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Two out of three

Modular verification of temporal properties:
Grumberg & Long 1994: finite–state systems, ACTL
Kupferman & Vardi 2000: finite–state systems, ACTL∗

based on maximal model construction

Modular verification of procedural programs:
”built–in” for Hoare–logic based approaches

Model checking procedural programs:
Das, Lerner & Seigl 2002: property simulation (ESP)
Esparza et al 2002: model checking pushdown systems
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This work

started in 2001

original goal: verify Javacard programs in the presence of
post–issuance loading of applets on smart cards

joint work with Marieke Huisman, Christoph Sprenger, Irem Aktug,
Siavash Soleimanifard, Afshin Amighi, Pedro Gomez
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Compositionality and Modularity

Compositionality as a mathematical principle:

express the meaning of the whole through the meaning of the parts

example: denotational semantics

example: definitions and proofs by structural induction

Modularity as a systems design principle:

control the complexity of the system
by braking it down into manageable pieces that are
designed, implemented, tested and maintained independently
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Verification

Verification as a systems design task:

match a model of the system against a specification

Modular Verification:

specify and verify every module independently

infer system correctness from module correctness
i.e., relativize global properties on local ones

This relativization allows verification in the presence of variability
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Variability

Temporal variability:

static code evolution

dynamic code replacement

dynamic code loading: code not available at verification time

Spacial variablility:

multiple variants, as arising from software product lines
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Verification in the presence of variability

Consider a system with four modules (components):

A implemented, stable

B implemented, expected to evolve

C implemented, multiple variants

D not yet implemented/available

How shall one plan for the verification of a global property ψ?

as early as possible

with minimal effort: reuse results
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Relativization

Relativize global property on local specifications. Three tasks:

1 specify modules B, C, D

2 verify
impl(B) |= spec(B)

impl(C ) |= spec(C )

impl(D) |= spec(D)

3 verify
impl(A) + spec(B) + spec(C ) + spec(D) |= ψ

But... how, and is there an algorithmic solution?
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Program Models

One approach is to use a unifying formal model to represent modules and
whole programs.

Then, for the second task:

impl(B) |= spec(B)

impl(C ) |= spec(C )

impl(D) |= spec(D)

perform the following steps:

1 from module implementations: extract models

2 model check models against local specifications:

mod(impl(B)) |= spec(B)

mod(impl(C )) |= spec(C )

mod(impl(D)) |= spec(D)
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Program Models

For the third task:

impl(A) + spec(B) + spec(C ) + spec(D) |= ψ

perform the following steps:

1 from module implementations: extract models

2 from module specifications: construct (so-called maximal) models

3 compose extracted with constructed models

4 model check composed model against global property ψ:
mod(impl(A))+max(spec(B))+max(spec(C ))+max(spec(D)) |= ψ
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Simulation: A refinement pre–order on models

We require the following conditions:

1 extracted models simulate module implementations

2 maximal models simulate models satisfying module specifications

3 simulation is monotone w.r.t. composition

4 simulation preserves properties (backwards)

The third task:

mod(impl(A)) + max(spec(B)) + max(spec(C )) + max(spec(D)) |= ψ

thus entails:

impl(A) + impl(B) + impl(C ) + impl(D) |= ψ
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Our Setup

Program model: Flow graphs capturing purely control flow

behaviour as induced pushdown automaton

Properties: legal sequences of method invocations

temporal safety properties

Verification: pushdown automata model checking

essentially a language inclusion problem

Most details in:
Compositional Verification of Sequential Programs with Procedures
Dilian Gurov, Marieke Huisman and Christoph Sprenger
Journal of Information and Computation
vol. 206, no. 7, pp. 840–868, 2008
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Tutorial Outline

1 Preliminaries: Models, Simulation, Logic

2 Flow Graphs, Behaviour and Extraction

3 Property Specification and Verification

4 Maximal Flow Graphs

5 Tool Support

6 Application: Software Product Lines

7 Conclusion
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1. Models, Simulation, Logic

A model M

a

s3

p,q
s1 s2

b

b

b a

p

Definition (Model)

A structure M = (S , L,→,A, λ) where:

(i) S a set of states

(ii) L a set of transition labels

(iii) → ⊆ S × L× S a transition relation

(iv) A a set of atomic propositions

(v) λ : S → P(A) a valuation

An intialised model (M,E ) is a model M
with a designated set of entry states E ⊆ S
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Simulation

Let M1 = (S1, L,→1,A, λ1) and M2 = (S2, L,→2,A, λ2) be models over
the same sets of labels and atomic propositions.

Definition (Simulation)

A binary relation R ⊆ S1×S2 is a simulation if whenever (s1, s2) ∈ R

(i) λ1(s1) = λ2(s2)
(ii) for any a ∈ L and s ′1 ∈ S1

s1
a−→1 s ′1 entails s2

a−→2 s ′2 for some s ′2 ∈ S2 such that (s ′1, s
′
2) ∈ R

s2 ∈ S2 simulates s1 ∈ S1 if
there is a simulation relation R so that (s1, s2) ∈ R

(M2,E2) simulates (M1,E1) if
every s1 ∈ E1 is simulated by some s2 ∈ E2
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Logic

Definition (Simulation Logic)

The formulas of the logic are inductively defined through the BNF:

φ ::= p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ | νX .φ

where p ∈ A and a ∈ L

Example

Some example formulas and their meaning:

[a] ff

[a] ff ∧ [b] ff

[a] ff ∨ [b] ff

νX . p ∧ [a] ff ∧ [b] X
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Maximal Models

Definition (Maximal Model)

A maximal model for a formula φ is an initialized model S such that:

(i) S satisfies φ

(si) S simulates all initialized models satisfying φ

Theorem

Every simulation logic formula φ has a maximal model Sφ

Corollary

Maximal models are unique up to simulation equivalence
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Constructing Maximal Models

Labels {a, b}, atoms {p}, formula [b] ff ∧ p

The formula as an equation system:

X = [b] ff ∧ p

convert into simulation normal form:

X = [a] (Y1 ∨ Y2) ∧ [b] ff ∧ p
Y1 = [a] (Y1 ∨ Y2) ∧ [b] (Y1 ∨ Y2) ∧ p
Y2 = [a] (Y1 ∨ Y2) ∧ [b] (Y1 ∨ Y2) ∧ ¬p

a, b

a, b

a a

Y2

a, ba, b

p

Y1

X

p

(M,E )
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2. Flow Graphs, Interfaces and Behaviour

Flow Graphs: The structure of program control flow (as a model)

class Number {

}

      if (n == 0)
   public static boolean even(int n){

         return true;
      else 
         return odd(n−1);
   }

   public static boolean odd(int n){
      if (n == 0)

      else 
         return even(n−1);  

   }

         return false;     

v5

v6

v7

v1

v3 v9

v0

v2

v4 v8

ε

ε

ε

ε

ε

ε

even

even

even

odd

odd

odd

even

even, r reven,rr odd, odd,

odd

Interfaces: provided and required methods

Dilian Gurov (KTH) Modular Verification of Temporal Safety Properties of Procedural Programs15 November 2011 19 / 41



2. Flow Graphs, Interfaces and Behaviour

Flow Graphs: The structure of program control flow (as a model)

class Number {

}

      if (n == 0)
   public static boolean even(int n){

         return true;
      else 
         return odd(n−1);
   }

   public static boolean odd(int n){
      if (n == 0)

      else 
         return even(n−1);  

   }

         return false;     

v5

v6

v7

v1

v3 v9

v0

v2

v4 v8

ε

ε

ε

ε

ε

ε

even

even

even

odd

odd

odd

even

even, r reven,rr odd, odd,

odd

Interfaces: provided and required methods

Dilian Gurov (KTH) Modular Verification of Temporal Safety Properties of Procedural Programs15 November 2011 19 / 41



Flow Graph Behaviour

A flow graph induces a pushdown automaton (PDA):

configurations (v , σ) are pairs of control point and call stack

productions induced by:

non–call edges: stack unchanged, rewrite control point
call edges: push target node on stack, new control point is entry node
of called method
return nodes: pop stack, new control point is old top of stack

The behaviour of a flow graph is the behaviour of the induced PDA (again
a model)
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Flow Graph Behaviour

Flow Graph:

class Number {

}

      if (n == 0)
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odd

Example run through the behaviour, from an initial configuration:

(v0, ε)
τ−→ (v1, ε)

τ−→ (v2, ε)
even call odd−−−−−−−→

(v5, v3)
τ−→ (v6, v3)

τ−→ (v8, v3)
odd ret even−−−−−−−→ (v3, ε)
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Open Flow Graph Behaviour

How to treat external methods in open flow graphs?

One possibility is to treat calls to external methods as atomic

ignores callback behaviour

not relevant in a context–free setting (no data)

Example run of method even as an open flow graph:

(v0, ε)
τ−→ (v1, ε)

τ−→ (v2, ε)
even caret odd−−−−−−−−→ (v3, ε)
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Flow Graph Extraction from Java Bytecode

Conceptually simple:

labels become control points

instructions define outgoing edges

Complications: sound, precise, modular

virtual method call resolution

exceptional flow
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Flow Graph Extraction from Java Bytecode

Java program:

public static void Meth(boolean flag, ExtA myobj) {

try {

if (flag) myobj.Meth();

} catch (NullPointerException e) {}

}

Corresponding bytecode:

public static void Meth(boolean, ExtA);

Code:

0: iload_1

1: ifeq 8

4: aload_0

5: invokevirtual

8: goto 12

11: astore_2

12: return

Exception table:

from to target type

0 8 11 NullPointerException
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Flow Graph Extraction from Java Bytecode

Correctness:

stated in terms of simulation

Tool support:

Sawja: a framework for static analysis of Java bytecode

developed at Inria Rennes, France

uses a stackless intermediate representation of Java bytecode

Details in:
Provably Correct Flow Graphs from Java Programs with Exceptions
Afshin Amighi, Pedro de Carvalho Gomez and Marieke Huisman
In Proceedings of FoVeOOS’11, pp. 31–48
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Public Interface Abstraction

We can abstract from private methods through inlining:

m a b

a b

a a

v0

v1, r

v2

v7, r

v5 v6

v3, r

v4

m

m

v4.v3.v1
v0

v1, r

v6.v3.v1

m

v2.v1

v3.v1

v5.v3.v1

v7.v3.v1

Details in:
Interface Abstraction for Compositional Verification
Dilian Gurov and Marieke Huisman
In Proceedings of SEFM’05, pp. 414–423
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3. Property Specification and Verification

We instantiate both simulation and simulation logic to flow graphs and
flow graph behaviour

Example structural property:

program is tail recursive:

νX . [even] r ∧ [odd] r ∧ [ε] X

can be checked with standard finite–state model checking

Example behavioural property:

first call of even is not to itself:

even⇒ νX . [even call even] ff ∧ [τ ] X

can be checked with PDA model checking
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More behavioural properties

A security policy: ”no send after read”
Interface: provided a, required read, send
Behavioural specification:
φ = νX . [τ ] X ∧ [a caret send] X ∧ [a call a] X ∧ [a ret a] X ∧ [a caret read]φ′

φ′ = νY . [τ ] Y ∧ [a caret read] Y ∧ [a call a] Y ∧ [a ret a] Y ∧ [a caret send] ff

”a vote only is submitted after validation”

”votes are only counted after voting has finished”

”no non–atomic operations within transactions”
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4. Maximal Flow Graphs

Given a structural property φ, is there a maximal flow graph for φ?

The maximal model of a structural property may not be a legal flow graph!

However, given an interface I we can characterize flow graphs with that
interface — in structural simulation logic!

For example, for closed interface I = {a, b} we have:

θI = (νX . a ∧ [a, b, ε] X ) ∨ (νY . b ∧ [a, b, ε] Y )

Then, the maximal flow graph for a structural formula φ and interface I is
simply the maximal model for φ ∧ θI
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Modular Verification for Structural Properties

Since structural simulation is monotone w.r.t. flow graph composition, we
can thus support modular verification for structural properties!

Theorem

Structural simulation entails behavioural simulation

Hence, we can even verify global behavioural properties with local
structural specifications!

For instance, specify even and odd structurally, and verify the global
behavioural specification:

even⇒ νX . [even call even] ff ∧ [τ ] X
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Modular Verification: Example

Structural specification for even:

Interface: prov. even, req. odd

φeven = νX . [even] ff∧[odd]φ′even∧[ε] X

φ′even = νY . [even] ff ∧ [odd] ff ∧ [ε] Y

Structural specification for odd:

Interface: prov. odd, req. even

φodd = νX . [odd] ff ∧ [even]φ′odd ∧ [ε] X

φ′odd = νY . [odd] ff ∧ [even] ff ∧ [ε] Y

v0 v1 even

even

v4 v7

odd

ε ε

ε ε oddeven, odd,rr

v2v3 even,r
odd

v6

odd,r
v5

odd

ε

ε ε

ε

eveneven
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Behavioural Properties

Given a behavioural property φ, is there a maximal flow graph for φ?

The maximal model of a behavioural property is not a legal flow graph!

Several possibilities:

use maximal models at the expense of completeness: false negatives

translate behavioural properties to structural ones: expensive

restrict behavioural logic: atomic calls only: caret
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Property Translation

Behavioural property ”no send after read”:

φ = νX . [τ ] X ∧ [a caret send] X ∧ [a call a] X ∧ [a ret a] X ∧ [a caret read]φ′

φ′ = νY . [τ ] Y ∧ [a caret read] Y ∧ [a call a] Y ∧ [a ret a] Y ∧ [a caret send] ff

gives rise to several structural properties, most notably:

ψ = νX . [ε] X ∧ [send] X ∧ [a]ψ′ ∧ [read]ψ′

ψ′ = νY . [ε] Y ∧ [read] Y ∧ [a] ff ∧ [send] ff

Details in:
Reducing Behavioural to Structural Properties
Dilian Gurov and Marieke Huisman
In Proceedings of VMCAI’09, pp. 136–150
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Restricted Behavioural Logic: Atomic Calls

Behavioural specification of even:

φeven = νX . [even caret even] ff ∧ [even caret odd]φ′even ∧ [τ ] X
φ′even = νY . [even caret even] ff ∧ [even caret odd] ff ∧ [τ ] Y

gives rise to a single structural property:

φeven = νX . [even] ff ∧ [odd]φ′even ∧ [ε] X
φ′even = νY . [even] ff ∧ [odd] ff ∧ [ε] Y

obtained through a direct translation!
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5. Tool Support

The CVPP Tool Set

− structure

− behaviour

− eqsys

− Moped

− CWB

MaxMod

− inline

Graph

− compose

AnalyserProgram

ModCheck

− simplify

− convert

Formula

− CWB/LTL
− beh2struct

Model

− convert

− PDS

− flow graph
− FSM

Formula
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Automation

Full automation would require:

single input to the checker

local and global specs as
annotations/comments

inspired from JML based
verification tools like ESC/Java

pre– and post–processing

/** @global_LTL_prop:

* even -> X ((even && !entry) W odd)

*/

public class EvenOdd {

/** @local_interface: requires {odd}

*

* @local_SL_prop:

* nu X1. (([even call even]ff) /\ ([tau]X1) /\

* [even caret odd] nu X2.

* (([even call even]ff) /\

* ([even caret odd]ff) /\ ([tau]X2))

*/

public boolean even(int n) {

if (n == 0) return true;

else return odd(n-1);

}

/** @local_interface: requires {even}

*

* @local_SL_prop:

* nu X1. (([odd call odd]ff) /\ ([tau]X1) /\

* [odd caret even] nu X2.

* (([odd call odd]ff) /\

* ([odd caret even]ff) /\ ([tau]X2))

*/

public boolean odd(int n) {

if (n == 0) return false;

else return even(n-1);

}

}
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Automation

Full automation would require:

single input to the checker

local and global specs as
annotations/comments

inspired from JML based
verification tools like ESC/Java

pre– and post–processing
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ProMoVer: A wrapper around CVPP
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Details in:
ProMoVer: Modular Verification of Temporal Safety Properties
Siavash Soleimanifard, Dilian Gurov and Marieke Huisman
In Proceedings of SEFM’11, pp. 366–381

Dilian Gurov (KTH) Modular Verification of Temporal Safety Properties of Procedural Programs15 November 2011 37 / 41



ProMoVer: A wrapper around CVPP

Pre−Processor

Store(i)

Method name

Graph Tool

CWB

YES/NO+

L
o

ca
l 

P
ro

p
er

ti
es

ProMoVer

Analyzer
(ii)

Counter example
YES/NO+

Modal equation

StoreStore

Store

Retrieve Retrieve

YES/NO+Method name or
Modal equation system

Annotated Java Program

G
lo

b
al

 P
ro

p
er

ti
es

system

YES/NO+Counter ex. or

Spec. Extractor

Max. Model 

Graph Tool

Moped

Storage
Graph & Proof

Post−Processor

Details in:
ProMoVer: Modular Verification of Temporal Safety Properties
Siavash Soleimanifard, Dilian Gurov and Marieke Huisman
In Proceedings of SEFM’11, pp. 366–381

Dilian Gurov (KTH) Modular Verification of Temporal Safety Properties of Procedural Programs15 November 2011 37 / 41



6. Application: Software Product Lines

A hierarchical variability model for software product lines:

CashDesk

Keyboard Scanner Cash

@EnterProducts

useKeyboard useScanner

Card

payCash enterCard @CardType

Credit Debit Prepaid

payCredit payDebit payPrepaid

@Paymentsale
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Software Product Lines Verification

The number of products can be exponential in the size (number of
regions) of the variability model! Needs compositional treatment!

Solution: relativize on properties of variation points!

Results in one verification task per region!

Details in:
Compositional Algorithmic Verification of Software Product Lines
Ina Schaefer, Dilian Gurov and Siavash Soleimanifard
In Post–proceedings of: FMCO’10, pp. 184–203
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7. Conclusion

Strengths:

algorithmic verification of temporal safety properties

modular: allows dealing with variability

sound and complete at flow graph level

tools and wrappers for various scenarios

Limitations:

limited properties: no data

computationally expensive:

flow graph extraction
maximal flow graph construction
PDA model checking
property translation and simplification
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Future Work

take pragmatic approaches to deal with bottlenecks:

flow graph extraction: sacrifice precision
maximal flow graph construction: avoid when possible
PDA model checking: use FSM model checking instead
property translation and simplification: restrict logics

add data in a controlled way:

Boolean data
references
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