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Abstract

We present an extension to the scaled orthographic cam-
era model. It deals with dynamic cameras looking at far
away objects. The camera is allowed to change focal length
and translate and rotate in 3D. The model we derive says
that this motion can be treated as scaling, translation and
rotation in a 2D image plane. It is valid if the camera and its
target move around in two separate regions that are small
compared to the distance between them.

We show two applications of this model to motion cap-
ture applications at large distances, i.e. outside a studio,
using the affine factorization algorithm. The model is used
to motivate theoretically why the factorization can be car-
ried out in a single batch step, when having both dynamic
cameras and a dynamic object. Furthermore, the model is
used to motivate how the position of the object can be re-
constructed by measuring the virtual 2D motion of the cam-
eras. For testing we use videos from a real football game
and reconstruct the 3D motion of a footballer as he scores
a goal.

1. Introduction

This paper discusses the scaled orthographic camera
model, a special case of the general projective camera [2].
The scaled orthographic camera is an idealized model that
is valid for most cameras when looking at far away objects.
Then the projection can be approximated as parallel projec-
tion with an isotropic scaling factor. For instance this is true
for a lot of footage from outdoor sports like: track and field,
football and downhill skiing.

Assuming cameras to be orthographic simplifies calibra-
tion as well as 3D reconstruction and motion capture, i.e.
3D motion reconstruction of dynamic objects, typically hu-
mans. This is relevant when doing motion capture at large
distances, i.e. outside a studio. If the image positions of
some dynamic points have been measured in two or more
cameras the Affine factorization algorithm [10, 2] can be
used to reconstruct the points and the cameras in 3D. In

Figure 1. Four different frames from a pan tilt camera following a
football player. This can be approximated as a dynamic ortho-
graphic camera whose 3D rotation can be approximated as 2D
translation. As the camera rotates the lines on the pitch looks as if
they are being translated.

some special cases, like linear low rank or articulated mo-
tion, it is even possible to do this with a single camera
[2, 6, 11, 13, 14, 7]. However, in this paper we focus on
general dynamic objects and multiple dynamic cameras.

In section 2 we present an extension of the scaled ortho-
graphic camera. This extended model concerns the dynam-
ics of the camera. Specifically it says that the 3D motion
of a dynamic orthographic camera can often be treated as
2D motions in an image plane. This holds if the translation
of the camera and the object it looks at are small relative
to the distance between them. Then the 3D rotation of the
camera can be approximated as 2D rotation and 2D trans-
lation. This is a natural extension to orthographic cameras
since they are assumed to view distant objects.

We then discuss two applications of this result in sec-
tion 3. They both regard motion capture using the factor-
ization algorithm which is discussed in section 3.1. The
first is about applying factorization to multiple frames in a
single batch step for increased accuracy and robustness, as



opposed to doing it independently for each frame. We mo-
tivate theoretically why this can be done even if both the
object and cameras are dynamic in section 3.2.

The second application is about computing the position
of a reconstructed dynamic object (section 3.3). This de-
pends on the absolute motion of the camera, which is diffi-
cult to measure for a general projective camera. However,
using the result that the motion of orthographic cameras can
be treated in 2D this process is simplified.

The related topic of detecting the isotropic scaling, 2D
translation and 2D rotations that relates a pair of images is
briefly discussed in section 3.3.1. Videos from a real foot-
ball game are used for testing the motion capture in section
4.

Figure 2. A pan-tilt camera. This can be approximated as a dy-
namic orthographic camera whose rotation can be approximated
as translation. Two different frames are translated and the overlap-
ping parts are blended. The fit is good as can be seen by examining
the lines on the pitch.

2. Dynamic Orthographic Camera

Assumptions Consider a camera looking at far away ob-
jects. The objects move around and the camera is free
to rotate, translate and zoom to follow them. Let p =
(px, py, pz)T be the target point of the camera, which con-
trols its pan-tilt rotation. Let the angle θ parametrize a
possible roll rotation around the viewing axis. Assume the
translational motion of both the camera and its target point
are small relative to the distance between the camera and
the objects. This can be modeled by placing the camera at
position t = (tx, ty, tz−d)T and letting d → ∞. See figure
4 for the setup of the camera.

Proposition Then the camera can be treated as an ortho-
graphic camera and its dynamics can be treated in 2D, i.e.
as scaling, rotation and translation in the image plane. Pro-
jection of a point in 3D (x, y, z) to the image (u, v) can then
be written:

�
u
v

�
= f �

�
cos θ − sin θ
sin θ cos θ

��
x− px
y − py

�
(1)

Figure 3. An orthographic camera rotating to follow an object. The
top figure shows the original frame with the camera to the left and
an object to the right. In the middle figure the object has moved
and the camera is rotated to follow it. In the bottom view the object
has also moved but the camera is instead translated to follow it.
The projected image is approximately the same. If the object is
infinitely far away the result will be exactly the same. The rotation
of the camera can therefore be approximated as translation.

where f � controls the zooming of the camera and is related
to the focal length of the camera, which is assumed to be
equal for both image axes. It is also assumed that the im-
age coordinates are given in a coordinate system with the
principal point at the origin.

Thus the 3D dynamic of this orthographic camera can
be treated in 2D. The roll rotation is a rotation in the im-
age plane and a change of focal length results in a uniform
scaling of the image. Both the translation of the camera and
its pan-tilt rotation results in a 2D translation in the image.
However, this image translation only depends on the target
point p. It does not matter how the camera changes to fol-
low it. It could change by translation or pan-tilt rotation.
The resulting image translations are equivalent. The dy-
namics of the camera can thus be seen as isotropic scaling,
2D rotations and 2D translations in a static image plane.

Figure 4. The setup of the camera at position t looking at p and a
general point (x, y, z) which is projected by the camera.



Derivation We now derive the result expressed by equa-
tion 1 formally:

Camera position: t = t0 +∆t (2)
t0 = −d(0, 0, 1)T = −de3 (3)
∆t = (tx, ty, tz)

T (4)
Target point: p = (px, py, pz)

T (5)
n = p−∆t = (nx, ny, nz)

T (6)

Denote the rotation matrix of the camera as R. Without loss
of generality the rotation can be decomposed into a pan-tilt
rotation RPT , which determines the viewing axis, and a roll
rotation around this axis RR:

R(θ, t, p) = RR(θ)RPT (t, p) (7)

RR(θ) =




cos θ − sin θ 0
sin θ cos θ 0
0 0 1



 (8)

RPT (t, p) =




rT1
rT2
rT3



 (9)

See the appendix (6) for the full expression of RPT (t, p). If
the camera is assumed to have square pixels and the princi-
pal point at the origin its calibration matrix is:

K =




f 0 0
0 f 0
0 0 1



 (10)

where f is the focal length of the camera. To derive an
orthographic camera we let the camera move infinitely far
away from the point it looks at, d → ∞, while at the same
time zoom in to have a constant scaling of the objects. Let
f = f �d:

K =




f 0 0
0 f 0
0 0 1



 =




f �d 0 0
0 f �d 0
0 0 1



 =

= d




f � 0 0
0 f � 0
0 0 1





� �� �
K�




1 0 0
0 1 0
0 0 1

d





� �� �
D

=

= K �D (11)

The last equality holds since D and dD belongs to the same
equivalence class in projective geometry. Note that D and
RR commute, i.e. DRR = RRD. As the camera moves

infinitely far away we get the following camera matrix:

P∞ = lim
d→∞

P = lim
d→∞

KR(I| − t) =

= lim
d→∞

K �DRRRPT (I| − t) =

= lim
d→∞

K �RRDRPT (I|de3 −∆t) =

= lim
d→∞

K �RRDRPT

�
I de3

�� I −∆t
0T 1

�
=

= lim
d→∞

K �RRD




rT1 r1,zd
rT2 r2,zd
rT3 r3,zd




�

I −∆t
0T 1

�
=

= lim
d→∞

K �RR




rT1 r1,zd
rT2 r2,zd
rT3
d r3,z




�

I −∆t
0T 1

�
(12)

In the final line of equation 12 only one of the matrices de-
pends on d. The limit value of this matrix is computed in
the appendix (6). The result is:

P∞ = K �RR




1 0 0 −nx

0 1 0 −ny

0 0 0 1




�

I −∆t
0T 1

�
=

= K �RR




1 0 0 −nx − tx
0 1 0 −ny − ty
0 0 0 1



 =

= K �RR




1 0 0 −px
0 1 0 −py
0 0 0 1



 (13)

The camera thus describes the projection:




u
v
w



 = P∞





x
y
z
1



 =

= K �RR




1 0 0 −px
0 1 0 −py
0 0 0 1









x
y
z
1



 =

= K �RR




x− px
y − py

1



 (14)

The last row turns out to be unnecessary and the transforma-
tion can be written using only Cartesian coordinates (eqn.
1).

3. Applications in Motion Capture

When doing 3D reconstruction of far away objects the
scaled orthographic camera model is a good approximation.
Then the Affine factorization algorithm [10, 2] can be used



to reconstruct points and cameras in 3D, given image corre-
spondences of the points. The result derived in the previous
section (eqn. 1) has two useful applications in this context
when working with dynamic cameras and dynamic objects:

• For dynamic cameras and non-rigid objects the 3D re-
construction is usually done independently for each
frame. However, eqn. 1 can be used to motivate why
orthographic cameras can often be seen as static. If
this is the case the 3D reconstruction can instead be
done in a batch procedure, increasing the accuracy and
robustness.

• If dynamic cameras are used for 3D reconstruction of
a dynamic object the absolute translation of the re-
constructed object is not computed easily. Using eqn.
1 the dynamics of orthographic cameras can be seen
as 2D which simplifies the recovering of the external
camera parameters and the absolute translation of the
object.

We begin by discussing general 3D reconstruction using or-
thographic cameras and the Affine Factorization algorithm
in section 3.1. Then the particular applications are dis-
cussed in section 3.2 & 3.3.

3.1. Affine Factorization

Given image positions of some points in at least two
cameras the Affine factorization algorithm [10, 2] recon-
structs the 3D positions and the camera matrices. Let the
column vector xc,j ∈ R2 be the image position of point
j in camera c and let the corresponding 3D position be
Xj ∈ R3. The affine factorization algorithm assumes that
these points are expressed in coordinate systems with the
origins as the centroid of the points. In this way the trans-
lations of the cameras are subtracted away and the camera
projection can be written in a simple form:

xc,j = McXj (15)

where Mc is the unknown 2 × 3 camera matrix of camera
c. Since we are assuming the scaled orthographic camera
model the camera matrix should be two rows of a rotation
matrix multiplied with a scaling factor. The subtraction of
the translation is very important for our application. As we
will see later rotating orthographic cameras can often be ap-
proximated as static due to this. Given the image measure-
ments xc,j we want to find the unknown 3D points Xj and
cameras Mc. If we have measured xc,j with some noise
we cannot find Mc and Xj that fulfill equation 15 exactly.
The factorization algorithm finds the least squares solution
to the problem of minimizing the re-projection error:

min
Mc,Xj

C�

c=1

J�

j=1

�xc,j −McXj�2 (16)

3.1.1 Auto-calibration

However, the solution is only unique up to an affine trans-
formation described by the 3× 3 matrix A. M �

c = McA−1

and X �
j = AXj have the same projection as Mc and Xj ,

since they have the same product (equation 17).

M �
cX

�
j = McA

−1AXj = McXj (17)

The affine reconstruction (Xj , Mc) may be upgraded to
a metric reconstruction (X �

j , M �
c) using metric informa-

tion of the scene and cameras. This process is referred to
as auto-calibration [8, 4, 12]. Then the affine transforma-
tion A that rectifies the reconstruction is found. The QR-
decomposition A = QR decomposes A into an orthogo-
nal matrix Q and an upper triangular matrix R which han-
dles the skew, scale and reflection part of the transforma-
tion. We can factor out the scale s ∈ (0,∞), the reflection
p ∈ {−1, 1} and the skew K from R as well:

A = QR = QspK = Qsp




k1 k2 k3
0 k4 k5
0 0 1



 (18)

General auto-calibration requires computation of all these
components.

3.1.2 Translation

By applying the affine factorization algorithm followed by
auto-calibration a 3D reconstruction of the scene and the
cameras is computed. The 3D points have the mean transla-
tion subtracted away though. To reconstruct this as well we
proceed in the following way. Let x̄c denote the mean im-
age position of the points in camera c. The unknown mean
3D position of the points X̄ is projected by the already com-
puted camera matrices as:

McX̄ = x̄c (19)

This gives two linear equations per camera and is thus eas-
ily solved. By adding the computed mean 3D position X̄
to all the reconstructed points Xj their full 3D motion is
estimated.

3.1.3 Reconstructing Multiple Frames

Consider the following different cases of 3D reconstruction:

1. Static scene & static cameras. In the single frame
case the factorization algorithm and auto-calibration
can be applied as has just been described.

2. Static scene & dynamic cameras. This can be trans-
formed to case 1 by considering the cameras of each
frame as new cameras in the original frame.



3. Rigidly moving scene & dynamic cameras. This can
be transformed to case 1 in the same way as case 2
by considering a single frame and many cameras in a
coordinate system that moves with the scene.

4. Dynamic scene & static cameras. This can be trans-
formed to case 1 by considering the same point at dif-
ferent frames as different points at the same frame.

5. Dynamic scene & rigidly moving cameras. If the
cameras move but such that they are static relative to
each other, we can consider a coordinate system that
moves with the cameras. In this system we have case
4 which can be transformed to case 1.

6. Dynamic Scene & independently translating cam-

eras. The mean image translations are subtracted away
in the factorization algorithm, i.e. a coordinate system
with the origin at the mean position of the points is
used. The camera matrices computed in the factoriza-
tion thus only describe the scaling and rotation of the
cameras. Therefore a translating camera can be treated
as static in the Factorization algorithm. Therefore this
case can be transformed to case 1 in the same way as
case 4.

7. Linearly deformable object & dynamic cameras.

The deformation of the object is decomposed into a
low number of linear basis shapes [2, 6]. Works well
for deformations that can be linearized, e.g. face ex-
pressions. The auto-calibration is more difficult for
this case compared to the previous. We do not con-
sider this case in this paper.

8. Articulated body & dynamic cameras. Works well
if there are many measured image positions for every
articulated segment [11, 13, 14, 7]. Not considered in
this paper.

9. Dynamic Scene & dynamic cameras. Cannot be
transformed to case 1 in general. Each frame has to
be reconstructed independently.

The first six cases can thus be treated in a similar way. Since
the points are considered to be static in some coordinate sys-
tem, the scaling and rotation will automatically be consis-
tent for the reconstruction. The auto-calibration then only
needs to find the skew and reflection. This will be the same
for all ”real” frames since they are computed in a single
”virtual” frame. This results in an accurate and robust com-
putation since all ”real” frames are treated in a single batch
step, since they share the same points as well as the rectify-
ing affine transformation.

However, the case of a dynamic scene and dynamic cam-
eras is more difficult. Then each frame generally needs
to be reconstructed and auto-calibrated independently. The

points and the affine rectification matrix will be different for
each frame. This leads to a less accurate and robust estima-
tion since there are fewer measurements for each quantity
to be computed. In this case the rotation and scaling also
needs to be computed for each frame and cannot be ignored
in the auto-calibration.

3.2. Accurate & Robust Batch Factorization for

Dynamic Scenes & Dynamic Cameras

In section 2 it was shown that dynamic orthographic
cameras can often be treated in 2D (eqn. 1). In particu-
lar, if the cameras only translate and pan-tilt to follow an
object then the camera movement can be considered as just
translations. This holds if the distance between the camera
and the object is large relative to the translation of the ob-
ject and the camera. Therefore this case of dynamic scene
and dynamic cameras can be treated just as if the cameras
were only translating, which can be treated as if the cameras
where static, as discussed in the previous section. If the as-
sumption of a large distance between the camera and the
object holds this leads to a more accurate and robust factor-
ization. This type of factorization was done in [4] although
they did not provide the solid theoretical motivation for why
it is applicable.

More generally, consider cameras that are free to trans-
late and rotate in full 3D as well as zooming. If the large
distance assumption holds the dynamics of the cameras can
be treated as isotropic scaling and 2D translations and ro-
tations in the image plane (eqn. 1). If the 2D rotation and
isotropic scaling can be measured from the image it can be
compensated for, i.e. the measurements can be transformed
to a coordinate system in the image plane that just trans-
lates. Then we have the same situation as previously dis-
cussed and all frames can be treated in a single batch step
increasing the accuracy and robustness. In section 3.3.1 we
briefly discuss how to automate the process of measuring
scaling, translation and rotation in 2D.

3.3. Reconstructing Translation of an Object

using Dynamic Orthographic Cameras

Consider a video of a moving person taken by a dynamic
camera. The image motion of the person will depend on the
3D motion of both the person and the camera. However, the
image motion of the static background will just depend on
the motion of the camera. Thus, by computing the motion
of the background the camera motion can be retrieved in
principle. For a general dynamic projective camera this re-
lation is complicated. The process can be much simplified
if the scaled orthographic camera model is used. We argue
that the motion of the background due to the motion of such
cameras can often be approximated as 2D translation, rota-
tion and scaling (eqn. 1). In section 3.3.1 we discuss how
the measurement of such background motion can be auto-



mated. For now we assume this has been measured.
As described in sections 3.1 & 3.2 the factorization algo-

rithm can be used to reconstruct the cameras and the object.
This is done by first transforming the measurements to a co-
ordinate system where the camera only translates. Then this
translation is also subtracted away before performing the
factorization. If the cameras are static then the 3D trans-
lation can be added to the reconstruction as described in
section 3.1.2.

But if the cameras are dynamic this approach is not di-
rectly applicable. But since the cameras can be treated as
only translating we can add the camera translation to the
measured image mean position to have them in an absolute
coordinate system. Let mc,t denote the image translation of
camera c at time t, where the first frame is chosen as zero.
Let x̂c,t denote the measured mean image position of the
points in camera c at time t, relative the camera translation
at the same frame. Let x̄c,t denote the mean image posi-
tion of the points in a coordinate system that is fixed for all
frames which can then be computed as: x̄c,t = x̂c,t +mc,t.
Then it is possible to proceed as previously described in sec-
tion 3.1.2 and the full translation can be computed for the
3D reconstruction even though the cameras are dynamic.

3.3.1 Measuring Image Translation, Rotation & Scale

Consider a pair of images that are approximately related by
a 2D similarity transformation, i.e. isotropic scaling and
translation and rotation in 2D. In this section we briefly dis-
cuss how to compute this transformation from the two im-
ages. This is related to the well studied problem of taking
a set of overlapping images and making a panorama. This
can be considered a solved problem if there is not a lot of
dynamic objects or motion blur in the images [1]. However,
this will typically not be the case when background motion
is to be detected in a motion capture application.

Typically when doing 3D reconstruction the first step is
to extract a lot of localized features in the images, e.g. SIFT,
and then use RANSAC to find corresponding features and
the transformation that relates the images [2, 1]. A difficulty
of doing this in our application is to differentiate the features
belonging to the object from the features of the background.
Another difficulty in e.g. a football application is that the
background might not have distinct features (fig. 1 & 2).

Another algorithm that is more specialized for measuring
2D similarity transformation is Phase correlation [3, 9, 5].
It utilizes the properties of the Fourier-transform and takes
all pixels into account instead of just looking at distinct lo-
calized features. A Phase correlation based approach can
therefore work as long as the background has some texture
even though it lack distinct localized features. Nevertheless,
dealing with dynamic objects and motion blur in a robust
way is still a complicated and unsolved problem.

4. Experiment

To test the result of section 2 and its applications dis-
cussed in section 3 a football game was recorded by
three video cameras filming at 25 Hz and a resolution of
1920x1080 pixels. One of the cameras was placed on the
stand behind the goal and the other cameras on the stands
on each long side. The cameras had static positions but con-
stantly rotated to follow a player and occasionally changed
their zooming.

From the recorded video we manually measured the im-
age joint positions for a seven seconds long goal sequence
and reconstructed the motion in 3D. See figure 5 for an ex-
ample of the measured image joint positions. The goal se-
quence was quite intense with fast actions and the rotation
of the cameras resulted in large image translations and mo-
tion blur. This is best seen in the supplementary material
video.

To test the the application described in section 3.2, i.e.
increased accuracy and robustness, the 3D reconstruction
was done both in the proposed batch step and independently
for each frame as a comparison. As can be seen in the sup-
plementary material video the batch step produces a more
accurate and robust reconstruction as predicted. The area
that the player moved around in during this sequence seems
to be small enough, compared to the distance to the cam-
eras, for our approximation to be valid.

To test the the application described in section 3.3, i.e.
reconstructing the translation of an object filmed by dy-
namic cameras, the translation of the background was first
measured. This was done in a semi-automatic way using
Phase correlation (section 3.3.1). The translation was man-
ually measured for some key-frames and Phase correlation
was used to automatically fill in the gaps. Figure 2 shows
two images moved according to the measured virtual cam-
era translation. By looking at the seem between the two
images it is seen that the translation approximation works
well in practice.

Using the measured background translation the transla-
tion of the football player was reconstructed as described
in section 3. By comparing with the recorded video we
conclude that the reconstructed translation seems to corre-
spond well to the true translation. Figure 6 shows a few
frames from the reconstructed 3D motion from two novel
view points. However, the result is best seen in the supple-
mentary material video.

5. Conclusion

We have discussed an extension of the useful scaled
orthographic camera model. This extension concerns dy-
namic cameras following an object. If the translation of the
camera and the object it tries to follow are small relative to
the distance between them then not only can the camera be



Figure 5. The manually measured image joint positions from a football goal sequence filmed by three rotating cameras.

Figure 6. 3D reconstruction of a football goal sequence shown from a novel view point. The result is best seen in color.

approximated as orthographic but its dynamic can be treated
in 2D.

This is relevant when doing motion capture at large dis-
tances, i.e. outside a studio. In those scenarios the affine
factorization algorithm can be used to reconstruct the mo-
tion in 3D. If dynamic cameras are used to capture the mo-
tion of a dynamic object the factorization is generally done
independently for each frame and also the absolute transla-
tion of the object is lost.

Using the extended orthographic model we motivated
how the factorization can be applied for all frames in a batch
procedure for increased accuracy and robustness. We also
used it to motivate how the absolute translation of the object
can be reconstructed by measuring the approximate 2D mo-
tion of the background. Videos from a real football game
were used for testing. In our experiments we used manual
measurements. A natural and interesting future work is to
automate the measuring process.

6. Appendix

Notation for cross product:

a× b = [a]×b (20)

[a]× =




0 −az ay
az 0 −ax
−ay ax 0



 (21)

The view direction is determined by r3:

r3 =
p− t

�p− t� =
p− t0 −∆t

�p− t0 −∆t)� =

=
n− t0
�n− t0�

=
n+ de3
�n+ de3�

=

=
n
d + e3

�n
d + e3�

=
�n
d
+ e3

�
g(d) (22)

g(d) =
1

�n
d + e3�

(23)



Since RPT should describe a pan-tilt rotation r1 should be
orthogonal to both r3 and the unit vector along the y-axis:

r1 =
e2 × r3
�e2 × r3�

=
1

�e2 × r3�




0 0 1
0 0 0
−1 0 0



 r3 =

=
(r3,z, 0,−r3,x)T�

r23,z + r23,x

= (r3,z, 0,−r3,x)
Th(d) (24)

h(d) =
1�

r23,z + r23,x

(25)

The remaining row r2 should be orthogonal to r1 and r3:

r2 = −r1 × r3 =

= −h(d)




0 r3,x 0

−r3,x 0 −r3,z
0 r3,z 0



 r3 =

= (−r3,xr3,y, r
2
3,z + r23,x,−r3,yr3,z)

Th(d) (26)

As the camera moves infinitely far away we want to com-
pute the following limit value:

lim
d→∞




rT1 r1,zd
rT2 r2,zd
rT3
d r3,z



 =




1 0 0 −nx

0 1 0 −ny

0 0 0 1



 (27)

This was done as follows:

lim
d→∞

g(d) = lim
d→∞

1

�n
d + e3�

= 1 (28)

lim
d→∞

rT3 = lim
d→∞

�n
d
+ e3

�
g(d) = e3 = (0, 0, 1) (29)

lim
d→∞

rT3
d

= lim
d→∞

e3
d

= (0, 0, 0) (30)

lim
d→∞

h(d) = lim
d→∞

1�
r23,z + r23,x

= 1 (31)

lim
d→∞

rT1 = lim
d→∞

(r3,z, 0,−r3,x)h(d) = (1, 0, 0) (32)

lim
d→∞

rT2 = lim
d→∞

(−r3,xr3,y, r
2
3,z + r23,x,−r3,yr3,z)h(d) =

= (0, 1, 0) (33)

lim
d→∞

r1,zd = lim
d→∞

−r3,xh(d)d = −nx

d
g(d)h(d)d =

= −nx (34)
lim
d→∞

r2,zd = lim
d→∞

−r3,yr3,zh(d)d =

= lim
d→∞

−ny

d
g(d)(

nz

d
+ 1)g(d)h(d)d =

= lim
d→∞

−(
nynz

d
+ ny)g(d)

2h(d) = −ny (35)
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