
Passwords in Peer-to-Peer
Gunnar Kreitz, Oleksandr Bodriagov, Benjamin Greschbach, Guillermo Rodrı́guez-Cano, and Sonja Buchegger

KTH Royal Institute of Technology
School of Computer Science and Communication

Stockholm, Sweden
{gkreitz, obo, bgre, gurc, buc}@csc.kth.se

Abstract—One of the differences between typical peer-to-

peer (P2P) and client-server systems is the existence of user

accounts. While many P2P applications, like public file sharing,

are anonymous, more complex services such as decentralized

online social networks require user authentication. In these,

the common approach to P2P authentication builds on the

possession of cryptographic keys. A drawback with that approach

is usability when users access the system from multiple devices,

an increasingly common scenario.

In this work, we present a scheme to support logins based on

users knowing a username-password pair. We use passwords, as

they are the most common authentication mechanism in services

on the Internet today, ensuring strong user familiarity. In addi-

tion to password logins, we also present supporting protocols to

provide functionality related to password logins, such as resetting

a forgotten password via e-mail or security questions. Together,

these allow P2P systems to emulate centralized password logins.

The results of our performance evaluation indicate that incurred

delays are well within acceptable bounds.

I. INTRODUCTION

Most of the peer-to-peer (P2P) systems deployed today
do not authenticate users. While this is is often acceptable,
or even preferable, there are some problems for which user
authentication is a requirement. These include P2P storage,
backup, and online social networks. In such applications, the
data accessible to a client depends on who is using it.

We discuss how to implement a username-password scheme
for authentication in P2P systems. Our goal is to construct an
authentication component that can be reused across different
P2P applications, which we assume authenticate via possession
of cryptographic keys. Thus, from an API perspective, the
login system shall allow a user entering a username and a
password to recover a set of cryptographic keys which can
then be used by the actual application. These keys can also be
updated as needed by the application.

The goal from an end-user point of view is to emulate
current behavior of centralized password-based login mech-
anisms. More specifically, we include schemes to remember
logins, change passwords, and provide recovery if a password
is forgotten. We aim to follow best practice in password au-
thentication, acknowledging that users often re-use passwords
between systems. By remembered logins, we mean that a user
can opt to have a device store information such that it can log
in again without storing the user’s password in plain text on
the device. Similarly, password change requires knowing the
old password, and for password recovery, the user is able to
set a new password but does not learn her previous one.

A. Why password authentication?

There is a rich literature on various approaches to authenti-
cation, ranging from the traditional username-password pair to
hardware tokens and biometry. Of these, the traditional view is
that passwords should be replaced by some better mechanism.
However, as argued by Herley and van Oorschot [1], despite
significant research efforts into dislodging passwords, they are
still by far the most common authentication mechanism today.
Reasons for their prevalence include simplicity, price, and very
strong user familiarity.

When authentication is required in the P2P setting, it is
typically done via the security-wise stronger mechanism of
generating and storing cryptographic keys on a user’s machine.
This approach is taken in systems such as OneSwarm [2],
Safebook [3], and Tribler [4]. This works well until the user
wants to access the service from a second device. To do so,
she would need to transfer the keys, or assume a new identity.
This is an added complexity and user-perceived drawback for
P2P services competing against client-server systems.

One concern is that using passwords may lead to added
security risks for skilled and security-conscious users who can
easily copy keys between devices. However, nothing prevents
such users from choosing passwords of similar strength as
cryptographic keys. Another issue pertains to remembered
logins, where one must consider theft. We cannot prevent a
thief from accessing the user’s account, but with our protocols,
the thief cannot change the user’s password, and the legitimate
user can always revoke the remembered credentials that are on
the stolen device.

B. Our Contribution

We develop and describe a suite of protocols for password
authentication in P2P networks: account registration, login,
password change, remembered logins, logout also of a remote
device, and password recovery, following best practices and
adapting standardized criteria from centralized systems to P2P
environments, and start a discussion on usable authentication
in P2P systems.

Our password authentication is based on standard crypto-
graphic techniques and can be used with standard P2P com-
ponents. As a first step toward a security analysis, we discuss
the security implications of our protocols. Then, we evaluate
the performance of our protocols under various scenarios.

C. Paper Outline

We discuss related work in Section II, give a system
overview in Section III and outline our basic scheme for
password-based login in Section IV. We then describe pass-
word recovery mechanisms as extensions to the basic login
mechanisms in Section V. Next, we discuss security in Sec-
tion VI and report our evaluation results in Section VII before
concluding in Section VIII.

II. RELATED WORK

The subject of securely establishing stable identities in P2P
systems has been previously studied, for instance by Aberer,
Datta and Hauswirth [5]. The need for identities mainly arose
from technical concerns, such as handling dynamic IP address
assignment, or avoiding Sybil attacks [6]. Authentication of a
node is done via a signature key, automatically generated and
stored on the node.

As P2P systems began providing more complex functional-
ity [2], [3], [4], [7], the need to authenticate users, rather than
nodes, arose. It seems that often, authentication via a signature
key has been carried over to this problem. While a solution
of automatic identification of a node is preferable as long as
users use a single device, equating a node with a user fails as
users increasingly access services from multiple devices.

Illustrative is the case of backup systems, where an impor-
tant use case is to restore data on a different system from where
it was backed up. Here, two different approaches to authen-
tication have been taken. All approaches build on encrypting
backed up content, and the approaches vary in whether the
keys are randomly derived [7], or derived from a password [8].
In the former case, a user must manually back the keys up,
as these keys are required to restore the backup. The systems
deriving a key from a password are related to our proposed
protocol, and use some related techniques. However, to the
best of our knowledge, they do not consider the additional
protocols required surrounding password authentication, such
as remembered logins, and recovering lost passwords.

Some P2P storage systems also use techniques which are
related to ours. For example, the DHT-based systems GNUnet
and Freenet use keyword strings to derive a public-private key
pair whose private key is used to sign data and the hash of
the public key to identify the data in the storage. Both of
these systems use a keyword string as a seed to a pseudo-
random number generator that produces the key pair [9], [10].
Knowing only the memorable keyword string the user can
store and retrieve information.

Related to forgotten passwords, recovery of information in a
P2P scenario has been studied by Vu et al. [11] who proposed
a combination of threshold-based secret sharing with delegate
selection and encrypting shares with passwords.

Frykholm and Juels [12] proposed a password-recovery
mechanism based on security questions very similar to our
protocol for the same task. They offer better, information-
theoretic security properties, something not applicable to our
scenario. We treat the subject of password change, which is

not applicable to their scenario, although their proposal could
be extended to support password change using our techniques.

III. SYSTEM OVERVIEW AND ASSUMPTIONS

We have designed our system around standard primitives,
as depicted in Figure 1. In particular, our protocols build on:
a DHT [13], [14], for user lookup; a peer sampling proto-
col [15], [16] for randomly choosing peers; and a distributed
storage [17], [18] for storing data required for our solution.
Both the DHT and distributed storage are P2P protocols, run
by the peers participating in the system. The storage could be
implemented as a DHT, or even be the same as the user lookup
DHT. However, we put different requirements on the user
lookup DHT and the distributed storage, as detailed below.

To make the system flexible across different implementa-
tions, we require as few non-standard features as possible.
The exception to this is the DHT that handles account regis-
tration, mapping each registered username to a reference in the
storage. For resilience against account hijacking, we propose
modifying the DHT to be write-once on keys: once an account
has been registered, nobody else can register that username.

From the DHT we require two operations, put(key, value),
and get(key). The put operation associates the value with the
key, and subsequent get operations on that key will return the
value. As the DHT is write-once, a second put operation with
the same key will not affect the system state.

The distributed storage functions for data manipulation are
similar to the DHT, with three differences: we allow the
distributed storage to select the “filename” for us; we require
that data can be updated; and we assume (minimalistic) access
control when writing. We refer to what is stored in the
distributed storage as files, to simplify our description. While
the storage component can be implemented as a distributed file
system, we emphasize that our requirements are significantly
weaker than full file system semantics.

We formalize the API to the storage as having three
operations. First, create(data) which generates a new file
and returns a filename. Second, write(filename, data)
that overwrites the file filename with content data. Third,
read(filename) which reads the content from a file. Our
security does not require overwritten data to be inaccessible,
so a solution similar to GNUnet [10] or Freenet [9] where a
new version is stored and pointed to suffice in our protocols.

We require the storage system to support some minimalistic
access control. Each stored file has an owner, which is the user
who created the file. Only the owner can perform the write
operation. To authenticate ownership of files, we assume that
a public-key cryptographic system is used.

Finally, for the peer sampling component, we require a
getPeer() method, returning a randomly selected peer, with
a distribution close to uniform.

IV. PASSWORD-BASED P2P LOGIN

For password-based authentication in P2P systems, the basic
functionality involved is registering an account, and logging
in. We also consider password change and remembered logins,

DHT

put(key, val)
get(key)

create(data)
read(!lename)

write(!lename, data)
Peer!

Storage

DHT

Peer"

Storage

DHT Peer#

Storage

DHT

Peer$

Storage

DHT

Peer%

Storage

DHT

Distributed storage
Communication !ows Network components

Fig. 1. Overview of the system.

allowing a device to store sufficient information to log in
later without asking for credentials anew. Following recom-
mendations from the ISO 27002 standard [19], we define the
following requirements for our login procedure and add our
own (preceded by a star) to account for several devices.

• passwords should neither be stored nor transmitted in
clear text

• a user should be able to choose her own passwords and
change them

• files with passwords should be stored separately from
application data

� a user should use the same password to log in from any
device

� it should not be possible to recover a password by stealing
a device with remembered credentials

� it should be possible to block access to the account from
a stolen device

The standard also defines limitations for password login pro-
cedures that our system cannot provide fully due to the lack
of rate-limiting possibilities in P2P networks: to limit the
number of unsuccessful login attempts and the maximum and
minimum time allowed for the login procedure. Adapting a
multi-party password hardening scheme [20] could, in future
work, be a way to achieve similar properties in a P2P network.
Besides this limitation, our protocols fulfill the requirements
as outlined in the standard, and our own added requirements.

We now describe our protocols based on the system model
from Section III. Figure 2 shows the information objects and
their storage locations, with arrows for the abstract flow of the
login procedure, Table I lists the terms used in the algorithms.

A. Account Registration

To register a new account (see Algorithm 1), the user first
has to choose a username uname and a password passwd.
Next, the user creates a key store file FKS , containing all the
keys used by the P2P application the user wants to log in to

TABLE I
PROTOCOL TERMINOLOGY

uname Username
passwd Password
salt Random byte string
KW Cryptographic key for write authentication
FKS Key store file
fKS File name of FKS
KKS Cryptographic key (used to encrypt FKS)
FLI , fLI ,KLI Login information file, its file name and key
FDL, fDL,KDL Device login information file, its file name and key
D,DID User device and the identifier of D
Kx1,Kx2, . . . Cryptographic keys for usage after logging in
devmap Mapping from device identifiers to device login

information files and corresponding keys

Fig. 2. Storage Locations (boxes) and Login Procedure (arrows)

(and an additional storage key, authenticating write operations
on this file). The user then creates a symmetric key KKS ,
encrypts the file content with this key and puts the ciphertext
into the storage, obtaining a file name fKS . Now, the user
creates a login information file FLI by creating a random
byte string salt, deriving a symmetric key KLI from the
password passwd and the salt, encrypting fKS , KKS and
KW (a generated storage key, required for overwriting FLI

later) with KLI . The salt and the three encrypted values are put
into the storage, obtaining a file name fLI . The salt is stored
in plaintext, so that the user later can derive the decryption
key KLI by only providing the password. Finally, the user
performs the write-once operation put on the DHT with
uname as key and fLI as value. If the username was taken,
the user is prompted for a new username. Once all operations
have succeeded, the user is registered in the system.

B. Login

Once registered, a user is able to log in – that is, to retrieve
the cryptographic keys stored in the key store file FKS – from
any device by only entering her username and password (see
Algorithm 2). A get request with the parameter uname to
the DHT results in the filename fLI for the login information
file FLI . This file is retrieved from the distributed storage and
contains the salt in plaintext. The latter is fed into a key-

Algorithm 1 Account Registration
1: uname ← User.input(“Choose username:”)
2: passwd ← User.input(“Choose strong password:”)
3: KKS ← generateKey()
4: FKS ← encryptKKS (Kx1||Kx2|| . . .)
5: fKS ← Storage.create(FKS)
6: salt ← generateSalt()
7: devmap ← createMap()
8: KLI ← KDF(salt,passwd)
9: KW ← generateKey() // suitable for the storage system

10: FLI ← salt||encryptKLI (fKS ||KKS ||KW ||devmap)
11: fLI ← Storage.create(FLI) // using KW

12: while DHT.put(uname,fLI) fails
13: uname ← User.input(“Choose new username:”)
14: end while

derivation function together with the user password to derive
the key KLI . This key allows the user to decrypt all other
content of the login information file, including the filename
fKS of the key store file and the corresponding key KKS .
Finally, the user fetches the key store file FKS from the
storage system and decrypts it, using KKS . This concludes
the login procedure as the user is now in possession of the
keys Kx1,Kx2, . . ., required by the P2P application.

If the user chose to remember the login information on
the local device, a new device login information file FDL

is created and saved to the storage system (which returns a
filename fDL). This file contains the filename fKS of the key
store file as well as the according key KKS and is encrypted
with a new key KDL. On the device, only the filename fDL

and the key KDL are stored locally. Additionally, a reference
to the device login information file is stored in the devmap
value of the login information file FLI . It contains a mapping
from a device identifier to the filename and key of the device
login information file, allowing password changes and device
revocation as described later.

When the user wants to log in from the same device again,
the locally stored values (fDL,KDL) are used to retrieve the
device login information file, decrypt it, and thereby gain
access to the key store file. Thus, the remembered login feature
allows the user to log in without entering the password, while
nothing password-related is stored on the device. Furthermore,
remembered logins remain valid even if the P2P application
changes keys in the key store file.

C. Password Change

Before the user can change the password, she must log
in using her password to obtain KLI . With this information,
the password change can be accomplished (see Algorithm 3):
the user is asked for a new password and a new salt is
generated. The key-derivation function is used to generate a
new key Knew

LI for the login information file. Then, the content
of the key-store file is fetched and decrypted (with the old
key). A new key Knew

KS is generated and used for encrypting
the key-store content again before it is saved to the storage

Algorithm 2 Login
1: fDL,KDL ← Device.readLocalStore()
2: if fDL �= NULL then // non-interactive login
3: FDL ← Storage.read(fDL)
4: fKS ,KKS ← decryptKDL (FDL)
5: saveLoginLocally ← False
6: else // interactive login
7: uname ← User.input(“Enter username:”)
8: passwd ← User.input(“Enter password:”)
9: saveLoginLocally ← User.input(“Remember?”)

10: fLI ← DHT.get(uname)
11: FLI ← Storage.read(fLI)
12: salt ← FLI .salt // stored in plaintext
13: KLI ← KDF(salt,passwd)
14: fKS ,KKS ,KW , devmap ← decryptKLI (FLI)
15: end if

16: FKS ← Storage.read(fKS)
17: Kx1,Kx2, . . . ← decryptKKS (FKS)
18: if saveLoginLocally then

19: KDL ← generateKey()
20: FDL ← encryptKDL (fKS ||KKS)
21: fDL ← Storage.create(FDL)
22: Device.writeLocalStore(fDL||KDL)
23: devmap.append(Device.ID, fDL||KDL)
24: FLI ← salt||encryptKLI (fKS ||KKS ||KW ||devmap)
25: Storage.write(fLI ,FLI) // using KW

26: end if

system, obtaining a new filename fnew
KS . Finally, the login

information file is updated: fnew
KS ,Knew

KS , the write credential
KW as well as a new empty device mapping devmapnew are
encrypted with the new key Knew

LI . Together with the new
salt, this ciphertext is written to the distributed storage, using
the reference fLI and the credential KW , to authenticate the
write operation. Lastly, the keys stored in the key store
should be updated by the application using our P2P protocol.
See Section VI-E for a discussion. At this point, old device
login information files can also be deleted from the storage to
reclaim space.

D. Logout

To log out from the system, the user does not have to interact
with the DHT or the storage system. Simply wiping her local
cache from application data and all key material restores the
pre-login state. If the user chose to remember the login on a
device, the corresponding device login information file FDL

can also be deleted from the storage.
A problem related to logging out is revoking remembered

credentials on another device, e. g., a user’s stolen phone. To
accomplish this, we first run the password change operation,
which locks out all devices with remembered logins, because
the key store key KKS changed (as well as the filename fKS).
Next, we use the device mapping devmap to inform all devices
about the new key (and filename), except the device that is to
be revoked. To inform a device about the change, we update

Algorithm 3 Password Change
Input: uname,Kold

LI
1: fLI ← DHT.get(uname)
2: F old

LI ← Storage.read(fLI)
3: fold

KS ,K
old
KS ,KW , devmapold ← decryptKold

LI
(F old

LI)
4: passwdnew ← User.input(“Enter new password:”)
5: saltnew ← generateSalt()
6: Knew

LI ← KDF(saltnew,passwdnew)
7: devmapnew ← createMap()
8: F enc−old

KS ← Storage.read(fold
KS)

9: FKS ← decryptKold
KS

(F enc−old
KS)

10: Knew
KS ← generateKey()

11: F enc−new
KS ← encryptKnew

KS
(FKS)

12: fnew
KS ← Storage.create(F enc−new

KS)
13: Fnew

LI ←
saltnew|| encryptKnew

LI
(fnew

KS ||Knew
KS ||KW ||devmapnew)

14: Storage.write(fLI ,Fnew
LI) // using KW

15: Refresh keys stored in key store
16: Old device login information files may be deleted

the corresponding values in the device’s login information file
FDL which can be accessed from the device by using the
locally stored credentials.

Algorithm 4 describes this necessary extension. After run-
ning the password change operation, all devices that should not

be revoked and that have remembered logins (and therefore are
referenced in the device mapping devmap) are processed. The
device login information filename fDL and its key KDL are
read, and the new key store key Knew

KS and filename fnew
KS are

written to the device login information file FDL, encrypted
under the device key KDL. Finally, the modified devmap is
saved back to the login information file FLI .

Algorithm 4 Logout Other Device
1: ... // run Algorithm 3 (Password Change)
2: deviceToLogout ← User.input(“Select device:”)
3: devmap.remove(deviceToLogout)
4: foreach DID in devmap // all devices to keep
5: fDL,KDL ← devmap.get(DID)
6: FDL ← encryptKDL (fnew

KS ||Knew
KS)

7: Storage.write(fDL,FDL)
8: end

9: ... // save modified devmap back to FLI

V. PASSWORD RECOVERY

An important part of password-based logins is the possi-
bility for users to recover their accounts if they forget their
passwords. We refer to this as a password recovery mechanism.
The goal of a password recovery mechanism is to provide a
secondary way of authenticating the user. There are a number
of password recovery mechanisms used in practice. In our
experience, three of the most common ones are password
hints, security questions, and e-mail based recovery. Other

approaches (beyond the scope of this paper) include vouching
for identity by social contacts [21], or using trusted devices.

Password hints means that the user may enter a hint at
the same time as she sets this password. The hint will be
displayed to her if she forgets her password, and should be
selected such that it helps her recall her password, but does
not make it significantly easier for someone else to guess it.
The hint is not truly a secondary authentication mechanism,
but rather a means to recovering the original password-based
authentication mechanism. A basic version of password hints
would be straightforward to implement in our system: the
hint can be stored in plaintext in the login information file.
Security questions and e-mail based password recovery are
more complex to adapt. We described their implementation in
detail after listing requirements.

As in Section IV for the login procedure, we define a set of
functional requirements for password recovery, based on the
ISO 27002 standard [19] as follows. We also augment the list
with requirements of our own (preceded by a star).

• establish methods to verify the identity of a user prior to
allowing the user to choose a new password

• communicate with those affected by or involved with
recovery security incidents

• have procedures to allow recovery and restoration of
business operations and availability of information in a
time-scaled manner

• a legitimate user should be able to recover lost (forgotten)
or broken (device’s) keys

� the recovery procedure should allow a user to set a new
password, not reveal the old password

� the process of recovery should be easy to use
� sensitive information for recovery should be kept secret

Our protocols support these requirements. The sole exception
is that if a password is reset via security questions alone, the
system would not “communicate with those affected” (e.g.,
send an e-mail notification that the password had been reset,
as is common in centralized services). We remark that the
last item is a stronger property than many centralized systems
provide. In our system, no one learns the answers to a user’s
security questions. We consider this to be important, since
many systems use similar security questions.

The operations described in this section imply minor addi-
tions to the protocols of Section IV, i. e., invoking the update
procedures after each password change (to sustain transaction
safety, the updates have to be included in the final write
operation of the password change operation).

A. Security Questions

Security questions is a password recovery technique that
relies on answers to questions the user is asked during regis-
tration. The answers should be such that they cannot be easily
guessed or researched by an attacker, but still stable over
time, memorable, and definite [22]. Rabkin [23] underlines
the importance to choose good questions especially in the era
of social networks. Frykholm and Juels [12] discuss a related
technique that is similar to our adaption of this scheme.

TABLE II
RECOVERY PROTOCOL TERMINOLOGY

Security Question Recovery

qSi (n, k)-secret sharing share of KLI
Qi Security challenge question
Ai Answer to question Qi
qsalti Random byte string
qKi Key to encrypt the share qSi

E-mail Based Recovery

KR Long-term recovery key
eSi (n, k)-secret sharing share of KR
email Recovery e-mail address of the user
peeri Randomly selected peer
esalti Random byte string (to seed the e-mail commitment)
ksalti Random byte string (to seed the key eKi)
Ci Cryptographic commitment to the e-mail address
eKi Key to encrypt the share eSi

We assume that the user provides n answers Ai to suitable
security questions Qi. In order to recover the password, we
require the user to answer any k out of these n questions
correctly. The choice of k constitutes an obvious trade-off
between security and usability. A successful recovery yields
the key KLI to the login information file, allowing the user to
change the password, using Algorithm 3. Our implementation
does not require the user to provide new answers after a regular
password change. Additionally, we avoid storing the plaintext
answers to the security questions.

For the setup of the question based recovery mechanism
(Algorithm 5), we first create n shares qS1, . . . , qSn of the
key KLI under an (n, k)-secret sharing scheme. For each of
these shares, we create a salt qsalti, derive a key qKi from
this salt and the answer Ai, and use it to encrypt the share,
yielding qSenc

i . Furthermore we encrypt the key qKi with
the login information file key KLI , for the update procedure
described later. Finally, the login information file is extended
with all questions Qi, the salts qsalti, the encrypted shares
qSenc

i and the encrypted keys qKenc
i . When recovering, the

user has to reproduce at least k answers, which together with
the stored salts can be used to derive k keys qKi, which in
turn can decrypt k shares qSi.

When KLI changes (e. g., due to a regular password
change), we update the recovery information as in Algo-
rithm 6: for the new key Knew

LI , a new set of shares is created.
Next, the keys qKi are decrypted and used to encrypt the new
shares. Neither the keys qKi nor the salts salti change, so
the user can still use the same answers for recovery. Finally,
the updated shares (and re-encrypted keys, to allow further
updates) are saved back to the login information file.

B. E-mail Based

In e-mail based password recovery, the user is sent an e-mail
containing some information, typically a link with a token, by
which she can reset her password. This link is sent to an e-mail
address she has registered with her account.

We adapt this scheme by randomly choosing a number of
peers, that collaboratively provide this functionality to the user.

Algorithm 5 Security Questions Setup
1: qS1, . . . , qSn ← createShares(n,k,KLI)
2: for i ← 1, n do

3: Qi ← User.input(“Enter question i:”)
4: Ai ← User.input(“Enter answer i:”)
5: qsalti ← generateSalt()
6: qKi ← KDF(qsalti,Ai)
7: qSenc

i ← encryptqKi (qSi)
8: qKenc

i ← encryptKLI (qKi)
9: end for

10: add to FLI : qSenc
i , qKenc

i and the plaintext values of
Qi, qsalti ∀i ∈ {1, . . . , n}

Algorithm 6 Security Questions Update (on KLI change)
1: qSnew

1 , . . . , qSnew
n ← createShares(n,k,Knew

LI)
2: for i ← 1, n do

3: qKi ← decryptKLI (qKenc
i)

4: qSnew−enc
i ← encryptqKi (qSnew

i)
5: qKnew−enc

i ← encryptKnew
LI

(qKi)
6: end for

7: update in FLI : qSnew−enc
i , qKnew−enc

i ∀i ∈ {1, . . . , n}

We use (n, k)-secret sharing to enable password recovery even
if not all of the involved peers are online when the user wants
to recover the password. We discuss parameter choices of k
and n in Section VII-B.

To provide persistence of the recovery mechanism indepen-
dent of a changing key KLI (e. g., due to a password change),
the result of the recovery process is a recovery key KR,
that always encrypts the current version of KLI . Algorithm 7
describes the setup procedure: From the recovery key KR, n
shares eS1, . . . , eSn are generated using (n, k)-secret sharing.
For each share, a random peer peeri is picked, two salts esalti
and ksalti are created and a cryptographic commitment Ci is
derived from the salt esalti together with the email. This
commitment will be used to authorize the user to the peer,
and bind it to this specific e-mail address. Next, a key eKi,
to encrypt the share eSi, is derived in the same way as the
commitment, but with salt ksalti. A different salt is needed
so that the peer cannot decrypt the share (before learning the
address). The commitment and the encrypted share are stored
at the peer. The login information FLI file is extended with a
list of the chosen peers peeri and the according salts esalti,
ksalti, as well as Kenc

LI , encrypted with the recovery key, and
the recovery key, encrypted with KLI (to allow for password
changes).

To recover the password (Algorithm 8), the user looks up the
available information in the login information file, including
the list of peers to be requested for assistance. Each request is
authorized by the commitment Ci, that the peer can derive
from the salt esalti and the e-mail address, that the user
provided (Algorithm 9). If the request was legitimate, the peer
sends the encrypted share to the e-mail address. As soon as
the user collected k answers, she can recover KLI .

Algorithm 7 E-mail Recovery Setup
1: KR ← generateKey() // long-term recovery key
2: Kenc

LI ← encryptKR (KLI)
3: eS1, . . . , eSn ← createShares(n,k,KR)
4: email ← User.input(“Enter recovery e-mail address:”)
5: for i ← 1, n do

6: peeri ← getPeer()
7: esalti ← generateSalt()
8: ksalti ← generateSalt()
9: Ci ← KDF(esalti,email) // commitment

10: eKi ← KDF(ksalti,email)
11: eSenc

i ← encrypteKi (eSi)
12: store at peeri: Ci, eSenc

i

13: end for

14: Kenc
R ← encryptKLI (KR)

15: add to FLI : Kenc
LI ,Kenc

R and the plaintext values of
peeri, esalti, ksalti ∀i ∈ {1, . . . , n}

Algorithm 8 E-mail Recovery: User
1: uname ← User.input(“Enter username:”)
2: email ← User.input(“Enter e-mail:”)
3: fLI ← DHT.get(uname)
4: FLI ← Storage.read(fLI)
5: Kenc

LI ; ∀i : peeri, esalti, ksalti ← FLI // plaintext part
6: ∀i : send (email, esalti) to peeri // send n requests
7: eSenc

1 , . . . , eSenc
k ← read e-mail // wait for k e-mails

8: for i ← 1, k do

9: eKi ← KDF(ksalti,email)
10: eSi ← decrypteKi (eSenc

i)
11: end for

12: KR ← useShares(eS1, . . . , eSk)
13: KLI ← decryptKR (Kenc

LI)
14: ... // run Algorithm 3 (Password Change)

To provide long-term persistence of this recovery mech-
anism, Kenc

LI has to be updated whenever KLI changes.
Algorithm 10 describes the necessary steps, including updating
Kenc

R to allow subsequent updates.

Algorithm 9 E-mail Recovery: Peer
Stored: Ci, eSenc

i // stored at peer
Input: email, esalti // provided by the user request

1: if Ci = KDF(esalti,email) then // legitimate request
2: sendMail(email,eSenc

i)
3: end if

Algorithm 10 E-mail Recovery Update (on KLI change)
1: KR ← decryptKold

LI
(Kenc

R)
2: Kenc−new

LI ← encryptKR (Knew
LI)

3: Kenc−new
R ← encryptKnew

LI
(KR)

4: update in FLI : Kenc−new
LI ,Kenc−new

R

C. Combining Approaches

The approaches presented above can be composed, either se-
quentially or in parallel. By sequential composition, we mean
that the user must both correctly answer security questions and
receive e-mail. By parallel composition, we mean that either
mechanism can be used alone to recover the password. The
latter is achieved by using both systems in parallel.

For sequential composition, the user picks a uniformly
random string r of the same length as KLI . The user stores r in
one of the mechanisms, and KLI⊕r in the second mechanism,
where ⊕ denotes the exclusive-OR operation. If one recovers
both of these, KLI can be computed. If one learns only one
of the pieces, nothing is gained, as both r and KLI ⊕ r are
uniformly random. More generally, to combine n mechanisms
in arbitrary ways, (n, k)-secret sharing can be used. What we
describe here are two trivial such schemes for n = 2.

VI. SECURITY

The goal we set is to emulate the security provided by a
centralized solution. Some security risks are inherent to the
password functionality, and apply regardless of implemen-
tation technique. For instance, in e-mail based recovery, an
attacker compromising the victim’s e-mail account can reset
her password.

In this section, we elaborate on security concerns of our
protocols. We do not have full cryptographic security proofs
of our protocols, something which is important future work.

Concerning safety, we have designed our protocols such
that persistently stored data remains in a consistent state if
the protocol is aborted at any point. Some protocols may, if
an operation fails, leave orphan files in the storage. If our
protocol for revoking remembered credentials is interrupted,
it may revoke more devices than intended. Apart from this,
our operations have transactional semantics, assuming small
writes (both creation, and updates) to the storage are atomic
operations and that operations block until successful.

A. Adversary Model

To capture the concept of collusions, we consider an ad-
versary that corrupts a number of nodes. Upon corruption, the
adversary gains all information known to that node, and in the
case of an active adversary, can also control its future actions.
The adversary can also make requests to the underlying sys-
tem, e. g., read files from the distributed storage. As almost all
our protocols mainly operate on publicly readable (encrypted)
data, this ability is important. The only computation made by
nodes different from the one logging in are in verifying write
operations, and in e-mail based password recovery.

B. Risks in Used Components

As our protocols make use of several standard components,
vulnerabilities in those components can also affect our system.
For instance, an adversary may prevent a user from logging in
by attacking the victim’s ability to read her login information
file from the distributed storage. We note that there are many
security techniques in DHTs that can mitigate such threats,
and refer to Urdaneta et al. [24] for a recent survey.

C. Offline Guessing

An issue in password authentication based on a (distributed)
file system is that the information required to verify a password
attempt is inherently exposed. This means that in our scheme,
we cannot prevent an attacker from mounting an offline attack
against our encrypted passwords. This is a considerable draw-
back from centralized schemes, where the encrypted password
database is kept protected.

As a partial mitigation, we utilize a KDF with a per-user
salt. This forces an attacker to evaluate the KDF individually
for each user on a password guess, defeating parallel attacks
against multiple users. We recommend the system be instan-
tiated with a slow KDF, such as bcrypt [25] to throttle offline
guessing. The protocol could be modified to reduce storage
by using the username as a salt, but we recommend against
that as it would be vulnerable to pre-computation (before the
system is started, or between instances using the same KDF)
attacks against common username-password pairs.

The problem of a server performing offline attacks against
its password database was treated by Ford and Kaliski [20].
Their techniques are client-server based, and require all servers
to be online for a login. We leave it as future work to
investigate modifying their protocol to be applicable also in a
P2P setting. This would prevent offline guessing attacks.

D. Colluding Nodes in E-mail Based Recovery

In the mechanism for e-mail based recovery, we employ
(n, k)-secret sharing, and secrets are stored on n random nodes
in the system. If an attacker controls k or more of these nodes,
she can recover the secret and access the victim’s account. In
Section VII-B we discuss the choice of these parameters.

A peer sampling protocol is used to select the n nodes where
the shares are stored. An active attacker may influence this
protocol, in order to ensure that she controls k out of the
selected nodes. This can be mitigated by a peer sampling pro-
tocol designed to tolerate active attacks, such as Brahms [16].

The protocol is designed to reveal only minimal information
to the peers. Thus, even when colluding, peers have to get
hold of both, the salt ksalti and the recovery e-mail address
email to mount an attack. The e-mail address will be revealed
to a peer only when the user initiates the recovery process.
Malicious peers might try to guess it earlier, but to verify
guesses either ksalti or esalti are required. These are stored in
the login information file of the user, which can only be found
knowing the username. Therefore the setup process should be
anonymous, where the peer does not learn the username of
the user for whom it stores the share.

E. Updating Application Keys

When a password is changed, or device is revoked, access
is effectively revoked from future updates to the key store.
However, a malicious device may have stored the last keys it
was able to access. Thus, in the password update procedure
(which is also used for device revocation), the keys for the
P2P application itself need to be updated, and then these
new keys need to be written to the key store. How to update

them, if possible, is beyond the scope of this paper, as it is a
functionality of the application protocol.

F. Denial-of-Service

An adversary may mount a DoS attack by writing many
user names into the DHT, thus blocking those from registration
by legitimate users. This attack is also possible in centralized
systems, but there detection and counter-measures (e.g., re-
moving the fake accounts) is significantly easier. One can solve
this issue by assuming a lightweight CA dealing only with
checking user identification before account creation, similar
to Safebook [3]. We remark that this attack only target the
availability of registration of a new user account, it does not
affect existing users.

A related attack can occur when an adversary can prevent a
user from accessing some of the data required to log in (e.g.,
by controlling all replicas holding the victim’s entry in the
DHT). In such attacks, existing users can be prevented from
logging in, possibly permanently by overwriting or deleting
the key. This illustrates the importance of applying security
techniques for underlying components [24] and indicates a
large replication factor should be chosen.

G. Security Summary

Aside from the concerns outlined, we believe that our
schemes produce a similar level of security as client-server
based password authentication schemes. The cryptographic
design of our protocols relies on relatively standard techniques.
This leads us to be confident that the security of our protocols
can be formally proven using cryptographic techniques.

We also provide some features which are not commonly
present in centralized systems. One of these is the ability to
revoke stored credentials from only some specific devices. A
second one is the ability to set up e-mail based password re-
covery without revealing your e-mail address before recovery
actually occurs, offering an additional privacy protection.

VII. EVALUATION

We developed two lightweight custom simulators, one to
evaluate the efficiency and security of our protocols, and one
to assist in setting the n and k parameters for e-mail based
password recovery. For the performance analysis, we take as
input the time to perform required cryptographic operations, as
well as the time of our network operations. For the analysis of
n and k parameters, we need data on node uptime to evaluate
the availability of the password recovery system for a given
choice. We used latency data from Jiménez et al. [14], and
node availability data from Rzadca et al. [26].

To measure the computational cost of the necessary cryp-
tographic operations in a prototype implementation, we used
OpenSSL’s built-in benchmark function on a 2.26 GHz Core
2 Duo running Mac OS X, as well as an ARM 1 GHz Cortex-
A8, similar to modern smart phones. The times for all required
cryptographic operations (using DSA as a public-key scheme)
was negligible, below 5 ms (2 ms on the faster CPU).

Fig. 3. CDF for login latency in three modes: First time login, remembered
logins, and first time login after password entry (pre-fetch). Network opera-
tions are assumed to have costs of BitTorrent mainline DHT lookups, using
NR128-A (solid lines) or µTorrent strategy (dashed lines) [14].

As our protocols can be applied with any DHT and file
storage combination, we used the BitTorrent Mainline DHT as
an example for our numeric performance evaluation. Jiménez
et al. [14] recently ran experiments to evaluate the performance
of their proposed algorithmic improvements. From their mea-
surements, we received a CDF for the latency of real-world
DHT lookups. We assume that all our network operations,
writes and reads, both from DHT and distributed storage, take
the same amount of time as a DHT lookup in their study.
This can be motivated, as our distributed storage could be
implemented via a DHT. We remark that their measurements
are performed with a “warmed up” client with filled routing
tables for the DHT. Thus, these numbers may be overly
optimistic for a newly started client.

Finally, we believe, node availability will vary considerably
between applications. As a representative case, we considered
a distributed storage system by Rzadca et al. [26], which
featured such data in their evaluation. In the distribution, 10%
of nodes have availability 95%, 25% have availability 87%,
30% have availability 75%, and 35% have availability 33%. To
this rough distribution, Gaussian noise with σ = .1 is added,
and the resulting availability is capped between 3% and 97%.

A. Performance

We believe that the main performance-critical operation
is logging in [27]. We believe that for all other operations,
latency on the order of a few seconds can be acceptable, and
even a minute if they are run in the background. Thus, we only
present results for logging in, but note that as the operations for
other protocols are similar, results are expected to be similar.
The performance cost of our protocols is dominated by net-
work operations. However, to slow down password guessing
attempts, one may wish to force the key derivation procedure
to be slow, to the point of making that cost dominant.

When evaluating the protocols, we parallelized network
operations where possible. Logging in for the first time and
remembering the credentials for future logins is then a se-
quence of two network operations, followed by key derivation,

TABLE III
LATENCIES OF PROTOCOLS, IN MILLISECONDS.

Network Op. [14] First Login Remem. Login

DHT median 99th median 99th median 99th

NR128-A 164 567 650 1362 346 915
µTorrent 647 5140 3299 10154 1456 7148

followed by three parallel network operations. In a password
login, it is also possible to pre-fetch some of the information
after the user has entered her username, but before she enters
her password. In particular, as soon as the username is known,
the filename FLI can be retrieved from the DHT, and the
file can be read. Decryption of the file and further processing
is then only possible after the user enters her password. To
evaluate this speed-up, we computed the time it takes to finish
the login after the user has entered her password. The time to
fetch the two files is identical to the time to do a remembered
login, and it is sufficiently small that the data can realistically
be retrieved while the user is typing her password.

To determine the sensitivity of our performance to imple-
mentation characteristics, we evaluated our protocol for two
different client strategies in the BitTorrent Mainline DHT: The
NR128-A algorithm [14], and the µTorrent client’s implemen-
tation. We present these performance numbers in Figure 3 and
Table III. Firstly, we observe that with a fast storage, our login
protocol is very fast, with a median login time of 650 ms the
first time, and 346 ms for remembered logins. Comparing the
results, we observe that our protocols are indeed sensitive
to storage latency. While performance results building on
µTorrent data are slightly above recommended levels [28], we
still consider them within range of acceptability for P2P.

When evaluating these numbers, we assumed that the run-
time of the KDF function is negligible. As a system designer,
one may wish to pick a slow KDF (e. g., bcrypt [25]), as
this slows down password guessing attempts. Any latency
intentionally added via the KDF would affect the first-time
login (after the password entry) times.

B. Parameters for E-mail Password Recovery

There are trade-offs between availability, security, and stor-
age space in our e-mail based password recovery protocol.

For the selection of k, the minimum number of peers
required to recover the password, there is a direct trade-off
between security and availability. Lower choices of k increase
the risk of an adversary, controlling a significant number of
nodes, to break into the user’s account. A higher k reduces
the availability of the recovery functionality, which reflects the
chances of a user to immediately succeed with the password
recovery. However, if the user does not instantly receive k
answers, she can simply wait until enough peers are online.

We believe a reasonable choice of parameters is n = 16 and
k = n/2. With these numbers, using the availability data from
Rzadca et al. [26], there is a 96% probability of immediate
recovery of a lost password. A very strong attacker, corrupting
25% of the nodes in the system, would still only be able to

access the user’s account with probability 3%. The analysis
of parameter choice here is similar to any P2P system using
secret sharing, and we refer to e.g., Vu et al. [11] for a more
in-depth discussion.

C. Scalability

The latency of our protocols will scale similarly to DHTs
or other distributed storage systems. The data we used for
evaluation is based on measurements on the largest deployed
DHT, demonstrating that performance is good with extremely
large user numbers. Performance may in fact be worse for
a small system, as there are then fewer nodes, meaning that
it is less likely to find data at a nearby node. To bootstrap
the system with good performance when it is small, a very
simple distributed storage using one or a few super-nodes
would be one approach. Storage requirements per user are
also small, with a few files per user and small file sizes. From
this, we conclude that our system is likely to scale well with
the number of users.

VIII. CONCLUSIONS AND FUTURE WORK

The pros and cons of password-based authentication have
been extensively debated. We believe that for some appli-
cations, a username-password pair provides an appropriate
level of security. We argue that incorporating a well-known
authentication scheme may assist in user adoption of P2P
systems for more complex tasks than file sharing. To the best
of our knowledge, ours is the first work to focus on password-
based logins in a P2P setting, including mechanisms to recover
a forgotten password. Our protocols are new (but our security
questions are similar to [12]), relatively straightforward, and
we believe, they are an important first step towards usable
authentication in P2P.

The performance of our mechanisms in terms of delay varies
according to the underlying DHT or P2P system in general
and in relation to how much intentional delay is added by
parameterizing cryptographic functions. Overall, however, our
evaluation results show that for user satisfaction [27], the
delays can be kept at a very acceptable level [28].

While we have provided an initial discussion of the security
properties of our protocol here, future work will include a thor-
ough security analysis. Our scheme allows offline password
guessing attacks, which will also be addressed in future work.

ACKNOWLEDGMENTS

We thank Raúl Jiménez et al. [14] for sharing their measure-
ment results and Jay Lorch for excellent work as a shepherd
of this paper. This research has been funded by the Swedish
Foundation for Strategic Research grant SSF FFL09-0086 and
the Swedish Research Council grant VR 2009-3793.

REFERENCES

[1] C. Herley and P. C. van Oorschot, “A research agenda acknowledging
the persistence of passwords,” IEEE Security & Privacy, vol. 10, no. 1,
pp. 28–36, 2012.

[2] T. Isdal, M. Piatek, A. Krishnamurthy, and T. E. Anderson, “Privacy-
preserving P2P data sharing with OneSwarm,” in SIG COMM. ACM,
2010, pp. 111–122.

[3] L. A. Cutillo, R. Molva, and T. Strufe, “Safebook: A privacy-preserving
online social network leveraging on real-life trust,” IEEE Communica-

tions Magazine, vol. 47, no. 12, pp. 94–101, 2009.
[4] S. M. A. Abbas, J. A. Pouwelse, D. H. J. Epema, and H. J. Sips,

“A gossip-based distributed social networking system,” in WETICE,
S. Reddy, Ed. IEEE Computer Society, 2009, pp. 93–98.

[5] K. Aberer, A. Datta, and M. Hauswirth, “Efficient, self-contained
handling of identity in peer-to-peer systems,” IEEE Transactions on

Knowledge and Data Engineering, vol. 16, no. 7, pp. 858–869, 2004.
[6] J. R. Douceur, “The Sybil attack,” in IPTPS, vol. 2429. Springer, 2002,

pp. 251–260.
[7] M. Lillibridge, S. Elnikety, A. Birrell, M. Burrows, and M. Isard, “A

cooperative internet backup scheme,” in USENIX. USENIX, 2003, pp.
29–41.

[8] L. P. Cox, C. D. Murray, and B. D. Noble, “Pastiche: Making backup
cheap and easy,” in OSDI. USENIX Association, 2002.

[9] I. Clarke, O. Sandberg, M. Toseland, and V. Verendel, “Private
communication through a network of trusted connections: The dark
freenet,” 2010. [Online]. Available: https://freenetproject.org/papers/
freenet-0.7.5-paper.pdf

[10] K. Bennett, C. Grothoff, T. Horozov, and J. T. Lindgren, “An
encoding for censorship-resistant sharing,” 2003. [Online]. Available:
https://gnunet.org/svn/GNUnet-docs/WWW/download/ecrs.pdf

[11] L.-H. Vu, K. Aberer, S. Buchegger, and A. Datta, “Enabling secure
secret sharing in distributed online social networks,” in ACSAC. IEEE
Computer Society, 2009, pp. 419–428.

[12] N. Frykholm and A. Juels, “Error-tolerant password recovery,” in CCS.
ACM, 2001, pp. 1–9.

[13] K. Wehrle, S. Götz, and S. Rieche, “Distributed hash tables,” in Peer-to-

Peer Systems and Applications, vol. 3485. Springer, 2005, pp. 79–93.
[14] R. Jiménez, F. Osmani, and B. Knutsson, “Sub-second lookups on a

large-scale Kademlia-based overlay,” in P2P. IEEE Computer Society,
2011, pp. 82–91.

[15] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM Computing Surveys, vol. 25,
no. 3, 2007.

[16] E. Bortnikov, M. Gurevich, I. Keidar, G. Kliot, and A. Shraer, “Brahms:
Byzantine resilient random membership sampling,” Computer Networks,
vol. 53, no. 13, pp. 2340–2359, 2009.

[17] K. Bennett, C. Grothoff, T. Horozov, and I. Patrascu, “Efficient sharing
of encrypted data,” in ACISP, ser. Lecture Notes in Computer Science,
L. M. Batten and J. Seberry, Eds., vol. 2384. Springer, 2002, pp.
107–120.

[18] S. C. Rhea, P. R. Eaton, D. Geels, H. Weatherspoon, B. Y. Zhao, and
J. Kubiatowicz, “Pond: The OceanStore prototype,” in FAST. USENIX,
2003.

[19] International Electrotechnical Commission, “ISO/IEC 27002:2005. In-
formation technology – Security techniques – Code of practice for
information security management,” International Organization for Stan-
dardization, 2005.

[20] W. Ford and B. Kaliski Jr., “Server-assisted generation of a strong secret
from a password,” in WET ICE. IEEE Computer Society, 2000, pp.
176–180.

[21] J. G. Brainard, A. Juels, R. L. Rivest, M. Szydlo, and M. Yung, “Fourth-
factor authentication: somebody you know,” in CCS. ACM, 2006, pp.
168–178.

[22] G. Scoville, “Good security questions,” http://goodsecurityquestions.
com/ (19th April, 2012).

[23] A. Rabkin, “Personal knowledge questions for fallback authentication:
security questions in the era of Facebook,” in SOUPS. ACM, 2008,
pp. 13–23.

[24] G. Urdaneta, G. Pierre, and M. van Steen, “A survey of DHT security
techniques,” ACM Computing Surveys, vol. 43, no. 2, p. 8, 2011.

[25] N. Provos and D. Mazières, “A future-adaptable password scheme,” in
USENIX Annual Technical Conference, FREENIX Track. USENIX,
1999, pp. 81–91.

[26] K. Rzadca, A. Datta, and S. Buchegger, “Replica placement in P2P
storage: Complexity and game theoretic analyses,” in ICDCS. IEEE
Computer Society, 2010, pp. 599–609.

[27] A. Rushinek and S. F. Rushinek, “What makes users happy?” Commun.

ACM, vol. 29, no. 7, pp. 594–598, 1986.
[28] N. Tolia, D. G. Andersen, and M. Satyanarayanan, “Quantifying inter-

active user experience on thin clients,” IEEE Computer Society, vol. 39,
no. 3, pp. 46–52, 2006.

