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Abstract. This paper presents the EACare project, an ambitious multi-
disciplinary collaboration with the aim to develop an embodied system,
capable of carrying out neuropsychological tests to detect early signs of
dementia, e.g., due to Alzheimer’s disease. The system will use methods
from Machine Learning and Social Robotics, and be trained with ex-
amples of recorded clinician-patient interactions. The interaction will be
developed using a participatory design approach. We describe the scope
and method of the project, and report on a first Wizard of Oz prototype.

1 Introduction

With an increasing number of elderly in the population, dementia is expected
to increase. Dementia disorders and related illnesses such as depression in the
aging population are devastating for the quality of life of the afflicted individuals,
their families, and caregivers. Moreover, the increase in such disorders imply
enormous costs for the health sectors of all developed countries. There is still no
cure available. However, studies, e.g. [18], show that it is possible to reduce the
risk for dementia in later life through a number of preventative measures. Early
diagnoses and prevention measures are thus key to counteract dementia.

Diagnoses of dementia are now made by teams of expert clinicians with stan-
dardized neuropsychological tests (Section 4) as well as EEG and MRI examina-
tions. A number of additional factors in the behavior are taken into regard apart
from the actual test scores and measurements (Section 6). Using these methods,
dementia in early stages are often missed, since the time intervals between the
sessions usually are quite large, and symptoms often come and go over time.
Once a diagnosis has been made, the caring medical expert typically prescribes
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a specific therapeutic intervention of the type of memory training. Training ses-
sions are often scarce and require the presence of a medically trained person.

The main goal of the multi-disciplinary research described in this position
paper, is to develop an embodied agent (Section 3) capable of interacting with
elderly people in their home, assessing their mental abilities using both standard-
ized test and analysis of their non-verbal behavior, in order to identify subjects
at the first stages of dementia.

The contributions of such a system to the diagnostics and treatment of de-
mentia would be twofold:

1. Firstly, since the proposed embodied system would enable tests to be carried
out much more often, at the test subject’s home, subtle and temporarily ap-
pearing symptoms might be detected that are missed in regular screenings
at the clinic. Moreover, the computerized test procedure makes it possible
to collect quantitative measurements of the subject’s cognitive development
over time, enabling a clinician overseeing the test process to base their di-
agnosis on rich statistical data instead of few, more qualitative, test results.
All this will make it possible to introduce preventive therapy much earlier.

2. Secondly, after a mild cognitive impairment or early dementia diagnosis, the
proposed system may also be used for patients to train regularly at home as
a complement to sessions with an expert, greatly enhancing the efficiency of
the therapy.

The research efforts needed to achieve these goals span over such diverse
research areas of Social Robotics, Geriatrics, and Machine Learning, and include:

1. a user- and caregiver-friendly embodied agent that carries out established
neuropsychological tests. This includes the development of an adaptive and
sustainable dialogue system, with elements of gamification that encourages
the subject to carry out the tests as effectively as possible (Section 5).

2. pioneering Machine Learning solutions to achieve diagnostics from the user’s
performance in the neuropsychological tests, as well as their non-verbal be-
havior during the test (Section 7).

3. systematic evaluation of the developed systems in both large and focused
social groups, using feedback from each evaluation to guide further scientific
research and design.

Research efforts in this direction have been made before, e.g. [23]. The novelty
of the present project with respect to this work is that we propose a more ad-
vanced interaction and a more sophisticated embodiment that supports, among
other things, mutual gaze and shared attention.

2 Survey of related work

Several efforts have been made to investigate the acceptance of social robots by
the elderly [13], some of them with a particular focus on home environments [9,
27]. For example, through a series of questionnaires and interviews to understand
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the attitudes and preferences of older adults for robot assistance with everyday
tasks, Smarr et al. [27] found that this user group is quite open for robots to
perform a wide range of tasks in their homes. Surprisingly, for tasks such as
chores or information management (e.g., reminders and monitoring their daily
activity), older adults reported to prefer robot assistance over human assistance.

One of the main motivations of developing assistive robots for the elderly is
the fact that this technology can promote longer independent living [9]. How-
ever, in-home experiments are still scarce because of privacy concerns and lim-
ited robot autonomy. One of the few exceptions is the work by de Graaf et al.
[11], who investigated reasons for technology abandonment in a study where 70
autonomous robots were deployed in peoples homes for about six months. Re-
gardless of age (their participant pool ranged from 8 to 77 years), they found
that the main reasons why people stopped using the robot were lack of enjoy-
ment and perceived usefulness. These findings indicate that involving the target
users from the early stages of development can be crucial for the success and
acceptance of social robots.

While most of the human-robot interaction studies with older adults have
been conducted with neurotypical participants [31, 3], a few authors have in-
cluded patients with dementia in their research. Sabanovic et al. [24], for in-
stance, evaluated the effects of PARO, a seal-like robot, in group sensory ther-
apy for older adults with different levels of dementia. The results of a seven-week
study indicate that the robot’s presence contributed to participants higher lev-
els of engagement not only with the robot but also with the other people in
the environment. Similar findings were obtained by Iacono and Marti [14], who
compared the effects of the presence of a PARO robot and a stuffed toy during a
group storytelling task. Furthermore, the authors found that while in the pres-
ence of the robot, participants’ stories were much more articulated in terms of
number of words, characters and narrative details.

Perhaps most similar to our work both in terms of the interaction modality
(language-based) and condition of the user group (older adults diagnosed with
dementia), Rudzicz et al. [23] conducted a laboratory Wizard of Oz experiment to
evaluate the challenges in speech recognition and dialogue between participants
and a personal assistant robot while performing daily household tasks such as
making tea. Their results suggest that autonomous language-based interactions
in this setting can be challenging not only because of speech recognition errors
but also because robots will often need to proactively employ conversational
repair strategies during moments of confusion.

3 The Furhat dialogue system

The project will make use of the robot platform Furhat [1] (Figure 1). Furhat
is a unique social robotic head based on back-projected animation that has
proven capable of exhibiting verbal and non-verbal cues in a manner that is
in many ways superior to on-screen avatars. Furhat also offers advantages over
mechatronic robot heads in terms of high facial expressivity, very low noise level
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Fig. 1. Furhat and one of the authors performing a clock test (Section 4.1).

and fast animation allowing e.g. for highly accurate lip-synch. Since the face
is projected on a mask, the robots visual appearance can be easily modified
e.g. to be more or less photo realistic or cartoonish, by changing the projection
and/or the mask. This feature will be exploited in the participatory design study
(Section 5.2).

The Furhat robot includes a multi-modal dialog system, implemented using
the IrisTK framework [26]. It uses statecharts as a powerful formalism for com-
plex, reactive, event-driven spoken interaction management. It also includes a 3D
situation model that makes it possible to handle situated interaction, including
multiple users talking to the system and objects being discussed. A customizable
Wizard of Oz mode as well as API:s for external control makes it straightfor-
ward to set up supervised experiments and data collection studies when a fully
autonomous system can not be implemented.

4 Clinical assessment of cognitive function

As described in the introduction, dementia is detected through clinical cognitive
assessments. They are carried out under supervision of a clinician and evaluate
attention, memory, language, visuospatial/perceptual functions, psycho- motor
speed, and executive functions through a wide range of tests. Common and
valid tests include learning and remembering a wordlist, e.g. Rey Auditory Ver-
bal Learning Test (RAVLT) [32], visuo-spatial and memory abilities, e.g. Rey-
Osterrieth Complex Figure Test (ROCF) [19], and test of mental and motor
speed, e.g. Wechsler Adult Intelligence Scale (WAIS) subtest Coding [15].

Speech and language assessment includes, e.g., tests of picture naming [17],
word fluency [29], and aspects of high-level language comprehension [2].

4.1 Montreal Cognitive Assessment test (MoCA)

The Montreal Cognitive Assessment (MoCA) [21] is a brief test that evaluates
several of the cognitive domains mentioned above in a time-effective manner.
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Visuospatial and executive functions are here assessed using trail making, figure
copying and clock drawing tasks. Language is assessed using object naming, sen-
tence repetition, phonemic fluency and abstraction tasks. Attention is assessed
using digit repetition, target detection and serial subtraction tasks. Memory is
assessed using a delayed verbal recall task after initial learning trials. Temporal
and spatial orientation is also assessed.

MoCA has proven robust in identifying subjects with mild cognitive impair-
ment (MCI) and early Alzheimers disease (AD) and in distinguishing them from
healthy controls, thereby becoming an important screening tool for clinicians all
over the world [16]. Due to an increasing interest in using MoCA as a moni-
toring tool and the need of minimizing practice effects associated with repeated
assessment, alternate forms of the test have also been developed [6].

5 Automating assessment of cognitive function

We will in this project implement clinical neuropsychological assessments with
the Furhat system (Section 3). The Furhat agent will take the clinician’s role,
supervising and driving the test procedure. The assessments with Furhat will
take place in the user’s home and complement the regular assessments at the
memory clinic.

5.1 Automating the Montreal Cognitive Assessment test (MoCA)

We employ the Furhat system to implement the Montreal Cognitive Assessment
test (MoCA). The intent is replicate the typical interaction between patient and
clinician during the administration of the test, with the robot acting as the
clinician.

In order to rapidly get feedback from participants, a Wizard of Oz [7] pro-
totype has been developed where participants can interact with the embodied
agent. The prototype consists of a Furhat robot and a touch-enabled tabletop
computer (Figure 1) connected to a remote wizarding interface. The system is
set up to run through MoCA as described above.

The prototype follows a scripted interaction, but also gives the wizard a large
set of additional utterances in order to handle small deviations and make the
interaction more life-like. These include typical conversational devices, such as
affirmations, discourse markers, and the ability to add continuity or “flow” to
the interaction, such as “ok, let’s move on to the next section”. The interaction
is primarily centered around speech, which is realized by converting pre-set text
prompts into speech output via a built in text-to-speech (TTS) system. How-
ever, some tasks require the participant to use the touch table in order to, for
example, draw an image or recall the name of certain objects displayed on the
screen. Besides providing the wizard with a set of utterances, the prototype also
provides the wizard with the ability to perform certain facial expressions, head
nods and sharing attention towards a given point. Using all of these modalities
simultaneously allows the wizard to convey a highly engaging and believable
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Fig. 2. Wizard of Oz interface to the first Furhat system prototype.

embodiment of a clinician who can understand the user’s actions and responses,
and respond appropriately, just as a real clinician would.

The wizard interface consists of “buttons” on a standard computer screen
(Figure 2) that can be triggered from keys on its keyboard. These include the
aforementioned pre-set text prompts which are realized as a TTS voice, as well
as dedicated keys for facial expressions, head nods, and head movement to look
at the touch screen. The wizard can hear participants via a microphone, and see
them through a glass partition or via a webcam.

5.2 Future Work: Participatory Design of the dialogue system

A series of workshops, each lasting 1-2 hours, will be conducted with around 10
participants.

These workshops will be based on the concept of Participatory Design, wherein
the various stakeholders in the project will participate in the design of both the
physical robot and the content of the proposed interactions. Stakeholders include
potential users from the target demographic (volunteers and patients), clinicians
with relevant expertise (KI), and the robot/interaction researchers (KTH). Spe-
cific activities during the workshops will include:

1. introductory interaction with the robot system,
2. discussion/feedback of various aspects of system, e.g. look, sound, content,
3. discussion of volunteers’ and clinicians’ preferences/expectations/concerns

regarding system.

The process will be iterative: after each workshop session, the researchers will
integrate ideas generated during the workshop into a new version of the system,
which they will demonstrate at the subsequent session, which the stakeholders
can then re-evaluate.
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Interactions with the prototype will be recorded in order to improve the
current system, but also in order to collect data used for building the automated
system in the future (Section 7).

6 Additional factors used in assessment of cognitive
function

During the clinical assessment, the clinician also make use of additional infor-
mation in the diagnostic process.

Different neurodegenerative diseases often differ in socioemotional presenta-
tion; one example is mutual gaze [28]. Studies have also shown changes in eye
movements due to Alzheimers disease, with e.g. alterations in gaze behavior [20].

Spoken interaction offers clues to cognitive functioning that are not usually
measured or rated in clinical assessment. The temporal organization of speech,
such as the incidence and duration of pauses, as well as the overall speaking rate,
may signal word-finding problems and difficulties with discourse planning [10].
The prosodic organization, including pitch and loudness, may be abnormal in
right-hemisphere brain lesions and in striatal loop dysfunction as in Parkinsons
disease and related cognitive disorders [22].

6.1 Future Work: Structured description of the diagnostic process

To be able to incorporate such reasoning in the diagnostic process of the auto-
matic dialogue system, we need to develop simplified and structured descriptions
of what clinicians actually do during different kinds of assessment; pseudo-code-
like scripts suitable for computer implementation.

These descriptions include both the verbal and non-verbal communication
of the clinician during the cognitive assessment, but also the aspects of the pa-
tient’s verbal and non-verbal communication relevant to assessment of cognitive
function.

7 Automating inference from additional factors

During the last decades, there has been a rapid development of methods for
machine analysis of human spoken language. However, the information com-
municated between interacting humans is only to a small part verbal; humans
transfer huge amounts of information through non-verbal cues such as face and
body motion, gaze, and tone of voice, and these signals can be analyzed auto-
matically to a certain degree [4]. As described in Section 6, dementia diagnostics
relies heavily on such cues, and we aim to equip the system with the capability
to take non-verbal cues into account in the diagnostics.

We will model the cognitive processes of non-verbal communication in the
human brain (Figure 3), on such a level that they explain the correlation between
what the human perceives from the clinician’s communication, and what the
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Fig. 3. The diagnostics system will build upon a generative model of the patient’s
non-verbal behavior perception and production process.

human in turn communicates. The underlying condition of an observed human
can then be inferred from the recorded interaction with the clinician.

Data will be collected during user studies (Section 5.2). Non-verbal signals
of both clinician and evaluated human will be recorded using sensors such as
Kinect human tracker, Tobii gaze detector, but also state-of-the-art techniques
for extracting social signals from RGB-D video, e.g. facial action units [30], and
speech sound, e.g. prosody, laughter and pauses [12].

7.1 Future Work: Development of Machine Learning methodology

The processes depicted in Figure 3 represent incredibly complex, non-smooth,
and non-linear mappings and representations, which indicates that it will be
suitable to use a deep neural network [25] approach.

Our initial studies [5] show that it is beneficial to use generative, probabilistic
deep models, in order to be able to incorporate prior information in a principled
manner. Such information includes clinical expert knowledge and logic reasoning.

Moreover, deep probabilistic approaches, such as [8], provide both more in-
terpretability and lowers the needed amount of training data – important aspects
for a diagnostics method.

8 Conclusions

This position paper presented the EACare project, where we aim to develop a
system with an embodied agent, that can carry out neuropsychological clinical
tests and detect early signs of dementia from both the test results and from the
user’s non-verbal behavior.

This is intended as a stand-alone system, which the user brings home, and
which interacts with the user in between regular screenings at the clinic. Two
different “spin-off products” could be
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1. a system without embodiment or dialogue generation, which only serves as
decision support to a clinician during a neuropsychological screening at the
clinic,

2. a system which passively monitors the user’s communication behavior during
daily activities, e.g. as a back-end to Skype.
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5. Bütepage, J., Black, M.J., Kragic, D., Kjellström, H.: Deep representation learning
for human motion prediction and classification. In: IEEE Conference on Computer
Vision and Pattern Recognition (2017)

6. Costa, A.S., Reich, A., Fimm, B., Ketteler, S.T., Schulz, J.B., Reetz, K.: Evidence
of the sensitivity of the MoCA alternate forms in monitoring cognitive change in
early Alzheimer’s disease. Dement. Geriatr. Cogn. Disorders 37, 95–103 (2014)
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word fluency tests: FAS, animals and verbs. Scandinavian Journal of Psychology
49(5), 479–485 (2008)

30. Valstar, M., Pantic, M.: Fully automatic facial action unit detection and temporal
analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (2006)

31. Wada, K., Shibata, T.: Living with seal robots – its sociopsychological and physi-
ological influences on the elderly at a care house. IEEE Transactions on Robotics
23(5), 972–980 (2007)

32. Woodard, J.L., Dunlovsky, J., Salthouse, T.A.: Task decomposition analysis of
intertrial free recall performance on the Rey Auditory Verbal Learning Test in



11

normal aging and Alzheimers disease. Journal of Clinical and Experimental Neu-
ropsychology 21, 666–676 (1999)


