Spherical Regression: Learning Viewpoints, Surface Normals and 3D Rotations on n-Spheres

David Mohlin

KTH

2019
Introduction

- Try have networks model output on n-spheres. \((S(n-1))\)
- \(S(n) = \{ x \in \mathbb{R}^{n+1} : ||x|| = 1 \}\)
Try have networks model output on n-spheres. (S(n-1))

\[S(n) = \{ x \in \mathbb{R}^{n+1} : \|x\| = 1 \} \]

Reason is that the S(n) set occurs naturally in several tasks, for example estimating directions.
Try have networks model output on n-spheres. \((S(n-1))\)

\[S(n) = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\} \]

Reason is that the \(S(n)\) set occurs naturally in several tasks, for example estimating directions.

The space of rotations \((SO(n))\) has a topology similar to the one for \(S(m)\)

\[SO(n) = \{R \in \mathbb{R}^{3 \times 3} : R^T R = I, |R| = 1\} \]
Motivation

- They want a mapping onto $S(N)$ which has a bounded jacobian
Motivation

- They want a mapping onto $S(N)$ which has a bounded jacobian
- To get this they use the mapping

$$|p_j| = \frac{\exp(o_j)}{\sum_{k=1}^{N} \exp(o_k)} \quad \forall j \leq N$$
Motivation

\[|p_j| = \frac{\exp(o_j)}{\sum_{k=1}^{N} \exp(o_n)} \quad \forall j \leq N \]

This mapping will output N elements with l2 norm 1

But all components are positive.
Motivation

- \(|p_j| = \frac{\exp(o_j)}{\sum_{k=1}^{N} \exp(o_n)}\) \(\forall j \leq N\)
- This mapping will output \(N\) elements with l2 norm 1
- But all components are positive.
- To fix this they have \(N\) 2 class classifiers determining \(\text{sign}(p_j)\)
Motivation

$|p_j| = \frac{\exp(o_j)}{\sum_{k=1}^{N} \exp(o_n)} \quad \forall j \leq N$

This mapping will output N elements with l2 norm 1

But all components are positive.

To fix this they have N 2 class classifiers determining $\text{sign}(p_j)$

Final output is $p_j = \text{sign}(p_j) \ast |p_j|$
Datasets

- Pascal3D+: Real dataset with manually oriented orientations of objects
- 12 classes (bike, car, aeroplane etc) annotators have fitted cads onto images
- Also train on synthetic data
Datasets

- Pascal3D+: Real dataset with manually oriented orientations of objects
- 12 classes (bike, car, aeroplane etc) annotators have fitted cads onto images
- Also train on synthetic data
- NYU Depth v2: Normals estimated from kinnect, try to estimate those normals based on images.
- Also use synthetic data for training.
Datasets

- Pascal3D+: Real dataset with manually oriented orientations of objects
- 12 classes (bike, car, aeroplane etc) annotators have fitted cads onto images
- Also train on synthetic data
- NYU Depth v2: Normals estimated from kinnect, try to estimate those normals based on images.
- Also use synthetic data for training.
- Modelnet10-SO(3) synthetic dataset
Pascal3D+: estimate 3 euler angles separately (3 elements from $\mathbb{S}(2)$), similar to other method.
Methods

- Pascal3D+: estimate 3 euler angles separately (3 elements from $S(2)$), similar to other method
- NYU Depth v2: Estimate point on $S(3)$, similar to other method.
Methods

- Pascal3D+: estimate 3 euler angles separately (3 elements from $S(2)$), similar to other method.
- NYU Depth v2: Estimate point on $S(3)$, similar to other method.
- Modelnet10-SO(3): Test several output representations, quaternions work the best.
Results

- Pascal3d+ 11.6 → 9.2 degrees error (SOTA 10.1)
- NYU Depth v2: 21.7 → 19.7 degrees error (SOTA 21.7 degrees)
- Modelnet10-SO(3): 20.3 degree error
Results

- Pascal3d+ 11.6 → 9.2 degrees error (SOTA 10.1)
- NYU Depth v2: 21.7 → 19.7 degree error (SOTA 21.7 degrees)
Results

- Pascal3d+ 11.6 \rightarrow 9.2 degrees error (SOTA 10.1)
- NYU Depth v2: 21.7 \rightarrow 19.7 degree error (SOTA 21.7 degrees)
- Modelnet10-SO(3): 20.3 degree error
Comments

- For two of the datasets they rotate the dataset by 45 degrees around dataset varying axis.
- I assume the representation is not as general as they claim (it is hard to output some directions)

They do not model Pascal3D+ and ModelNet in the same way despite trying to estimate a rotation matrix for both. They have a larger error for a synthetic dataset than a real dataset.
Comments

- For two of the datasets they rotate the dataset by 45 degrees around dataset varying axis.
- I assume the representation is not as general as they claim (it is hard to output some directions)
- The representation is not rotation invariant.
Comments

- For two of the datasets they rotate the dataset by 45 degrees around dataset varying axis.
- I assume the representation is not as general as they claim (it is hard to output some directions)
- The representation is not rotation invariant.
- The classification sign causes discontinuities.
Comments

- For two of the datasets they rotate the dataset by 45 degrees around dataset varying axis.
- I assume the representation is not as general as they claim (it is hard to output some directions)
- The representation is not rotation invariant.
- The classification sign causes discontinuities.
- They do not model Pascal3D+ and ModelNet in the same way despite trying to estimate a rotation matrix for both.
Comments

- For two of the datasets they rotate the dataset by 45 degrees around dataset varying axis.
- I assume the representation is not as general as they claim (it is hard to output some directions)
- The representation is not rotation invariant.
- The classification sign causes discontinuities.
- They do not model Pascal3D+ and ModelNet in the same way despite trying to estimate a rotation matrix for both.
- They have a larger error for a synthetic dataset than a real dataset.