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Modularity in Software Verification

Specifying components of a system, independently (locally)

Specifying (global) property of the system

Verifying the correctness of the system in independent two
subtasks

(I ) verifying local specifications, independently
(II ) the composition of local specifications entails the global

property

Granularity

Different levels of granularity
Procedure–Modular

Modules are methods, e.g., Hoare logic
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Algorithmic Verification

Our approach is algorithmic

Accepts an annotated Java program as input
Push-button tool support to verify the program

returns positive answer or negative answer with a counter
example

Abstraction

The price of algorithmic approach is abstraction

We abstract away from all data
Flow graphs

Properties

We consider temporal safety properties of the control flow

Legal sequences of method invocations
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Some Interesting Properties

Control Flow Safety Properties

A given method that changes certain sensitive data is only
called from within another dedicated authentication method,
i.e., unauthorized access is not possible

In a voting system, candidate selection has to be finished,
before the vote can be confirmed

In a door access control system, the password has to be
checked before the door is unlocked, and the password can
only be changed if the door is unlocked



Example of Tool Usage, Local Property

/∗ @g l oba l LTL prop :
∗ even −> X ( ( even && ! e n t r y ) W odd )
∗/

p u b l i c c l a s s Number {
/∗ @ l o c a l i n t e r f a c e : r e q u i r e s {odd}
∗
∗ @ l o c a l p r op :
∗ nu X1 . ( ( [ even c a l l even ] f f ) /\ ( [ tau ] X1) /\ [ even c a r e t odd ]
∗ nu X2 . ( [ even c a l l even ] f f ) /\ ( [ even c a r e t odd ] f f ) /\ ( [ tau ] X2) )
∗/

p u b l i c boo l ean even ( i n t n ) {
i f ( n == 0) r e t u r n t r u e ;
e l s e r e t u r n odd (n−1) ;

}
/∗ @ l o c a l i n t e r f a c e : r e q u i r e s {even}
∗
∗ @ l o c a l p r op :
∗ nu X1 . ( ( [ odd c a l l odd ] f f ) /\ ( [ tau ] X1) /\ [ odd c a r e t even ]
∗ nu X2 . ( ( [ odd c a l l odd ] f f ) /\ ( [ odd c a r e t even ] f f ) /\ ( [ tau ] X2) )
∗/

p u b l i c boo l ean odd ( i n t n ) {
i f ( n == 0) r e t u r n f a l s e ;
e l s e r e t u r n even (n−1) ;

}
}
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Example of Tool Usage, Global Property

/∗∗ @g l oba l LTL prop :
∗ even −> X ( ( even && ! e n t r y ) W odd )
∗/

p u b l i c c l a s s Number {
/∗∗ @ l o c a l i n t e r f a c e : r e q u i r e s {odd}
∗
∗ @ l o c a l p r op :
∗ nu X1 . ( ( [ even c a l l even ] f f ) /\ ( [ tau ] X1) /\ [ even c a r e t odd ]
∗ nu X2 . ( [ even c a l l even ] f f ) /\ ( [ even c a r e t odd ] f f ) /\ ( [ tau ] X2) )
∗/

p u b l i c boo l ean even ( i n t n ) {
i f ( n == 0) r e t u r n t r u e ;
e l s e r e t u r n odd (n−1) ;

}
/∗∗ @ l o c a l i n t e r f a c e : r e q u i r e s {even}
∗
∗ @ l o c a l p r op :
∗ nu X1 . ( ( [ odd c a l l odd ] f f ) /\ ( [ tau ] X1) /\ [ odd c a r e t even ]
∗ nu X2 . ( ( [ odd c a l l odd ] f f ) /\ ( [ odd c a r e t even ] f f ) /\ ( [ tau ] X2) )
∗/

p u b l i c boo l ean odd ( i n t n ) {
i f ( n == 0) r e t u r n f a l s e ;
e l s e r e t u r n even (n−1) ;

}
}

in every program execution starting in method even, the first call is not to method even itself

method even can only call method odd, and after returning from the call, no other

method can be called

method odd can only call method even, and after returning from the call, no other

method can be called



Example of Tool Usage, Verification Result
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∗/
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∗
∗ @ l o c a l p r op :
∗ nu X1 . ( ( [ even c a l l even ] f f ) /\ ( [ tau ] X1) /\ [ even c a r e t odd ]
∗ nu X2 . ( [ even c a l l even ] f f ) /\ ( [ even c a r e t odd ] f f ) /\ ( [ tau ] X2) )
∗/
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Example of Tool Usage, Verification Result

/∗∗ @g l oba l LTL prop :
∗ even −> X ( ( even && ! e n t r y ) W even )
∗/

p u b l i c c l a s s Number {
/∗∗ @ l o c a l i n t e r f a c e : r e q u i r e s {odd}
∗
∗ @ l o c a l p r op :
∗ nu X1 . ( ( [ even c a l l even ] f f ) /\ ( [ tau ] X1) /\ [ even c a r e t odd ]
∗ nu X2 . ( [ even c a l l even ] f f ) /\ ( [ even c a r e t odd ] f f ) /\ ( [ tau ] X2) )
∗/

p u b l i c boo l ean even ( i n t n ) {
i f ( n == 0) r e t u r n t r u e ;
e l s e r e t u r n odd (n−1) ;

}
/∗∗ @ l o c a l i n t e r f a c e : r e q u i r e s {even}
∗
∗ @ l o c a l p r op :
∗ nu X1 . ( ( [ odd c a l l odd ] f f ) /\ ( [ tau ] X1) /\ [ odd c a r e t even ]
∗ nu X2 . ( ( [ odd c a l l odd ] f f ) /\ ( [ odd c a r e t even ] f f ) /\ ( [ tau ] X2) )
∗/

p u b l i c boo l ean odd ( i n t n ) {
i f ( n == 0) r e t u r n f a l s e ;
e l s e r e t u r n even (n−1) ;

}
}

in every program execution starting in method even, the first call IS to method even itself

Verification result: ‘‘NO’’

(even, ε)
even call odd

−−−−−−−−→(odd, even)
odd ret even

−−−−−−−→(even, ε)
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Case Study

Conclusion
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Flow Graph Operator

Flow Graph Composition (⊎): disjoint union of flow graphs



Flow Graph

Flow Graph Behavior

Flow graph induces push down automaton (PDA)

configurations (v, σ): pairs of control point v and call stack σ
production induced by

non-call edges
call edges
return nodes

Flow graph behavior is the behavior of induced PDA



Behavior of Closed Flow Graph
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(v0, ε)
τ
−→(v1, ε)

τ
−→(v2, ε)

even call odd

−−−−−−−−→(v5, v3)
τ
−→(v6, v3)

τ
−→

(v8, v3)
odd ret even

−−−−−−−→(v3, ε)
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Logics

Simulation Logic

φ ::= p | ¬p | X | φ1 ∧ φ2 | φ1 ∨ φ2 | [a]φ | νX . φ

Example property in simulation logic

nu X1. (([even call even]ff ) ∧ ([tau]X1) ∧ [even call odd ]

nu X2. (([even call even]ff ) ∧ ([even call odd ]ff ) ∧ ([tau]X2))

Weak LTL

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | X φ | G φ | φ1 W φ2

Example property in weak LTL

even → X ((even ∧ ¬entry) W odd)
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Compositional Verification Based on Maximal Flow Graphs
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Compositional Verification Based on Maximal Flow Graphs
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Procedure–Modular Verification

Procedure–Modular Verification

(I ) Extract flow graph for each method and model check it against
its local property

(II ) Construct maximal model from local property and interface of
each method
Compose the maximal models and model check the
composition result against global property



ProMoVer

Post−Processor

ProMoVer

Graph Tool

Pre−Processor

Annotated Java Program

CWB Moped

Graph Tool

Analyzer

(II)(I)

YES/NO+Method name YES/NO+C.E.

LTL FormulaSpec.Local

YES/NO+C.E. or Method name

Maximal Model
Constractor

Figure: Overview of ProMoVer and its underlying tool set



Case Study

Program

JavaPurse: a Java Card application for electronic purse

Uses Transaction mechanism for atomic update operations

19 methods

Around 1000 lines of Java code

With 222 method invocations, 21 method calls to NonAtomic

methods
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G (beginTransaction→
¬NonAtomicOp W commitTransaction)
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Case Study

Global Property

non-atomic array operation should not be invoked within a
transaction

G (beginTransaction→
¬NonAtomicOp W commitTransaction)

Local Specifications

The implementation was available

Specification: capture the method invocation ordering

It is possible to write specification independent from the
implementation

Verification Result

Positive answer in 150 seconds

Task(I ) performed in 142 seconds

Analyzer(Soot) needed 141 seconds

Task(II ) performed in 4 seconds



Conclusions

ProMoVer

An automated tool for procedure–modular verification

Verifies temporal safety properties

Gets annotated Java programs

Fully automated

We evaluated ProMoVer by a small but realistic case study
The results seem promising

Handle a real case study



Conclusions

ProMoVer

An automated tool for procedure–modular verification

Verifies temporal safety properties

Gets annotated Java programs

Fully automated

We evaluated ProMoVer by a small but realistic case study
The results seem promising

Handle a real case study

Improvements Needed

Replace Analyzer(Soot)

To support for alternative notations
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Future Work

Prove Reuse

To provide support for prove reuse

Scalability

Investigate the scalability of the approach

Evaluate our approach by a larger case study

Interface abstraction by in-lining private methods

Wider Range of Properties

To find more interesting properties

by adding data

by using Boolean programs



Questions



Maximal Flow Graphs

Maximal Flow Graph for property ψ, is a flow graph that
simulates all flow graphs holding ψ.

v0 v1 even

even

v4 v7

odd

ε ε

ε ε oddeven, odd, rr

v2v3 even, r
odd

v6
odd, r

v5

odd

ε
ε ε

ε

eveneven

Figure: Maximal Flow graph of Number
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