

Image Classification with Squeeze-and-Excitation Networks and Efficient Networks

CV/DL Reading Group

November 5th, 2019

 $1. \ {\sf Squeeze-and-Excitation} \ {\sf Networks}$

2. Efficient Networks

Squeeze-and-Excitation Networks

General Scope of SENets is to:

- Replace standard convolutional blocks with a new block called the SE block.
- Model non-linear dependencies over channels to assist the classification task.
- Improve a network's performance by adding only a small computational burden on it.

Figure 1: Form of a Squeeze-and-Excitation block

- 1. Convolve¹ over the input with \mathbf{F}_{tr} to form $U \in R^{C_xH_xW}$
- 2. 'Squeeze' channels to scalar values.
- 3. 'Excitation' to emphasize several channels in terms of importance to the task.
- 4. Scale U into \widetilde{X} and feed \widetilde{X} to following layers.

¹Taken care by the original network

Squeeze Operation:

1. Simply perform global average pooling to get the mean pixel value per channel.

Excitation Operation:

- 1. Use ratio *r* to perform dimensionality decrease and increase of around the non-linearity with FC layers.
- 2. Use sigmoid (non-linear and non-sparse) to learn the scale values.

SE blocks are plug-n-play

Figure 2: SE block as applied on an Inception-Net block (left) and a Res-Net block (right)

	original		re-i	mplementat	tion	SENet			
	top-1 err.	top-5 err.	top-1err.	top-5 err.	GFLOPs	top-1 err.	top-5 err.	GFLOPs	
ResNet-50 [10]	24.7	7.8	24.80	7.48	3.86	$23.29_{(1.51)}$	$6.62_{(0.86)}$	3.87	
ResNet-101 [10]	23.6	7.1	23.17	6.52	7.58	$22.38_{(0.79)}$	$6.07_{(0.45)}$	7.60	
ResNet-152 [10]	23.0	6.7	22.42	6.34	11.30	$21.57_{(0.85)}$	$5.73_{(0.61)}$	11.32	
ResNeXt-50 [47]	22.2	-	22.11	5.90	4.24	$21.10_{(1.01)}$	$5.49_{(0.41)}$	4.25	
ResNeXt-101 [47]	21.2	5.6	21.18	5.57	7.99	$20.70_{(0.48)}$	$5.01_{(0.56)}$	8.00	
VGG-16 [39]	-	-	27.02	8.81	15.47	$25.22_{(1.80)}$	$7.70_{(1.11)}$	15.48	
BN-Inception [16]	25.2	7.82	25.38	7.89	2.03	$24.23_{(1.15)}$	$7.14_{(0.75)}$	2.04	
Inception-ResNet-v2 [42]	19.9^{\dagger}	4.9^{\dagger}	20.37	5.21	11.75	$19.80_{(0.57)}$	$4.79_{(0.42)}$	11.76	

	AP@IoU=0.5	AP
ResNet-50	57.9	38.0
SE-ResNet-50	61.0	40.4
ResNet-101	60.1	39.9
SE-ResNet-101	62.7	41.9

Relative improvement of 6.3% and 5% on ResNet-50 and ResNet-101.

And many more!

- 1. Reduction ratio r
- 2. Squeeze Operator (Max vs Global pooling)
- 3. Excitation Operator (Sigmoid vs Tanh vs ReLU)
- 4. SE blocks at different stages of the original network
- 5. SE operation at different places of the SE block

Ablation study on position of SE block

Figure 3: Different try-outs on place of SE block

Is it possible that Squeeze helps to improve network performance simply due to the addition of extra parameters at each layer? 'No Squeeze' test (1×1 convs, no global pooling) to assess whether global information is the key method (*it is*!) at this step.

Sample 4 diverse classes of ImageNet (namely *goldfish*, *pub*, *plane* and *cliff*) and keep track of the activations at SE blocks of different depths.

Assessing the Excitation operation

Figure 4: Activation of SE blocks at layers of different depth

Assessing the Excitation operation

Figure 5: Mean/Std of instance activations of SE blocks at layers of different depth

Official:

https://github.com/hujie-frank/SENet

TensorFlow:

https://github.com/taki0112/SENet-Tensorflow

PyTorch:

https://github.com/moskomule/senet.pytorch

Efficient Networks

Scope of Efficient Networks is to scale networks towards depth, width and resolution *concurrently* to improve performance.

Figure 6: Different ways of model scaling

Neither of these can grow arbitrarily large: Extremely deep networks do not improve performance, filters correlate and increase ratio of image resolution has its own threshold.

Authors **empirically** observe that scaling in each direction in **not** independent from the reamining two directions. Thus, how can depth scaling d, width scaling w and resolution ratio r be tuned to maximize performance under specific memory and FLOPS constraints?

- 1. Grid search to define values baseline values (EB0 network) α for depth, β for width and γ for resolution.
- 2. Compound coefficient ϕ that scales all of α , β and γ concurrently to form larger versions (EB1 up to EB7) of the baseline network.

 α , β and γ should fall into the constraint $\alpha * \beta^2 * \gamma^2 \approx 2$ since $FLOPS \approx d * w^2 * r^2$ and the author's target is to increase FLOPs by 2^{ϕ} when increasing ϕ .

Stage	Operator	Resolution	#Channels	#Layers
i	$\hat{\mathcal{F}}_i$	$\hat{H}_i \times \hat{W}_i$	\hat{C}_i	\hat{L}_i
1	Conv3x3	224×224	32	1
2	MBConv1, k3x3	112×112	16	1
3	MBConv6, k3x3	112×112	24	2
4	MBConv6, k5x5	56×56	40	2
5	MBConv6, k3x3	28×28	80	3
6	MBConv6, k5x5	14×14	112	3
7	MBConv6, k5x5	14×14	192	4
8	MBConv6, k3x3	7 imes 7	320	1
9	Conv1x1 & Pooling & FC	7×7	1280	1

Figure 7: Efficient Net B0

Efficient Nets use:

- Swish activations
- AutoAugment policy
- Stochastic depth

Results: HeatMap activation

Figure 8: Heatmap activations of different model scalings

Model	Top-1 Acc.	Top-5 Acc.	#Params	Ratio-to-EfficientNet	#FLOPS	Ratio-to-EfficientNet
EfficientNet-B0	76.3%	93.2%	5.3M	1x	0.39B	1x
ResNet-50 (He et al., 2016)	76.0%	93.0%	26M	4.9x	4.1B	11x
DenseNet-169 (Huang et al., 2017)	76.2%	93.2%	14M	2.6x	3.5B	8.9x
EfficientNet-B1	78.8%	94.4%	7.8M	1x	0.70B	1x
ResNet-152 (He et al., 2016)	77.8%	93.8%	60M	7.6x	11B	16x
DenseNet-264 (Huang et al., 2017)	77.9%	93.9%	34M	4.3x	6.0B	8.6x
Inception-v3 (Szegedy et al., 2016)	78.8%	94.4%	24M	3.0x	5.7B	8.1x
Xception (Chollet, 2017)	79.0%	94.5%	23M	3.0x	8.4B	12x
EfficientNet-B2	79.8%	94.9%	9.2M	1x	1.0B	1x
Inception-v4 (Szegedy et al., 2017)	80.0%	95.0%	48M	5.2x	13B	13x
Inception-resnet-v2 (Szegedy et al., 2017)	80.1%	95.1%	56M	6.1x	13B	13x
EfficientNet-B3	81.1%	95.5%	12M	1x	1.8B	1x
ResNeXt-101 (Xie et al., 2017)	80.9%	95.6%	84M	7.0x	32B	18x
PolyNet (Zhang et al., 2017)	81.3%	95.8%	92M	7.7x	35B	19x
EfficientNet-B4	82.6%	96.3%	19M	1x	4.2B	1x
SENet (Hu et al., 2018)	82.7%	96.2%	146M	7.7x	42B	10x
NASNet-A (Zoph et al., 2018)	82.7%	96.2%	89M	4.7x	24B	5.7x
AmoebaNet-A (Real et al., 2019)	82.8%	96.1%	87M	4.6x	23B	5.5x
PNASNet (Liu et al., 2018)	82.9%	96.2%	86M	4.5x	23B	6.0x
EfficientNet-B5	83.3%	96.7%	30M	1x	9.9B	1x
AmoebaNet-C (Cubuk et al., 2019)	83.5%	96.5%	155M	5.2x	41B	4.1x
EfficientNet-B6	84.0%	96.9%	43M	1x	19B	1x
EfficientNet-B7	84.4%	97.1%	66M	1x	37B	1x

	Comparison to best public-available results						Comparison to best reported results					
	Model	Acc.	#Param	Our Model	Acc.	#Param(ratio)	Model	Acc.	#Param	Our Model	Acc.	#Param(ratio)
CIFAR-10	NASNet-A	98.0%	85M	EfficientNet-B0	98.1%	4M (21x)	[†] Gpipe	99.0%	556M	EfficientNet-B7	98.9%	64M (8.7x)
CIFAR-100	NASNet-A	87.5%	85M	EfficientNet-B0	88.1%	4M (21x)	Gpipe	91.3%	556M	EfficientNet-B7	91.7%	64M (8.7x)
Birdsnap	Inception-v4	81.8%	41M	EfficientNet-B5	82.0%	28M (1.5x)	GPipe	83.6%	556M	EfficientNet-B7	84.3%	64M (8.7x)
Stanford Cars	Inception-v4	93.4%	41M	EfficientNet-B3	93.6%	10M (4.1x)	[‡] DAT	94.8%	-	EfficientNet-B7	94.7%	-
Flowers	Inception-v4	98.5%	41M	EfficientNet-B5	98.5%	28M (1.5x)	DAT	97.7%	-	EfficientNet-B7	98.8%	-
FGVC Aircraft	Inception-v4	90.9%	41M	EfficientNet-B3	90.7%	10M (4.1x)	DAT	92.9%	-	EfficientNet-B7	92.9%	-
Oxford-IIIT Pets	ResNet-152	94.5%	58M	EfficientNet-B4	94.8%	17M (5.6x)	GPipe	95.9%	556M	EfficientNet-B6	95.4%	41M (14x)
Food-101	Inception-v4	90.8%	41M	EfficientNet-B4	91.5%	17M (2.4x)	GPipe	93.0%	556M	EfficientNet-B7	93.0%	64M (8.7x)
Geo-Mean						(4.7x)						(9.6x)

Figure 10: Heatmap activations of different model scalings

Official:

https://github.com/tensorflow/tpu/tree/master/models/official/efficientnet
PyTorch:
https://github.com/lukemelas/EfficientNet-PyTorch

Thank you!

