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Abstract

In this paper we address the problem of using boosting
(e.g. AdaBoost [7]) to classify a target class with significant
intra-class variation against a large background class. This
situation occurs for example when we want to recognize a
visual object class against all other image patches.

The boosting algorithm produces a strong classifier,
which is a linear combination of weak classifiers. We ob-
serve that we often have sets of weak classifiers that indi-
vidually fire on many examples of the target class but never
fire together on those examples (i.e. their outputs are anti-
correlated on the target class). Motivated by this observa-
tion we suggest a family of derived weak classifiers, termed
gated classifiers, that suppress such combinations of weak
classifiers. Gated classifiers can be used on top of any orig-
inal weak learner.

We run experiments on two popular datasets, showing
that our method reduces the required number of weak clas-
sifiers by almost an order of magnitude, which in turn yields
faster detectors. We experiment on synthetic data showing
that gated classifiers enables more complex distributions to
be represented. We hope that gated classifiers will extend
the usefulness of boosted classifier cascades [29].

1. Introduction
Nonlinear classification of high dimensional data is a

challenging problem. While designing such a classifier is
difficult, boosting learning methods provide an effective
stage-wise approach. Freund and Schapire showed that if
weak classifiers can perform better than chance on every
distribution over the training set, AdaBoost can provably
achieve arbitrarily good generalization bound [7]. Perhaps
the most demonstrating paper in applications of AdaBoost
for detection discriminancy is still the famous paper by Vi-
ola and Jones, showing how AdaBoost can create the ideal
building-blocks for a cascade of strong classifiers for the
task of object detection [29].

However, despite the great success that AdaBoost (and

its descendant algorithms) has seen in both theory and appli-
cation, using AdaBoost to classify a target class with signif-
icant intra-class variation against a large background class
remains a very challenging problem. For example, if view-
point variation is introduced into the problem of face detec-
tion, the method of Viola and Jones can no longer be used
out of the box. Figure 1 illustrates the problem. AdaBoost
will learn a linear combination of weak classifiers that are
common on the target class, resulting in a model that gets
increasingly “blurry” with more intra-class variation. The
problem is that eventually combinations of weak classifiers
that never occur together on any example of the target class
will generate false positives. For example, in figure 1(a),
two different weak classifiers represent pairs of eyes in dif-
ferent locations and having two pairs of eyes gives higher
face score than having only one pair of eyes.

In this paper we propose a way of directly addressing
this problem within the AdaBoost framework. We term
our solution gated classifiers. The main idea is that after
a number of rounds of AdaBoost training, when we have
such a “blurry” model of our target class, it would be in-
strumental to make available to the learner a derived family
of weak classifiers that are able to suppress such combina-
tions of already learnt weak classifiers that cause false pos-
itives. Gated classifiers are built by combining sets of al-
ready learnt weak classifiers using networks of logic gates
and can be regarded as a singular (primitive) weak classi-
fier within the boosting framework. Thus the conditions of
the AdaBoost convergence proof [7] are not violated. On
top of that, gated classifiers are easy to implement and will
only require small changes to any existing AdaBoost code.
We will argue in this paper that gated classifiers increase the
ability of the strong classifier to handle intra-class variation
while keeping it compact and efficient and with a minimal
increase in the risk of over-fitting.

There are of course many other ways of dealing with
intra-class variation. Some examples include: (1) training
separate detectors for different subsets of the target class
or training detector pyramids [15], (2) constructing image
features that better separate the target class from the back-
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(a) Two weak face classifiers and their linear combination

(b) Two weak cup classifiers and their linear combination

Figure 1. Representing an object class as a linear combination
of weak classifiers may give high scores to combinations of weak
classifiers that never occur together. We use gated classifiers to
suppress combinations of weak classifiers that are anti-correlated
on the target class.

ground [12, 2, 19] and (3) improving the weak classifiers
(e.g. using decision trees instead of stumps or selecting bet-
ter thresholds) [24]. Gated classifiers can be used together
with any of these other strategies.

In the next section we will review more related work.
The rest of this paper is structured as follows: in section 4
we motivate and define gated classifiers. We also describe
how they are learnt. In section 5 we show experimentally
that gated classifiers reduce the number of weak classifiers
needed to solve a given classification task by almost an or-
der of magnitude. In section 6 we discuss gated classifiers,
their relation to other methods and future work. Finally, we
sum up in section 7.

2. Related Work
Boosting, being the most successful ensemble learning

method, has received substantial attention from the machine
learning community. Freund and Schapire introduced the
AdaBoost algorithm [7]. Schapire and Singer then proposed
RealBoost, which is a generalization of AdaBoost where
each weak hypothesis generates not only predicted classi-
fications, but also self-rated confidence scores which esti-
mate the reliability of its predictions [5]. Friedman et. al.
explained boosting in terms of additive logistic regression
and proposed for example GentleBoost and LogitBoost [8].

Numerous variants of the AdaBoost algorithm have ap-
peared in the past decade. Some examples include Float-
Boost [14], BrownBoost [6, 4], regularized AdaBoost [25],
WeightBoost [11], EntBoost [13], KLBoost [16], Jensen-
Shannon Boost [10] and WaldBoost [26]. Some versions of
boosting address issues with applications of boosting in spe-
cific cases. For instance one limitation of AdaBoost arises
in the context of skewed example distributions and cascaded
classifiers: AdaBoost minimizes a quantity related to clas-

sification error rather than the number of false negatives,
which typically has a hard upper bound when training a cas-
caded classifier. To address this problem Viola and Jones
introduced AsymmBoost [28], which gives higher penalties
for false negatives than does standard AdaBoost.

However, despite this immense body of literature on
boosting, we have only found a few works aiming at a
generic treatment of the problem of high intra-class vari-
ation (these are mentioned below). It seems like the com-
mon approach is instead to deal with intra-class variation
individually for each specific classification task by includ-
ing tailored features. For example Corso [2] adds a new
class of hierarchical, adaptive features into boosting-based
discriminative models. In the same spirit Laptev move from
Haar features to HOG features [12] and Opelt et. al. use
boundary fragments [19].

One generic way of handling intra-class variation is to
exploit dependencies in the data (i.e. different feature val-
ues will be co-dependent). The most common example is
probably to use decision trees instead of decision stumps
as weak classifiers. In [20] the authors use relative spaces
to deal with the problem of large intra-class variation, and
boost a set of Fischer Linear Discriminant weak classifiers
to a final strong classifier. This way they claim to be able
to handle co-dependencies by partitioning the training data
into sub-categories. Mita et al. [17] quite explicitly utilize
Haar feature co-occurrences in order to extract structural
similarities. A very similar approach is taken by Yamauchi
et al. [30], with the increment that they have co-occurrence
probability features instead of binary features, i.e. they uti-
lize RealBoost instead of AdaBoost for the boosting part. In
[18] authors create joint-features handling co-occurrences
with two-stage boosting; multiple low-level HOG features
are combined by using RealBoost.

These methods essentially capture high-order feature
occurrence statistics (typically co-occurrences) and are
generic in the sense that they can be used with any fea-
ture set. However, they all use sets of co-occurring features
to build weak classifiers of increasing specificity. In the
limit this paradigm approaches template matching, which is
known to have problems with detection efficiency and gen-
eralization (over-fitting).

In contrast, our gated classifiers have a completely differ-
ent way of handling intra-class variation. Instead of com-
bining features to build increasingly specific weak classi-
fiers, we combine already learnt weak classifiers that are
anti-correlated to construct new weak classifiers that are op-
timal at correcting the errors (false positives) of the current
strong classifier. We argue that we thus increase the ability
of the classifier to handle intra-class variation while main-
taining a compact and efficient classifier and a low risk of
over-fitting.
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3. AdaBoost
To define the basic notation we describe the AdaBoost

algorithm, closely following Freund and Schapire [7], in
listing 1. The input to the learner is a set of training ex-
amples {(xi, yi)|i ∈ I}, where xi ∈ X is a feature vector
and yi ∈ Y = {0, 1} is the corresponding label. The algo-
rithm maintains an importance distribution over the training
examples and Dt(i) denotes the weight on the ith example
at round t. The classification function of the strong classi-
fier, H(x) =

∑T
t=1 αtht(x), is a linear combination of the

classification functions of the weak classifiers. The classi-
fication function is thresholded to determine class member-
ship.

Algorithm 1 AdaBoost
Require: {(xi, yi)|i ∈ I}, T

Initialize D1(i) = 1/ |I|
for t = 1 to T do

Train ht : X → Y using distribution Dt

Choose αt ∈ R
Dt+1 ← update weight distribution

end for
return {α1, . . . , αT }, {h1, . . . , hT }

The goal of the weak classifier ht is to minimize the
weighted classification error, εt:

εt = Pi∼Dt (ht(xi) 6= yi) =
∑

Dt(i)
{i∈I|ht(xi) 6=yi}

(1)

In practice this typically boils down to: (1) defining a
large pool of candidate classifiers, (2) evaluating εt for each
candidate classifier in the pool and (3) selecting the one
that yields the smallest error. Candidate classifiers are typi-
cally “simple”, i.e. they are defined by very few parameters
and have very limited representational flexibility. This de-
creases the risk of over-fitting. A common choice of classi-
fier is the decision stump (a decision tree with unit depth).

The strong classifier captures first-order statistics of
weak classifier responses. In cases where the target class
exhibits significant intra-class variation and the background
class “interferes” with the target class in the relevant feature
space, first-order statistics may not be sufficient to separate
the target class from the background. We will give an exam-
ple of this in the next section and suggest a simple solution.

4. Gated Classifiers
In this section we will use a toy example to motivate

why first-order weak classifier occurrence statistics may not
be sufficient to capture target classes with significant intra-
class variation. We then suggest a solution, which we term

h1

h2

Figure 2. A motivating example. See section 4.1 for description.

gated classifiers. Gated classifiers extend any existing pool
of candidate classifiers and capture high-order occurrence
statistics of previously learnt weak classifiers. In addition,
they are easily implemented in hardware.

4.1. A Motivating Example

In figure 2 we have a number of training examples rep-
resented in a 2D feature space. We also have a pool of two
weak classifiers, h1 and h2, each having a region in feature
space which it classifies as positive. We see that there is no
way to linearly combine h1 and h2 so that the negative ex-
amples in the center and the positive examples get correctly
classified. However, h1 and h2 are strongly correlated on
the negative examples, while being anti-correlated on the
positive examples. It would thus make sense to add a new
weak classifier that classifies an example as negative if it
activates both h1 and h2 and as positive otherwise. We de-
fine the new classifier as h3(x) = ¬ (h1(x) ∧ h2(x)); h3

captures second-order weak classifier occurrence statistics.
This type of situation arises whenever we have two weak

classifiers that are likely to occur on an object of the target
class but never occur together. Some examples include: (1)
the arm of a pedestrian may be raised or lowered but not
both at the same time, (2) the handle of a mug may be round
or square but not both and (3) a face may be brighter or
darker than the background but not both.

4.2. Definition

In this section we will define three different types of
gated classifiers, which we have used in our experiments.
We stress, however, that other types of gated classifiers can
be defined similarly and that networks of gated classifiers
can easily be constructed.

NAND-classifier In the previous section we constructed
a weak classifier that suppressed examples where a pair of
previously learnt weak classifiers co-occurred. This is an
example of a NAND-classifier. However, there is no reason
to restrict the definition to pairs. We could also suppress ex-
amples where some larger subset of previously learnt weak
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classifiers co-occur. We thus define a NAND-classifier to
classify as negative all examples where some subset of pre-
viously learnt weak classifiers co-occur:

hNAND(x) = ¬ (hj1(x) ∧ . . . ∧ hjn(x)) (2)

, where j1, . . . , jn ∈ {1, . . . , t− 1} and t is the current
round of boosting.

XOR-classifier The XOR-classifier is strongly related to
the NAND-classifier and simply adds a requirement that at
least one of the classifiers hj1 , . . . , hjn is activated.

hXOR(x) = ¬ (hj1(x) ∧ . . . ∧ hjn(x)) (3)
∧ (hj1(x) ∨ . . . ∨ hjn(x))

Tautology and falsum We also define two trivial classi-
fiers: the tautology classifier hτ (x) = 1 and the falsum
classifier hφ(x) = 0. While these classifiers do not affect
the contrast between the values of the classification function
for positive and negative examples, they do play a role in the
training phase. If the weight distribution gets too uneven
toward either positive of negative examples, one of these
classifiers will get selected and then examples will get re-
weighted so that unevenness is reduced. The classifier is
not saved during training since it does not affect the classi-
fication performance.

4.3. Learning

In this section we turn our attention to learning a NAND-
or XOR-classifier. These classifiers are constructed by com-
bining a subset of the weak classifiers that were already se-
lected (i.e. at round t of boosting we have t− 1 weak clas-
sifiers to select from). The most direct approach to select-
ing the optimal classifier would be to evaluate all possible
such classifiers and select the best one. However, there are
2t−1 − (t − 1) − 1 = 2t−1 − t possibilities (all subsets
of cardinality ≥ 2 of previously learnt weak classifiers).
So exhaustive enumeration will in general be impossible.
A reasonable strategy is then to enumerate all small gated
classifiers, i.e. enumerate all subsets containing ≤ n weak
classifiers (where n is chosen so that exhaustive enumera-
tion is possible).

We can also incrementally extend a given NAND- or
XOR-classifier. Take a NAND-classifier as an example (the
XOR-classifier case is analogous). Refer to figure 3 and as-
sume that we have classifier ha(x) = ¬ (hj1 ∧ . . . ∧ hjn)
and let I−a = {i ∈ I|ha(xi) = 0} be the set of all train-
ing examples that are classified as negative by ha. Then
let hb(x) = ¬

(
hj1 ∧ . . . ∧ hjn ∧ hjn+1

)
be the classi-

fier we get by appending hjn+1 to ha and let I−b =
{i ∈ I|hb(xi) = 0} be the set of all training examples that

h2

h3

h1

(a) ha(x) = ¬ (h1 ∧ h2)

h2

h3

h1

(b) hb(x) = ¬ (h1 ∧ h2 ∧ h3)

Figure 3. Incremental extension of a NAND-classifier. The gray
region is classified as negative.

are classified as negative by hb. Obviously I−b ⊆ I−a . We
can now define the set of training examples that were clas-
sified as negative by ha but are classified as positive by hb:
∆I+ = I−a \ I−b =

{
i ∈ I−a |hjn+1(xi) = 0

}
. All positive

examples in this set will now get correctly classified while
the negative examples will get incorrectly classified. The
classification error thus changes as follows:

∆ε =
∑

Dt(i)
{i|xi∈∆I+,yi=0}

−
∑

Dt(i)
{i|xi∈∆I+,yi=1}

(4)

We can now define a simple greedy algorithm for learn-
ing large NAND- and XOR-classifiers. The first step of that
algorithm is to exhaustively enumerate all small NAND-
and XOR-classifiers, evaluate the classification error of
each and select the best. We then loop through all weak
classifiers not already used and append the one that yields
the smallest ∆ε. We continue appending more weak clas-
sifiers greedily as long as the best ∆ε is negative. At each
step, we only need to evaluate the new classifier on the ex-
amples that were classified as negative by the previous clas-
sifier. The size of this set will be monotonically decreasing.

In listing 2 we give the whole AdaBoost algorithm in-
cluding gated classifiers (compare to listing 1).

Our greedy weak learner will add a complexity term of
O(tN ) at round t of boosting (whereN is the maximum size
of the NAND or XOR classifier). Typically we setN = 2 or
N = 3. At test time the input to the gated classifier will be
the outputs of other weak classifiers that have already been
evaluated. So the only computation required to evaluate the
gated classifier is the NAND or XOR operation itself.

Gate Networks We note that the learning algorithm may
generate gated classifiers consisting of more than one gate.
This happens when a gated classifier is constructed using at
least one other gated classifier. This is illustrated in figure
4.
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Algorithm 2 AdaBoost with gated classifiers
Require: {(xi, yi)|i ∈ I}, T

Initialize D1(i) = 1/ |I|
for t = 1 to T do

Train ht : X → Y using distribution Dt

Train hNAND = ¬
∧
j∈J1

hj : X → Y

where J1 ⊆ {1, . . . , t− 1}

Train hXOR = ¬
∧
j∈J2

hj ∧
∨
j∈J2

hj : X → Y

where J2 ⊆ {1, . . . , t− 1}

h∗t ← the best of ht, hτ , hφ, hNAND and hXOR
Choose αt ∈ R
Dt+1 ← update weight distribution

end for
return {α1, . . . , αT }, {h∗1, . . . , h∗T }

αj

α1

αn

ha

h1

h2 αi

hb

αkh3

Figure 4. When boosting with gated classifiers, increasingly com-
plex gate networks may be constructed. In this example h1, h2

and h3 are basic weak classifiers, while ha and hb are gated clas-
sifiers. hb uses ha as an input and is thus a compound gated clas-
sifier. (The final classification function is in this case H(x) = α1 · h1(x) + αi · h2(x) +

αj · ha(x) + αk · h3(x) + αn · hb(x) + . . ., where ha(x) = h1(x) ⊕ h2(x) and

hb(x) = ¬ (ha(x) ∧ h3(x))).

5. Experiments
5.1. Experiment 1 - Synthetic data

The goal of the first experiment is to visualize the effects
of using gated classifiers. We have generated a sequence
of synthetic datasets, containing positive and negative ex-
amples represented by 2D vectors. The positive examples
are drawn from a gaussian mixture distribution and the neg-
ative examples are drawn from a uniform background dis-
tribution. We generate a sequence of increasingly difficult
datasets by adding more components to the gaussian mix-
ture. Scatterplots of the first four datasets in the sequence
are shown in figure 5(a).

We defined a pool of weak classifiers by splitting the x-
and y-axes into a set of intervals. Each interval Xc on the
x-axis corresponds to a weak classifier hc(x) = x(1) ∈ Xc

and similarly each interval Yr on the y-axis corresponds to
a weak classifier hr(x) = x(2) ∈ Yr.

(a) Scatter plots of the synthetic datasets. Positive examples are green +-signs.

(b) Heat map of AdaBoost classification function

(c) Tautology and falsum classifiers added

(d) NAND- and XOR-classifiers added

Figure 5. In a) we show scatter plots of the first three datasets in
the synthetic sequence. In b)-d) we show heat maps of the learnt
classification functions using b) standard AdaBoost, c) adding tau-
tology and falsum classifers and d) also adding NAND- and XOR-
classifiers.

For each dataset in the sequence we apply three differ-
ent learning algorithms: (1) standard AdaBoost, (2) stan-
dard AdaBoost with tautology and falsum classifiers and
(3) standard AdaBoost with tautology, falsum, NAND- and
XOR-classifiers. In figures 5(b)-5(d) we show heat maps of
the classification functions generated by each of the three
learners. In figure 5(b), we see that standard AdaBoost stops
after only a few rounds because no weak classifier with er-
ror better than chance can be found. Adding the tautology
and falsum classifiers improves this situation and learning
continues until a better representation of the true density is
found (figure 5(c)). However we are still not able to sup-
press the clusters of false positives in the “intersections” of
common (but mutually exclusive) weak classifiers. In figure
5(d) we see that adding NAND- and XOR-classifiers gives
us this ability.

In figure 6 we plot the area under the ROC curve and
the equal error rate for the three different learners on the se-
quence of datasets. Half of the dataset was used for training
and the other half for validation.
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(a) Area under ROC curve (AUC)
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(b) Equal error rate (EER)

Figure 6. This figure shows plots of a) AUC and b) EER for the
three different leaners: (1) standard AdaBoost (blue dash dotted
curve), (2) std. AdaBoost with tautology and falsum classifiers
(red dashed curve) and (3) std. AdaBoost with tautology, falsum,
NAND- and XOR-calssifiers (black curve). The x-axis represents
the number of components in the gaussian mixture used to gener-
ate positive examples.

5.2. Experiment 2 - Pedestrians

In this experiment we evaluate the use of gated classifiers
in a realistic application: pedestrian detection. We used the
NICTA pedestrian dataset [21], which is divided into sev-
eral subsets. In our experiments we used only training set
A, which was split in half for training and testing. Hard
negative examples were found by (1) training a few stages
of a cascaded classifier, (2) running that over a set of neg-
ative images and (3) collecting all false positive detections.
In figure 7 we show a few training examples and average
images for the positive and negative sets.

We then train an AdaBoost classifier with and without
using gated classifiers and at each round of boosting we plot
the false positive rate (fpr) at a detection rate (dr) of 0.9 on
the test set. The result is shown in figure 8(a). We can
se that the fpr drops much faster when gated classifiers are
used. In this case a fpr of 0.5 is reached after 291 iterations,
while standard AdaBoost requires 2667 iterations. In figure
8(b) we show the ROC curves of both classifiers after 291
iterations.

5.3. Experiment 3 - Faces

In this experiment we evaluate the use of gated classi-
fiers for face detection, using the the Feret dataset [23, 22].
We used the same procedure as in the previous experiment,
setting half of the training examples aside for testing and
mining for hard negative examples by training a few stages
of a cascaded classifier and collecting false positive detec-
tions from a set of background images. In figure 9 we show
a few training examples and average images for the positive
and negative sets.

As in the previous experiment we then train an AdaBoost
classifier with and without using gated classifiers and at
each round of boosting we plot the false positive rate (fpr)
at a detection rate (dr) of 0.9 on the test set. The results of
this experiment are shown in figure 10(a). We can se that,

(a) (b)

(c) (d)

Figure 7. Illustration of the NICTA pedestrian dataset, showing a)
four positive examples, b) the average of all positive examples, c)
four hard negative examples and d) the average of all hard nega-
tive examples. Hard negative examples were selected by training
a few stages of a classifier cascade and collecting false positives.
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(b) ROC curves @ 291 iterations

Figure 8. Results of using gated classifiers for pedestrian detec-
tion. a) Fpr on validation set vs. number of AdaBoost iterations.
The lower curve uses gated classifiers. b) ROC curve of both clas-
sifiers at 291 iterations. Upper (red, dashed) curve uses gated
classifiers.

again, the fpr drops much faster when gated classifiers are
used. In this case a fpr of 0.5 is reached after 44 iterations,
while standard AdaBoost requires 358 iterations. In figure
10(b) we show the ROC curves of both classifiers after 44
iterations.

6. Discussion and Future Work

In learning situations when the target class has high
intra-class variation and positive and negative examples are
“mixed” in the feature space, the decision boundary re-
quired to solve the problem is complex. In the previous
section we demonstrated that such decision boundaries can
be impossible (experiment 1) or at least very difficult (ex-
periments 2 and 3) to generate by boosting a “simple” weak
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(a) (b)

(c) (d)

Figure 9. Illustration of the Feret face dataset, showing a) four
positive examples, b) the average of all positive examples, c) four
hard negative examples and d) the average of all hard negative
examples. Hard negative examples were selected by training a few
stages of a classifier cascade and collecting false positives.
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Figure 10. Results of using gated classifiers for face detection. a)
Fpr on validation set vs. number of AdaBoost iterations. The
lower curve uses gated classifiers. b) ROC curve of both classifiers
at 44 iterations. Upper (red, dashed) curve uses gated classifiers.

learner. When we added gated classifiers, the number of
weak classifiers required to reach a specific false positive
rate and detection rate on the validation set decreased by al-
most and order of magnitude for both pedestrians and faces.
This clearly demonstrates the usefulness of gated classifiers.
With gated classifiers the strong classifier remains compact
and efficient even in the presence of high intra-class varia-
tion.

The VC-dimension when using gated classifiers By
adding gated classifiers to our weak learner we make it more
flexible and thus we expose ourselves to the risk of over-
fitting. Luckily, our experiments indicate that over-fitting
does not occur. In addition we can also compute a theoreti-
cal upper bound for the VC-dimension of a gated classifier.
This can be used to bound the generalization error when us-
ing gated classifiers [7, 27].

To compute an upper bound for the VC-dimension when
using gated classifiers we apply Theorem 1 of Baum and
Haussler [1]. We can view the gated classifier as a two-
layer feed-forward network where the computation units of

the first layer are the two basic weak classifiers and the com-
putation unit of the second layer is the logical gate. Let H
be the class of binary functions that can be generated by
our basic weak learner (not using gated classifiers) and let
dH = V Cdim(H). Then let F = {NAND,XOR}. By
inspection of the truth-tables of NAND and XOR we see
that dF = V Cdim(F) = 1. Thus the sum over all compu-
tation units of the VC-dimensions of the classes of functions
associated with each unit is d = 2 · dH + dF = 2 · dH + 1.
Finally, we let Θ(H) = {f(h1, h2)|f ∈ F ∧ h1, h2 ∈ H}.
Baum and Haussler’s Theorem 1 [1] implies that the num-
ber of different functions that can be realized by hg ∈ Θ(H)
when the domain is restricted to a set of size m is at most
(3 · e ·m/d)d. If m ≥ 5.5 · d, then (3 · e ·m/d)d < 2m,
which implies that the VC-dimension is smaller than m.
Thus an upper bound for the VC-dimension when using
gated classifiers is b5.5 · dc = b11 · dH + 5.5c.

Note that in the discussion above we let the learner of
gated classifiers select any pair of basic weak classifiers
from H, but we actually only search over pairs of already
learnt weak classifiers so the true VC-dimension should be
significantly smaller than the upper bound.

Alternatives An alternative method for generically han-
dling high intra-class variation would be to build more spe-
cific weak classifiers [17, 30, 18]. In the limit we could have
one weak classifier for each positive training example (tem-
plate matching - i.e. each weak classifier has zero false pos-
itive rate and ε detection rate). One problem with this sort
of approach is that the number of weak classifiers required
to represent the whole class is extremely large, making ef-
ficient detection a tough challenge [9]. More importantly,
there is also a big risk that even a very large training set
does not represent the whole target class (over-fitting).

Hardware implementation Another advantage of gated
classifiers is that they lend themselves readily for hardware
implementation, for example using FPGAs. This could be
useful for implementing the algorithm onboard cameras and
other ubiquitous equipment.

Future work In future work we will make a more thor-
ough evaluation of generic gated classifiers and also exper-
iment with different feature pools, like HOG-features [3].
It will also be interesting to see if gated classifiers will in-
crease the applicability of AdaBoost and to further explore
the theoretical properties of gated classifiers.

7. Conclusion
In this paper we proposed gated classifiers to solve the

problem of using boosting to learn target classes with large
intra-class variation. We showed experimentally that gated
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classifiers reduces the number of weak classifiers required
to represent a complex decision boundary by almost an or-
der of magnitude. Gated classifiers are easy to implement
and can be used to empower any basic weak learner. In ad-
dition, gated classifiers can easily be implemented in hard-
ware, for example using FPGAs. We therefore believe that
gated classifiers may find many uses in the computer vision
industry.
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