Modular Software Verification J

Dilian Gurov

KTH Royal Institute of Technology, Stockholm, Sweden

RTA-CSIT 2014 Invited Talk
Tirana, 13 December 2014

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 1/29

Functional Verification of Procedural Programs:
Hoare Logic

public class EvenOdd {

//@ requires n >= 0;
//@ ensures \result == (\exists int k; n == 2 * k);
public boolean even(int n) {

if (n == 0) return true;

else return odd(n-1);

}

//@ requires n >= 0;
//@ ensures \result == (\exists int k; n == 2 * k + 1);
public boolean odd(int n) {

if (n == 0) return false;

else return even(n-1);

}

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014

2 /29

.
Verification of Temporal Properties

@ Temporal properties:
“First call of even is not to itself”

@ Temporal logics:
o Linear-time Temporal Logic (LTL):
even = X ((even A —entry) W odd)
e p-calculus:
even = vX. [even call even]ff A [7] X

@ Algorithmic verification: Model Checking
Decidable for finite-state and push-down systems

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 3/29

-
Model Checking of Procedural Programs

Various techniques:

o Ball et al 2001: Predicate Abstraction
@ Das et al 2002: Property Simulation
@ Esparza et al 2002: Pushdown Systems

Not modular!

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 4 /29

-
Modular Model Checking

@ Can one infer a global property from the local specifications?
o ldea: use maximal models!

o Grumberg & Long 1994: ACTL
o Kupferman & Vardi 2000: ACTL*

Developed for finite-state systems

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 5/29

.
Our work: Procedures + Temporal + Modular

@ started in 2001

@ original goal: verify JavaCard programs in the presence of
post—issuance loading of applets on smart cards

@ joint work with Marieke Huisman, Christoph Sprenger, Irem Aktug,
Siavash Soleimanifard, Ina Schaefer, Afshin Amighi, Pedro Gomes

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 6 /29

-
Compositionality and Modularity

Compositionality as a mathematical principle:
@ express the meaning of the whole through the meaning of the parts
@ example: denotational semantics

@ example: definitions and proofs by structural induction

Modularity as a systems design principle:

@ control the complexity of the system
by braking it down into manageable pieces that are
designed, implemented, tested and maintained independently

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 7 /29

Verification

Verification as a systems design task:

@ match a model of the system against a specification

Modular Verification:

@ specify and verify every module independently

@ infer system correctness from module correctness
i.e., relativize global properties on local ones

This relativization allows verification in the presence of variability

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 8 /29

-
Variability

Temporal variability:
@ static code evolution
@ dynamic code replacement

@ dynamic code loading: code not available at verification time

Spacial variability:

e multiple variants, as arising from software product lines

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 9 /29

Verification in the presence of variability

Consider a system with four modules (components):
@ A implemented, stable
@ B implemented, expected to evolve
@ C implemented, multiple variants

@ D not yet implemented/available
How shall one plan for the verification of a global property 7

@ as early as possible

@ with minimal effort: reuse results

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 10 / 29

N —
Relativization

Relativize global property on local specifications. Three tasks:

@ specify modules B, C, D

Q verify
impl(B) = spec(B)
impl(C) = spec(C)
impl(D) = spec(D)
Q verify

impl(A) + spec(B) + spec(C) + spec(D) | ¢

Variability is then dealt with naturally.
But... how, and is there an algorithmic solution?

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 11 /29

-
Program Model

Our approach is to use a unifying program model to represent modules
and whole programs. Then, for the second task:

impl(B) = spec(B)

impl(C) = spec(C)

impl(D) = spec(D)
perform the following steps:

@ from module implementations: extract models

@ model check models against local specifications:

mod(impl(B)) t spec(B)
mod(impl(C)) F spec(C)
mod(impl(D)) F spec(D)

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 12 /29

-
Program Model

For the third task:
impl(A) + spec(B) + spec(C) + spec(D) = v

perform the following steps:
from module implementations: extract models
from module specifications: construct (so-called maximal) models

compose extracted with constructed models

©0 00

model check composed model against global property :
mod(impl(A))+ max(spec(B))+ max(spec(C))+ max(spec(D)) & ¢

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 13 /29

.
Our Setup

A. Program model: Flow graphs capturing control flow

@ behaviour as induced pushdown automaton

B. Properties: legal sequences of method invocations
@ temporal safety properties

C. Verification: pushdown automata model checking

@ essentially a language inclusion problem

Compositional Verification of Sequential Programs with Procedures
Dilian Gurov, Marieke Huisman and Christoph Sprenger

Journal of Information and Computation

vol. 206, no. 7, pp. 840-868, 2008

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 14 /29

-
A. Program Model

Flow Graph:
class Number ({
public static boolean even (int n) { v0 @ even o0dd@® V5
if (n == 0)
return true; € £
else
) return odd(n-1); vl even 0dde v6
€ €
public static boolean odd(int n) {
if (n == 0)
return false; V2 @ even € € odde v7
else
return even (n-1); odd even
v4 v8
} v3 @ even,r @ even,r odd, r odd, r@ v9

Example run through the behaviour, from an initial configuration:
T T even call odd
(VQ,G) — (V1,6) — (VQ,E)

T

(vs,v3) = (vg, v3) = (v, vg) 22rrerer

(V37€)

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 15 /29

Simulation: A refinement pre—order on models

We require the following conditions:
@ extracted models simulate module implementations
@ maximal models simulate models satisfying module specifications
© simulation is monotone w.r.t. composition

@ simulation preserves properties (backwards)

The third task:

mod(impl(A)) + max(spec(B)) + max(spec(C)) + max(spec(D)) = v

thus entails:

impl(A) + impl(B) + impl(C) + impl(D) |= 9

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 16 / 29

-
Flow Graph Extraction from Java Bytecode

Java program:

public static void Meth(boolean flag, ExtA myobj) {
try {
if (flag) myobj.Meth();
} catch (NullPointerException e) {}
}

Corresponding bytecode:

public static void Meth(boolean, ExtA);

Code:

0: iload_1

1: ifeq 8

4: aload 0

5: invokevirtual
8: goto 12
11: astore_ 2

12: return

Exception table:
from to target type
0 8 11 NullPointerException

Sound Control-Flow Graph Extraction for Java Programs with Exceptions
Afshin Amighi, Pedro Gomes, Dilian Gurov and Marieke Huisman
In Proceedings of SEFM 2012, LNCS 7504, pp. 33-47

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 17 /29

.
B. Properties

Example structural property:

@ “The program is tail recursive”:
vX. [even]r Afodd] r A [e] X
@ can be checked with standard finite-state model checking
Example behavioural property:
@ "“The first call of even is not to itself”:
even = vX. [even call even|ff A [7] X

@ can be checked with PDA model checking

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 18 /29

.
More behavioural properties

“No send after read”
“A vote is only submitted after validation”

“Votes are only counted after voting has finished”

“No non—atomic operations within transactions”

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 19 /29

Property Translation

Behavioural property “No send after read”:

¢ = vX. [r]X Alacaretsend] X A[acalla] X A [areta] X A [acaret read] ¢’
¢’ = vY.[r]Y Alacaretread] Y Alacalla] Y Alareta] Y A [a caret send] ff

gives rise to several structural properties, most notably:

v = vX. [e] X A [send] X A [a] ¢/ A [read] v’
v = vY. [e] Y Aread] Y A [a] ff A [send] ff

Reducing Behavioural to Structural Properties
Dilian Gurov and Marieke Huisman

Theoretical Computer Science

vol. 480, pp. 69-103, 2013

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 20 /29

-
Constructing Maximal Models

Atoms {p}, labels {a, b}, formula [b] ff A p
The formula as an equation system:
X =[b]ffAp

Converted into simulation normal form:

X = [a](YiV Y2)A[B]fFAp
Yi = [a(iVY2)A[B](Y1V Y2)Ap
Yo = [a](YiV Y2)A[B](Y1V Ya) A—p (M, E)

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 21 /29

]
C. Verification

Structural specification for even: Structural specification for odd:
Interface: prov. even, req. odd Interface: prov. odd, req. even
deven = vX. [even] ff A [0dd] ¢L .0 A [€] X toaa = vX. [odd] ff A [even] ¢/ 44 A [€] X

@ on = VY. [even] ff A [0dd] ff A [¢] ¥ @ 4q = vY. [0dd] ff A [even] ff A [¢] Y

€

N TN
v0@ even,r VI.@ €

€
° .@ €
v3 even,r v2

Verify the global behavioural specification:
even = vX. [even call even]ff A [7] X

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 22 /29

Tool Support

The CVPP Tool Set

Analyser

Dilian Gurov (KTH Stockholm)

Graph

— compose
- convert
—inline

Modular Software Verification

"ModCheck !

MaxMod

Formula

— simplify

- convert

- CWB/LTL
— beh2struct

Formula
— structure

— behaviour
— egsys

13 December 2014 23 /29

N —
Automation

/** @global _LTL_prop:
* even -> X ((even && !entry) W odd)
*/

public class EvenOdd {

/** @local_interface: requires {odd}

*

* @local_SL_prop:

* nu X1. (([even call evenlff) /\ ([taulX1) /\
* [even caret odd] nu X2.
*
*

Full automation would require:

@ single input to the checker (([even call evenltf) /\

([even caret oddlff) /\ ([taulX2))
@ local and global specs as */

public boolean even(int n) {

annotations/comments if (o == 0) return true;

else return odd(n-1);
@ inspired from JML based

I . . @ i £ H i
verification tools like ESC/Java ;7 @ecs-intertace: requires feves)

. * @local_SL_prop:
@ pre— and post—processing * muXi. ((lodd call oddlff) /\ ([taulX1) /\
* [odd caret even] nu X2.
* (([odd call oddlff) /\
* ([odd caret evenlff) /\ ([taulX2))
*/
public boolean odd(int n) {
if (n == 0) return false;
else return even(n-1);

1
Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 24 /29

.
PROMOVER: A wrapper around CVPP

ProMoVer ‘ ‘Annotated Java Program

Pre—Processor

istore i Store _Formul|
Store Gl'ﬂph & Proof Store
Retrieve Storage Retrieve &
e £
3 =
Spec. Extractorf— S e
{0

Modal equation
systems &
Safety automata SRS 1 SRS

Counter example

Method name

l Post—Processor]
T

YES/NO+Counter ex. or
YES/NO+Method name or
Modal equation systems or
Safety Automata

Procedure-Modular Verification of Temporal Safety Properties
Siavash Soleimanifard, Dilian Gurov and Marieke Huisman
Journal of Software and Systems Modeling, 2013

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 25 /29

Application Area: Software Product Lines

A hierarchical variability model for software product lines:

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 26 / 29

Software Product Lines Verification

The number of products can be exponential in the size (number of
regions) of the variability model! Needs compositional treatment!

Solution: relativize on properties of variation points!
Results in one verification task per region!
Compositional Algorithmic Verification of Software Product Lines

Ina Schaefer, Dilian Gurov and Siavash Soleimanifard
In Post—proceedings of FMCO 2010, LNCS 6957, pp. 184-203

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 27 /29

N —
Conclusion

Strengths:
@ algorithmic verification of temporal safety properties
@ modular: allows dealing with variability
@ sound and complete at flow graph level

@ tools and wrappers for various scenarios

Limitations:
@ limited properties if no data
@ computationally expensive:

flow graph extraction

maximal flow graph construction
PDA model checking

property translation and simplification

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 28 /29

]
Future Work

o Take pragmatic approaches to deal with bottlenecks:
flow graph extraction: sacrifice precision

maximal flow graph construction: avoid when possible
PDA model checking: use FSM model checking instead
property translation and simplification: restrict logics

o Add data in a controlled way:

e Boolean data
e object references

Dilian Gurov (KTH Stockholm) Modular Software Verification 13 December 2014 29 /29

