IEEE Computer Society Press, Los
Alamitos (2007)

2. Alur, R., Benedikt, M., Etessami, K., Godefroid, P., Reps, T., Yannakakis, M.:
Analysis of recursive state machines. ACM TOPLAS 27, 786-818 (2005)

3. Alur, R., Etessami, K., Madhusudan, P.: A temporal logic for nested calls and
returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
467-481. Springer, Heidelberg (2004)

150

4.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

D. Gurov and M. Huisman

Bouajjani, A., Fernandez, J.C., Graf, S., Rodriguez, C., Sifakis, J.: Safety for
branching time semantics. In: Leach Albert, J., Monien, B., Rodriguez-Artalejo,
M. (eds.) ICALP 1991. LNCS, vol. 510, pp. 76-92. Springer, Heidelberg (1991)
Burkart, O., Caucal, D., Moller, F., Steffen, B.: Verification on infinite structures.
In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra,
pp- 545-623. North-Holland, Amsterdam (2000)

Dam, M., Gurov, D.: u-calculus with explicit points and approximations. Journal
of Logic and Computation 12(2), 43-57 (2002)

Dams, D., Namjoshi, K.S.: The existence of finite abstractions for branching time
model checking. In: Nineteenth Annual IEEE Symposium on Logic in Computer
Science (LICS 2004), pp. 335-344. IEEE Computer Society Press, Los Alamitos
(2004)

Esparza, J., Hansel, D., Rossmanith, P.; Schwoon, S.: Efficient algorithms for model
checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000.
LNCS, vol. 1855, pp. 232-247. Springer, Heidelberg (2000)

Grumberg, O., Long, D.: Model checking and modular verification. ACM
TOPLAS 16(3), 843-871 (1994)

Gurov, D., Huisman, M.: From behavioural to structural properties: A tool web
interface, http://wuw.csc.kth.se/“dilian/Projects/CVPP/beh2struct.php
Gurov, D., Huisman, M.: Reducing behavioural to structural properties of programs
with procedures. Technical Report TRITA-CSC-TCS 2007:3, KTH Royal Institute
of Technology, Stockholm, 35 pages (2007),
http://www.csc.kth.se/"dilian/Papers/techrep-07-3.pdf

Gurov, D., Huisman, M., Sprenger, C.: Compositional verification of sequential
programs with procedures. Information and Computation 206(7), 840-868 (2008)
Huisman, M., Aktug, I., Gurov, D.: Program models for compositional verifica-
tion. In: International Conference on Formal Engineering Methods (ICFEM 2008).
LNCS, vol. 5256, pp. 147-166. Springer, Heidelberg (2008)

Huisman, M., Gurov, D.: Composing modal properties of programs with proce-
dures. In: Formal Foundations of Embedded Software and Component-Based Soft-
ware Architectures (FESCA 2007). Electronic Notes in Theoretical Computer Sci-
ence (to appear, 2008)

Kozen, D.: Results on the propositional pu-calculus. Theoretical Computer Sci-
ence 27, 333-354 (1983)

Reddy, U., Kamin, S.: On the power of abstract interpretation. Computer Lan-
guages 19(2), 79-89 (1993)

Reps, T., Schwoon, S., Jha, S., Melski, D.: Weighted pushdown systems and their
application to interprocedural dataflow analysis. Science of Computer Program-
ming 58(1-2), 206-263 (2005)

Schneider, F.B.: Enforceable security policies. ACM Trans. Infinite Systems Secu-
rity 3(1), 30-50 (2000)

Schopp, U., Simpson, A.K.: Verifying temporal properties using explicit approxi-
mants: Completeness for context-free processes. In: Nielsen, M., Engberg, U. (eds.)
FOSSACS 2002. LNCS, vol. 2303, pp. 372-386. Springer, Heidelberg (2002)

http://www.csc.kth.se/~dilian/Projects/CVPP/beh2struct.php
http://www.csc.kth.se/~dilian/Papers/techrep-07-3.pdf

	Introduction
	Preliminaries: Program Model and Logic
	Specification and Logic
	Control Flow Structure and Behaviour

	Mapping Behavioural into Structural Properties
	Tableau Construction
	Structural Formulae Induced by a Tableau
	Correctness of the Translation

	Application: Compositional Verification
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

