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Abstract— Dissimilarity measures are often used as a proxy
or a handle to reason about data. This can be problematic, as
the data representation is often a consequence of the capturing
process or how the data is visualized, rather than a reflection
of the semantics that we want to extract. Facial expressions are
a subtle and essential part of human communication but they
are challenging to extract from current representations. In this
paper we present a method that is capable of learning semantic
representations of faces in a datadriven manner. Our approach
uses sparse human supervision which our method grounds in
the data. We provide experimental justification of our approach
showing that our representation improve the performance for
emotion classification.

I. INTRODUCTION

During the last decades, there has been a rapid development
of methods for machine analysis of human spoken language.
Very sophisticated commercial systems for automatic speech
understanding and synthesis are now a part of our everyday
life, and runs on the smallest devices. However, the infor-
mation communicated between interacting humans is only
to a small part contained in the spoken language; humans
transfer huge amounts of information through non-verbal
cues: Facial expressions, body motion, muscle tensions, and
also the voice prosody [1], [14].

For an artificial social agent to be able to interact with
humans in a socially capable manner, it is thus essential to
implement reasoning about and recognition from such non-
verbal signals into the agent’s system.

Facial expressions are important in this respect, where
a small raise of the eyebrows can alter a reaction from
confused to surprised. Facial data can be aquired at large
volume from image and video data. However, expressions
are very subtle and corresponds to a very small part of
the variations in a video as most of the information are
related to the appearance. This remains true even when
removing the visual appearance and considering only the
movement of landmark points on a face. Therefore, reasoning
directly from raw data is challenging. One approach is to use
representations that is explicitly designed to constructed a
semantic feature space. One such representation is the Facial
Action Coding System (FACS) [6] which is based on features
corresponding to facial muscle activations. Even though such
representations correlate well with emotion expressions, they
are cumbersome to extract from video.

In this work we take a different approach and develop a
generative model of facial landmarks which is characterized
by a low-dimensional latent variable. Our method uses a

human notion of similarity to structure this latent represen-
tation, providing an interpretable representation.

The main contribution of this work is this latent face
representation (Section III). In addition we have collected a
data set of partial similarity rankings in the form of triplets
(Section IV-B).

II. RELATED WORK

Classic approaches to feature extraction for facial expression
applications (e.g. automatic classification) have traditionally
been characterized by a implicit features designed by hand.
One of the most commonly used representations is the Facial
Action Coding System (FACS) [6], [21]. In the FACS system
facial expression are described using a set of facial action
units (AU), where each action unit corresponds to different
muscle movement (e.g. ”Inner Brow Raiser”, ”Upper Lip
Raiser”, etc.). There are 28 main action units, but the full list
contains over one hundred AUs. The intensity of activations
is measured on a discrete 5-level scale (A-E).

The system has been very successful with a wide variety of
applications and is considered the standard representation for
physical expression of emotions. In the traditional approach
the action units are defined by hand but there has also
been work to learn action units directly from data []. FACS
models are successful but the lead to representations which
are discreete and spanned by the action units who are highly
dependent. This makes it challenging to build models which
use FACS as an underlying parametrisation.

With the increase in available data there has been an move-
ment towards learning representations directly from data. In
certain domains such as computer vision the resurgence of
neural networks in combination with large volumes of data
have completely replaced hand designed features with data-
driven features. These methods have recently made inroads
also for the task of facial expression recognition [19].

However, these methods do not learn representations but
decisions and it is not clear what assumptions underlie their
success. In this paper we want to leverage the availible
data but also learn an interpretable representation which
corresponds well to human perceptual similarity. Our goal
is to recover and parametrize a latent representation of
facial data where the notion of similarity aligns with human
perceptual similarity.

The task of learning latent representations in a unsuper-
vised manner is a well studied but highly ill-constrained
problem requiring significant assumptions to proceed. Prob-
ably the most well know assumption is to assume the



latent representation to be Gaussian, this in the linear case
leads to Principal Component Analysis [9] but can also
be generalized to the non-linear case leading to what is
known as a Gaussian process latent variable model [15].
In the non-linear full Bayesian inference is not analytically
tractable but efficient variational approximations [23] have
been developed.

The popularity of deep learning methods have lead to sig-
nificant developments in representation learning. The biggest
challenge with these types of approaches is that it is not clear
the assumptions that lead to the representations as there is
no clear model specification. One type of network structure
that has been very successful are based on auto-encoders.
These models are composed of an ’encoder’ that maps from
the observed data to a latent representation and a ’decoder’
that maps from the latent back to the observed data. This
approach have been very successful as the latent space is
constrained from “two sides” both to reconstruct the data
and to be encoded by it. A very attractive type of model that
merges benefits of models with that of neural networks in
an auto-encoder structure is the Variational auto-encoder[13],
[5] (VAE). Importantly this approach allows to incorporate
assumptions over the latent representation. Even though it is
called an ”autoencoder”, fundamentally it is a probabilistic
directed graphical model with latent random variables and
observed random variables. Generating process is modelled
as a function of latent variable z via a neural network with
added Gaussian noise, x ∼ N ( f (z;θ),σ2), where f is a
neural network with parameters θ . Prior over latent space
is usually chosen to be a spherical Gaussian, but in principle
a different distribution can be chosen if is satisfies some
constraints (for more details see [12]). This characteristic
motivates our choice of this model for our task as the latent
prior provides us with a “handle” for incorporating structure
over the latent space. Given the capability of extracting and
formulating a prior over human perceptual similarity we have
all the tools to include such information.

Exact inference over latent variables in the VAE is in-
tractable but it is feasible to bound the marginal likelihood
by a surrogate model. In specific learning can be approached
using a variational approach where we minimize a divergence
measure between the exact and an the approximate posterior
over the latent space. The approach suggested in the VAE is
to formulate the approximate distribution as a deterministic
function of the observed data, in specific the VAE framework
use a neural network to describe the parameters of the
approximate posterior, e.g. in case of a Gaussian posterior
mean and variance, p(z|x) ≈ q(z|x) ∼ N (g(x;φ)), where
g is a neural network. The model is trained jointly (both
generating and inference network) by maximizing evidence
lower bound (ELBO) on the whole data set

log p(X)≥L (X)=EZ∼q(Z|X)[log p(X|Z)]−KL(q(Z|X)||p(Z))

via backpropagation. The name of the model is therefore
based on the fact that it has inference and generating
networks similar to encoding and decoding networks in
classic autoencoders. This approach of representing latent

representations have also been used in other types of work
[17] and for GP-LVMs [16], [4].

Due to the flexibility of the model there has been several
extensions proposed, the adversarial autoencoder is using an
additional adversarial network rather then a KullbackLeibler
divergence to incorporate a prior on the latent space [18].
Importance weighted autoencoder modifies the model ob-
jective to get a tighter lower bound [2]. Ladder variational
autoencoder uses an improved inference mechanism for
models with more than one layer of latent random variables
[22]. Another recent line of research that the VAE can benefit
from is addressing the problem of using simple posterior
distributions for variational inference by specifying a more
flexible, complex and scalable approximate posterior distri-
butions using normalizing flow and inverse autoregressive
flow [11], [20]. In contrast, Higgins et al. [7] are advocating
for the importance of disentanglement and modify the VAE
force the approximated posterior to be closer to prior by
putting much more weight on the KL-divergence term.

III. METHOD

The methodology is build on VAE, that has been chosen as
a primary framework mostly due to its elegant construction
combining a Bayesian approach (allowing priors) with neural
networks (allowing fast and easy inference). We present two
extensions to VAE, M1 and M2.

A. M1: VAE with neutral facial expressions

The main problem of the standard auto-encoder model
(above) for this application is that the whole face is generated
from the latent space, i.e. latent representation contain infor-
mation not only about facial expression (of interest here),
but also about individuality features (nose shape, eyes, etc.).

To eliminate the effect of individual facial characteristics
we propose using a neural facial expression of a person as
additional input to the model and therefore modeling only the
transformation from this individual’s neutral face to another
expression of the same person.

The corresponding probabilistic graphical model is shown
in Figure 1, where solid lines show the generative process
and the dashed lines show the inference process. There z as
previously denotes the hidden variable of dimensionality K,
(X,Y) = {(x(i),y(i))}N

i=1 is a data set of facial expressions,
where y(i) is a neutral face of a person and x(i) is any facial
expression of the same person.

The model factorizes as follows :

pθ (x,z|y) = pθ (x|y,z)p(z) (1)

The prior over the latent variable is the same isotropic
Gaussian as before p(z) =N (z|0,I), but the likelihood now
also depends on the neutral face:

pθ (x|y,z) = N (x| f (y,z,θ),σ2I) (2)

where f (y,z,θ) is a neural network.
From the PGM (Figure 1) we can see that y and z

are connected through a ”V-structure” and therefore not
independent given z. The posterior distribution over the latent
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Fig. 1: The graphical representation of M1. Solid lines show
generative process, dashed lines inference process.

variable is pθ (z|x,y), which is intractable. As previously, we
approximate it with a different distribution, which now also
depends on the neutral face y:

qφ (z|x,y) = N (z|µµµ(x,y,φ),σσσ222(x,y,φ)I) (3)

where the mean and the variance are computed using neural
networks.

The only difference from standard VAE in the computa-
tional graph for this model is an additional input to both the
reconstruction network and the generative network.

For this model evidence lower bound (EBLO) on the
whole data set has the following form:

L (X,Y) =
N

∑
i=1

[
Ez∼qφ (z|x(i),y(i))

[
log pθ (x(i)|y(i),z)

]
−K L

(
qφ (z|x(i),y(i))||p(z)

)] (4)

The loss function approximation based on a mini-batch of
size B is:

Loss(X,Y) ≈−L̃ (XB,YB) =−N
B

B

∑
i=1

L̃ (x(i),y(i))

=
N
B

B

∑
i=1

[
− 1

L

L

∑
l=1

[
log pθ (x(i)|y(i),z(i,l))

]
+K L

(
qφ (z|x(i),y(i))||p(z)

)]
where z(i,l) = µµµ(x(i),y(i),φ)+σσσ(x(i),y(i),φ)εεε(i,l)

(5)

B. M2: VAE with neutral facial expressions and topology

Naturally in many applications, there are some prior knowl-
edge about the topology (e.g. smoothness or similarity
preservation), and it would be clearly beneficial to incor-
porate this knowledge into the model. Urtasun et al. [24] do
this for the modeling of human motion tasks with Gaussian
processes by putting explicit constraints on the embedding.
More specifically they formulate the prior in the form of
p(Z)∝ e−

1
γ

Φ(Z), where Φ(Z) is the energy function modeling
specific topological constraints.

In the neural network approach to representation learning
it is also possible to impose such constraints by modifying
the objective (adding penalizing term for violation of the
constraints), but often the most challenging part is to modify

a network with minimum loss in computational capacity.
For the case of partial similarity measure constraints in the
form of triplets (exactly the case in this project) Hoffer and
Ailon [8] propose a ”triplet network”, that has a three part
of the network sharing weights and then additional layer for
distance comparison.

Our hypothesis is that imposing human-like topological
constraints on the latent space will result in learning a better
representation. We combine ideas of Urtasun et al. [24] and
Hoffer and Ailon [8] and propose a new model based on the
previous one with modified prior on the latent space.

Topological constraints on the latent space are represented
as a set of T triplets, where each triplet consists of a reference
face and two other faces with one of those faces marked as
being more similar to the reference one based on a human
opinion. The resulting triplet data set is

S =
{
(s(t,re f ),s(t,+),s(t,−)) : d(h(sre f

t ),h(s+t ))≤ d(h(sre f
t ),h(s−t ))

}T

t=1
(6)

where each of s(t,re f ),s(t,+),s(t,−) corresponds to some index
i ∈ {1, ..N} in the original data set of facial expression,
d is the Euclidean distance and h(i) is some (human-like)
representation of the facial expression x(i).

To fulfill these topological constraints over triplets on the
latent representation z we want to minimize:

Φ(Z,S) =
T

∑
i=1

max
(
0;d(z(s

re f
t ),z(s

+
t ))−d(z(s

re f
t ),z(s

−
t ))
)

(7)

Instead of using f (x) = max(0;x) to penalize incorrect dis-
tances we will use its smooth approximation f (x) = ln(1+
ex) called ”softplus” to force a little margin on the distance
difference. For additional flexibility each triplet can have a
weigh wt (e.g. corresponding to a reliability level for each
triplet if the triplets are collected from people).

Φ(Z,S) =
T

∑
i=1

wt ln
(
1+ exp(d(z(s

re f
t ),z(s

+
t ))−d(z(s

re f
t ),z(s

−
t )))

)
(8)

This can be interpreted as a prior [24] that forces to fulfill
as much constraints as possible:

pT (Z|S) ∝ e−
1
γ

Φ(Z,S) (9)

where γ is a ”topological variance” and the smaller the value,
the larger the penalty for incorrect topology.

This topological prior can be factorized over triplets:

pT (Z|S) =
T

∏
t=1

pT (Z|s(t)) =
T

∏
t=1

pT

(
z(s

re f
t ),z(s

+
t ),z(s

+
t )|s(t)

)
∝

T

∏
t=1

exp
(
− 1

γ
Φ(z(s

re f
t ),z(s

+
t ),z(s

+
t ))
)

(10)
The topological prior on latent variable z can be added to
the standard Gaussian prior we used in the previous models:

p(Z) = pT (Z|S)pN (Z)

=
T

∏
t=1

pT

(
z(s

re f
t ),z(s

+
t ),z(s

+
t )|s(t)

) N

∏
i=1

N (z(i)|0,I)
(11)
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Fig. 2: Architecture of the ”triplet” part of M2.

Given that the prior is now not factorizable over the data
points, we derive ELBO on the whole data set:

log pθ (X|Y) = log
∫

pθ (X,Z|Y)dZ

= log
∫

qφ (Z|X,Y)
pθ (X,Z|Y)

qφ (Z|X,Y)
dZ

≥ EZ∼qφ (Z|X,Y)

[
log

pθ (X,Z|Y)

qφ (Z|X,Y)

]
= L (X,Y)

(12)
The last line was derived by applying Jensen’s inequality.

L (X,Y) = EZ∼qφ (Z|X,Y)

[
log

pθ (X|Z,Y)pT (Z|S)pN (Z)
qφ (Z|X,Y)

]
= EZ∼qφ (Z|X,Y)

[
log

N

∏
i=1

pθ (x(i)|z(i),y(i))

+ log
T

∏
t=1

pT

(
z(s

re f
t ),z(s

+
t ),z(s

+
t )
)

+ log
N

∏
i=1

pN (z(i))− log
N

∏
i=1

qφ (z(i)|x(i),y(i))
]

=
N

∑
i=1

Ez∼qφ (z|x(i),y(i))

[
log pθ (x(i)|z,y(i))

]
−

N

∑
i=1

K L
(

qφ (z|x(i),y(i))||pN (z)
)

+
T

∑
t=1

E
zr ∼ qφ (zr |x(s

re f
t ),y(s

re f
t ))

z+ ∼ qφ (z+|x(s
+
t ),y(s

+
t ))

z− ∼ qφ (z−|x(s
−
t ),y(s

−
t ))



[
log pT

(
zr,z+,z−

)]

(13)
We further write the exact density functions and use

the reparameterization trick to derive a differentiable lower

bound:

L (X,Y) =
N

∑
i=1

[
− 1

2σ2L

L

∑
l=1

(
x(i)− f (z(i,l),y(i))

)2

−K L
(

qφ (z|x(i),y(i))||pN (z)
)]

− 1
γM

T

∑
t=1

wt

M

∑
m=1

ln
(

1+ exp
(
d(z(s

re f
t ,l),z(s

+
t ,l))

−d(z(s
re f
t ,l),z(s

−
t ,l))

))
(14)

where z(i,l) = µµµ(x(i),y(i),φ)+σσσ(x(i),y(i),φ) · εεε,
εεε ∼N (0,I), f (y,z) - the generative neural network.

To maximize the evidence lower bound with batch-wise
stochastic gradient descend the objective is reformulated. We
use separate data batches and triplet batches. The approxi-
mation of the loss function based on a data batch of size B
and a triplet batch of size V can be computed as follows:

Loss(X,Y,S)≈ Loss(XB,YB,SV ) =−L̃ (XB,YB,SV )

=
N
B

B

∑
i=1

[
1

2σ2L

L

∑
l=1

(
x(i)− f (z(i,l),y(i))

)2

+K L
(

qφ (z|x(i),y(i))||pN (z)
)]

+
T
V

1
γM

V

∑
t=1

wt

M

∑
m=1

ln
(

1+ exp
(
d(z(s

re f
t ,m),z(s

+
t ,m))

−d(z(s
re f
t ,m),z(s

−
t ,m))

))
(15)

Note, that in fact the batch-wise objective also depends on
the data corresponding to the triplet batch.

The architecture of the computational graph for this model
is a combination of the one used in the model 1 with neutral
faces and the part shown in Figure 2, which is responsible
for the triplet term in the loss function and was inspired by
the ”triplet network” of Hoffer and Ailon [8]. All the parts
of the loss function are shown in red in the pictures.

IV. DATA

Two data sets will be used in this work, BU-3DFE
[26] containing posed static facial expressions, and BP4D-
Spontaneous [27] containing dynamic spontaneous expres-
sions. Our models also require neutral expressions as addi-
tional input. This is described in Section IV-A.

M2 imposes a human-like similarity metric on the latent
space and needs triplet data as constraints. Triplet data was
collected using crowd-sourcing service (Amazon Mechanical
Turk), as described in Section IV-B.

A. Data sets

The data format in both data sets used in the experiments
is 83 3d points for each face (facial landmarks).

1) Static posed data set with stereotypical facial ex-
pressions: This dataset consists of 100 individuals, each
posed with 4 degrees of stereotypical facial expressions
(”angry”, ”disgust”, ”sad”, ”happy”, ”surprised”, ”fear”) and



a ”neutral” one [26]. Each person has 25 data points and
the total size of the dataset is 2 500 facial expressions with
dimensionality 249. This data set is quite small and does not
have enough variability, but have labels which can be useful
for evaluation. The data set is split person-wise into training,
validation and test as 80/10/10.

2) Dynamic spontaneous data set: For this data set 41
individuals were asked to participate in 8 tasks, each task
has an intended emotion (e.g. ”sing a song” for ”embarrass-
ment”) [27]. This data set is much larger than the first one
and has more variability. The total number of data points
is 367492. We split the data set into 3 subsets person-wise
25/8/8 individuals for train, validation and test subsets. In
this dataset for each sequence 20 seconds were manually
annotated with action units (AU) by specialists (not all
possible AUs are labeled).

B. Triplets

M2 uses our hypothesis that incorporating knowledge about
human perception of facial expression will help to learn
a better latent representation. In order to formalize this
knowledge we collect triplet data, where people choose
which facial expressions are more similar.

Artificial triplets: As a preparation for the collection of
real triplets and a prof of concept we conduct experiments
on the artificial triplets on the posed data set. For the train
data subset 8000 triplets were generated. For the validation
and test sets - 1000 triplets per set. Every data point is present
in at least one triplet. These triplets are generated from the
true labels of the posed data set using the following rules:
• Expressions from the same class are closer then from

different classes.
• Within the same class: the closer the degree of expres-

sion the smaller the distance.
• A neutral expression is closer than an expression from

a different class.
Triplet collection with Amazon MT: Triplets are collected

for the spontaneous data set using Amazon MT. Participants
are asked to chose which of the 2 facial expressions looks
more similar to the reference one (Figure 3 (a)).

To select a subset of data to collect triplets on should
have a reasonable size and ideally cover the true latent space
evenly. We exploit the fact that the most expressive part of
each sequence was annotated with AUs and only use unique
expressions for each person in terms of labeled AUs. The
number of images is further minimized by removing blinking
based on the distances between lower and upper eyelids.

For each subset of data (train, validation and test) separate
sets of triplets were generated in such a way that each image
is in 6 triplets.

Given that the data we are collecting are opinions, and
often there is no obviously correct answer, we collect 5
answers from different people in order to get statistics for the
trustworthiness of each triplet. The difference in the number
of votes for each answer (5, 3 or 1) give a reliability statistic
that we use as a weighting coefficient in the model 2. The

(a) Triplets (b) Labels

Fig. 3: Data collection with Amazon Mechanical Turk

distribution of differences between two possible answers in
the collected data is shown in Table I.

C. Labels

In the posed data set all data points are labeled with
stereotypical facial expressions by design. For the sponta-
neous data set only intended emotions are given which is
not accurate enough for a classification task. To test the
latent representation of that data set we use Amazon MT to
collect labels for 2500 data points. Each participant is asked
to access whether a given facial expression corresponds to
neutral, positive or negative emotions (Figure 3 (b)). For each
data point 5 answers were collected. Only those where the
number of votes was at least 3 for positive or negative is
used later. As a result we gathered positive/negative emotion
labels for 1401 data points in the spontaneous data set (1040
”positive” and 361 ”negative”).

V. EXPERIMENTS

A. Preprocessing

We conducted experiments separately on each data set due
to incompatibility of point placements. For each data point
point cloud is rotated to neutral pose using pose estimates
given in data sets, centered with respect to the point between
eyes and scaled so the the distance between the eyes is 1.
The position of each eye was computed as a center of points
corresponding only to the lower eyelid. For the training
procedure the data is further centered using the mean of
the training portion of the corresponding data along each
dimension for the purpose of numerical stability of the neural
network.

TABLE I: Agreement statistics for collected triplets

Data subset Difference Total5 3 1
Train 2 426 2 364 2 206 6 996
Validation 652 686 643 1 981
Test 728 767 719 2 214
Whole data set 3 806 3 817 3 568 11 191



To eliminate the effect of appearance an only encode
facial expressions in the latent representation, the neutral
facial expression is needed for each individual. In the posed
data set each person has a corresponding neutral face. The
spontaneous dataset contains no specifically marked neutral
facial expressions. We decided to leverage the action units
labeling available in the dataset to select one neutral face for
each person. For each person we selected time frames which
have AU labels, but all AU are marked as non present. We
further select a single face with the minimal sum of distances
to the other neutral faces for each individual.

B. Evaluation

To evaluate quality of the learned latent representation we use
classification as the target task mostly due to its interpretabil-
ity and availability of the labels in the data sets. Labels in
the posed data are facial expressions (emotion) and the task
is a multi-class classification. In the spontaneous data set
collected labels are ”positive” and ”negative” emotions and
the task is therefore a binary classification.

Another evaluation technique that will be used is the
number of satisfied triplets. This measure will reflect the
topological coherency of the representation space.

Baseline: Our methods fall into the category of non-linear
dimensionality reduction techniques. One natural baseline in
a representation learning is the original data space with no
transformation. As a comparison linear PCA and standard
VAE is also used. The method of choice for the classification
tasks is the SVM with linear kernel.

Classification of stereotypical facial expressions on the
posed data set: The posed data set contains 4 degrees of all
6 stereotypical facial expressions and a neutral expression.
The task of classifying these facial expressions is a multi-
class classification problem and is implemented as a set of
one-vs-rest SVM classifiers, one for each class. The standard
accuracy is used as a performance measure.

Classification of positive and negative emotions on spon-
taneous data set: 1401 data point in the spontaneous data
set is labeled using crowd-sourcing. We use them as a binary
classification task with linear SVM as the classifier of choice.

Distance preservation: Given the hypothesis about topol-
ogy another test we will use is the number of satisfied triplets.
It indicates the degree of similarity of the learned latent space
topology and that of an assumed internal human representa-
tion, which can be useful for a number of application. This
evaluation will be conducted on both data sets (”artificial”
triplets will be used on the posed data set).

A satisfied triplet is defined as follows:

sat((ire f , i+, i−)) = I(||zire f − zi+ ||2 ≤ ||zire f − zi− ||2) (16)

The collected triplet data for the spontaneous data set have
3 levels of ”confidence”. Since the triplets for the posed data
set were generated according to the reasonable rules, they all
considered to have the 100% reliability level (weight 1).

C. Training
Architecture: Both the reconstruction and the generative

parts of the model are approximated with neural networks.
All the layers are fully connected with exponential linear unit
non-linearity (ELU, [3]). Different layer configurations are
used during training. For the standard VAE the encoding and
decoding part is symmetrical, for the model 1 and model 2 it
they are asymmetrical as the additional neutral face is added
to both encoder and decoder input.

The Adam algorithm is used for optimization [10]. All
models are trained for 100 000 iterations. Each 2500 iter-
ations the model is evaluated by computing ELBO on the
validation data set. An iteration with the highest validation
ELBO is considered the final model. Fixed parameters are
the learning rate of 1e−4, dropout 0.9, sample size L= 3 and
triplet sample size M = 10, batch size B = 200/250 (posed,
spontaneous) and triplet batch size V = 10.

Annealing of the divergence term: It is typical for the
VAE-model to ”overregularize”, more specifically, to turn off
some latent dimensions early, so that the model does not use
the full allowed capacity. The most common way to improve
the learning is to use a modified objective function [25]:

L (X) =−Eqφ (Z|X)

[
log pθ (X |Z)

]
+β ∗KL(qφ (Z|X)||p(Z))

(17)
and slowly increase β from 0 to 1 over a number of
iterations. When β = 0 the objective is the ML estimation and
equivalent to that of the standard auto-encoder model. β = 1
corresponds to the normal VAE objective. In all experiments
β is increased linearly with the number of iterations.

M2 has an additional parameter, the topological variance.
The smaller this parameter the higher the penalty for not
satisfying the triplets. There are two possible ways to modify
the objective function to perform the annealing in this case,
either only anneal the KL-divergence term or anneal the
whole prior. We try both to compare.

D. Results on the static posed data set
We vary the layer architecture, reconstruction variance and
the number of annealing iterations for VAE and M1, and also
topological variance for M2.

The best model on validation data set is M2 with annealing
and only the KL-divergence term with the following config-
uration: encoding [498, 480, 240, 120, 60, 30], decoding
[279, 300, 400, 300, 249], reconstruction variance 0.001,
topological variance 0.04, annealing over 100 000 iterations.

As we can see in the comparison in Table II, M2 out-
performs both baselines (the original data and linear PCA)
and also standard VAE. Both, classification accuracy and the
number of satisfied triplets, improved with adding neutral
face and incorporating topology. Figure 4 shows latent space
for different representations projected onto 3 principal com-
ponents. We can see that M2 provides a good linear separa-
tion between classes compared to other representations.

E. Results on spontaneous data set
Our models are also trained on the spontaneous data set.
The main advantage of these spontaneous data is the more



(a) Original (b) VAE

(c) M1 (d) M2

Fig. 4: Visualization of different representations on the static
posed data set in 3D using linear PCA. Facial expression
color codes: angry, disgust, fear, happy, neutral, sad, sur-
prised.

natural variations in facial expressions as opposed to the
stereotypical and static expressions in the posed data set.
For this data set we collected the triplet data and labels from
real people using crowd-sourcing.

The performance comparison with the baseline models
on the test part of the spontaneous data set is given in
the Table III. The classification accuracy on this task is
quite high even for a linear dimensionality reduction, and
very similar for all representations (original, PCA, M1, M2).
As we can see from the 3d projection of the latent space
(Figure 5), the classes are already reasonably separated even
in the original representation (Figure 5(a)), so the task is not
very challenging. Lower dimensional representations provide
comparable classification accuracy, but M2 (Figure 5(d)) also
pulls classes apart in the latent space a bit more as opposed
to VAE and M1 which employ only a Gaussian prior.

The triplet coherency for M2 is also much higher than
for the baseline models for the high and medium confidence
triplets (Table II), which indicates that the structure of the

TABLE II: Results for static posed dataset

Dimensionality Dim Accuracy Tripletsreduction
None 249 0.72 0.593
PCA 30 0.676 0.592
VAE 30 0.64 0.592
M1 30 0.72 0.67
M2 30 0.736 0.798

(a) Original (b) VAE

(c) M1 (d) M2

Fig. 5: Visualization of different representations on the
spontaneous data set in 3D using linear PCA. Emotion color
codes: negative, positive.

M2 latent space, to a larger degree than the baselines, is
structured similarly to how humans perceive changes in facial
expression.

VI. CONCLUSIONS AND FUTURE WORK

We developed a methodology to learning latent representa-
tion of facial expressions consistent with human perception
of similarity. The methodology was iteratively built on the
basis of variational auto-encoder. To eliminate the individual
features classic VAE was modified to include neutral faces,
so that the model can focus on learning only the deviation
of a facial expression from a neutral one. We incorporated
the topological constraints as an additional component in the
prior distribution of the latent variable.

The models were trained and tested on two data sets.
While the data formats in the data sets are the same, the size,
the labeling, and the variation in the data are different. On
the posed data we saw that the standard VAE was performing
worse than the baselines, but adding a neutral face increased
the classification accuracy up to the baseline levels. Including

TABLE III: Results for spontaneous data set

Dimensionality Dim Accuracy Triplets
reduction 5 3 1
None 249 0.842 0.747 0.615 0.549
PCA 30 0.824 0.743 0.608 0.549
VAE 30 0.838 0.706 0.593 0.494
M1 30 0.853 0.629 0.575 0.512
M2 30 0.835 0.830 0.701 0.559



the topological prior helped structure the latent space in a
way that is coherent with a human similarity assessment and
raised the classification accuracy above the baseline.

The latent representation of the posed data set showed
clear linear separation between classes of stereotypical facial
expressions. Even thought the triplets for that data set were
artificially generated based on the labels, the assumptions
were very mild.

On the spontaneous data set the labels were collected
using crowd-sourcing. On this data set the classification
performance of our models was very similar to the baseline.
This can be explained by the facts that, firstly, label quality
is not very high, and secondly, the task of classifying posi-
tive/negative emotions given the labels is not very complex
given good classification even on the original data. Most
likely the labels highly correlate with obvious features in
the original data (e.g. a wide smile).

On the both data sets topological prior increased the
number of satisfied triplets on the test part of the data
indicating that the model does not just overfit the training
triplets, but rather uses them to structure the latent space in
a way consistent with human similarity assessments.

One of the benefits of the generative probabilistic model
is the ability to explore the role of each dimension through
generations of new samples. It it possible to identify dimen-
sions responsible for very a specific facial action, such as
closing and opening the mouth, smiling, blinking, etc.

The learned representations perform better of the same
on classification tasks, are structured in the latent space
consistently with human perception, and are interpretable
through the means of the generative process.

A. Future work

So far we only worked with static facial expressions (even
when using the dynamic data set) while they are dynamic
by nature. Therefore incorporating temporal dynamics in the
model is the most obvious next step that can help learning
smooth trajectories in the latent space.

Another option to explore is different prior on the latent
space. For example, each latent dimension could have an
independent Beta distribution as a prior to mimic action unit
activations, but with continuous features.

This work can also be improved by testing the learned
latent representation on more evaluation tasks.

Though we worked with 3d facial landmarks, it is also
possible to use different type of input data and modify the
networks accordingly, e.g. we could use images as input and
CNN as encoder and decoder.
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