Towards Automatic Concept-based Explanations

Published @NeurIPS 2019

Ghorbani A., Wexler J., Zou J.Y., Kim B.
Outline

• Is saliency a well defined problem?

• What are the Concept Activation Vectors?

• Towards concept-based explanations
Is saliency a well defined problem?
What is saliency for DNNs?

3 different categories…
They all do the same…
Infer insights about the model by ranking the input features

3 default axioms:
1. Completeness
2. Implementation invariance
3. Sensitivity
Class Activation Maps (CAM),
Zhou et al., 2016

Idea: Project back the weights of the output layer on to the convolutional feature maps

\[M_c(x, y) = \sum_k w_k^c f_k(x, y) \]
Grad-CAM, Selvaraju et al., 2017

Idea: Don’t use weights and activations, use the gradients.

$$\alpha_k^c = \frac{1}{Z} \sum_i \sum_j \frac{\partial y^c}{\partial A_{ij}^k}$$

global average pooling

logits

gradients via backprop
“The (un)reliability of saliency methods”, Kindermans et al., 2017

A simple input transformation causes most saliency methods to fail!

1 New axiom:
 input invariance
“Local explanation methods for deep neural networks lack sensitivity to parameter values”,
Adebayo et al., 2018

“DNNs with randomly-initialized weights produce explanations that are both visually and quantitatively similar to those produced by DNNs with learned weights”
“Evaluating Weakly Supervised Object Localization Methods Right”, Choe et al., 2020

Insignificant improvements since Zhou et al., 2016 !!!
It’s all about hyper-parameter tuning!
Concept Activation Vectors (TCAV), Kim et al., 2018

What are Concept Activation Vectors (CAVs)?

It is the normal to a hyperplane separating examples with and without a concept.

Train: binary linear classifier
Concept Activation Vectors (TCAV), Kim et al., 2018

Idea:

Project the derivatives to the direction of the concept

\[S_{C,k,l}(x) = \nabla h_{l,k}(f_l(x)) \cdot v^l_C \]

\(S_{C,k,l}(x) \) can quantitatively measure the sensitivity of model predictions with respect to concepts.
Concept Activation Vectors (TCAV), Kim et al., 2018

Testing with CAVs (TCAV):

\[\text{TCAV}_{Q_C,k,l} = \frac{\left| \{ x \in X_k : S_{C,k,l}(x) > 0 \} \right|}{|X_k|} \]

The Fraction of k-class inputs whose l-layer activation vector was positively influenced by the concept C.

i.e. the average positive effect of a concept
Concept Activation Vectors (TCAV), Kim et al., 2018

With TCAVs we can:

• Sort images with respect to their relation to the concept
• Reveal biases
• See which layer learns which concept

Drawbacks:
• The user must specify the concept (this can be quite vague)
• Introduces human bias in the explanation process
Concept-based Explanation Desiderata:

1. **Meaningfulness**: An example of a concept is semantically *meaningful on its own*.

2. **Coherency**: Examples of a concept should be perceptually *similar* to each other and *dissimilar* from examples of other concepts.

3. **Importance**: A concept is “important” for the prediction of a class if its *presence* is *necessary* for the true *prediction* of samples in that class.
“Towards Automatic Concept-based Explanations”, Ghorbani et al., 2019

Explanations in 3 steps:

1. Image **segmentation** using different scales.
2. **Clustering** of similar **segments** as examples of the same **concept**.
3. Testing with Concept Activation Vectors (**TCAVs**).
“Towards Automatic Concept-based Explanations”, Ghorbani et al., 2019

1. Image segmentation using different scales.

Procedure:
 i. Take all images from a class.
 ii. Rescale them to 3 different resolutions.
 iii. Use SLIC to get segments.
2. **Clustering** of similar segments as examples of the same concept.

Procedure:

i. Take a model **pretrained** on ImageNet.

ii. Compute the segment’s **activations** at mid-high level layers*.

iii. Do **K-means** clustering (Euclidean distance**) of the segments.

iv. Remove **outliers**.

* Earlier layers are better at similarity of textures and colors while latter ones are better for object.

** The Euclidean distance in the activation space of final layers is an effective perceptual similarity metric.
3. Testing with Concept Activation Vectors (TCAVs).

Procedure:

i. Take all the **clusters**.
ii. Treat them as **concepts**.
iii. Apply **relative TCAVs**: Train the binary classifier using a 1-vs-all* setting.

* Use one concept as primary and the rest as random images.
“Towards Automatic Concept-based Explanations”, Ghorbani et al., 2019

<table>
<thead>
<tr>
<th>Lionfish</th>
<th>Police Van</th>
<th>Basketball</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
“Towards Automatic Concept-based Explanations”, Ghorbani et al., 2019

Figure 4: **Importance** For 1000 randomly sampled images in the ImageNet validation set, we start removing/adding concepts from the most important. As it is shown, the top-5 concepts is enough to reach within 80% of the original accuracy and removing the top-5 concepts results in misclassification of more than 80% of samples that are classified correctly. For comparison, we also plot the effect of adding/removing concepts with random order and with reverse importance order.
Figure 6: **Stitching important concepts** We test what would the classifier see if we randomly stitch important concepts. We discover that for a number classes this results in predicting the image to be a member of that class. For instance, basketball jerseys, zebra skin, lionfish, and king snake patterns all seem to be enough for the Inception-V3 network to classify them as images of their class.
Towards Automatic Concept-based Explanations”, Ghorbani et al., 2019

• Why do they test only on ImageNet?
 Feature extraction etc. are using ImageNet
• The human experiments are not so well designed.
 e.g. clustered segments vs random ones
• What if we change the the K in K-means?
 They use K=25
• What if we remove/add more scales?
• Inherits all the bad aspects of:
 segmentation, clustering, similarity metric, TCAVs.
 = the method is too noisy
• What happened to the Implementation invariance?
Thank you