

Visual Relationships

Federico Baldassarre 3 December 2019

Visual Phrases / Triplets

person - ride - bike

Challenges

- Expensive to annotate
- Unseen objects
- Unseen predicates
- Unseen (s, p, o) triplets

Visual Relationships

car under elephant

Weakly-Supervised Learning of Visual Relations

Julia Peyre, Josef Sivic, Ivan Laptev, Cordelia Schmid ICCV 2017

Detecting unseen visual relations using analogies

Julia Peyre, Ivan Laptev, Cordelia Schmid, Josef Sivic ICCV 2019

KTH ROYAL INSTITUTE OF TECHNOLOGY

Weakly-Supervised Learning of Visual Relations

Julia Peyre, Josef Sivic, Ivan Laptev, Cordelia Schmid

ICCV 2017

Weakly-Supervised Learning of Visual Relations

Contributions

- Encoding of appearance and spatial configuration
- Weakly-supervised training (image labels only)
- New dataset of Unusual Relations

Encoding of appearance and spatial configuration

Is all the normalization and playing around with GMM and PCA needed?

Visual appearance

- Faster R-CNN features (VGG-16 on ImageNet)
- L2 normalization
- PCA 4096 -> 300

 $a(o_s), a(o_s) \in \mathbb{R}^{300}$

Spatial configuration

- Box sizes, displacement and area as 6D vector
- Gaussian Mixture Model with 400 gaussians

 $r(o_s,o_o)\in \mathbb{R}^{400}$

Weakly-supervised training (image labels only)

person falling horse

- Only one annotation with
 - s = person
 - o = horse
- 4 person boxes
- 3 horse boxes
- 12 candidate pairs

Weakly-supervised training (image labels only)

$$egin{aligned} \min_{Z}\min_{W}rac{1}{N}||Z-XW||^2+\lambda||W||^2\ s.\,t.\sum_{n\in\mathcal{N}_t}Z_{n,r}\geq 1\quadorall t\in\mathcal{T} \end{aligned}$$

Main Results

		Predicate Det.		Phrase Det.		Relations	Relationship Det.	
		All	Unseen	All	Unseen	All	Unseen	
	Full sup.							
a.	Visual Phrases [44]	0.9	-	0.04	-	-	-	
b.	Visual [32]	7.1	3.5	2.2	1.0	1.6	0.7	
c.	Language (likelihood) [32]	18.2	5.1	0.08	0.00	0.08	0.00	
d.	Visual + Language [32]	47.9	8.5	16.2	3.4	13.9	3.1	
e.	Language (full) [32]	48.4	12.9	15.8	4.6	13.9	4.3	
f.	Ours [S]	42.2	22.2	13.8	7.4	12.4	7.0	
g.	Ours [A]	46.3	16.1	14.9	5.6	12.9	5.0	
h.	Ours [S+A]	50.4	23.6	16.7	7.4	14.9	7.1	
i.	Ours [S+A] + Language [32]	52.6	21.6	17.9	6.8	15.8	6.4	
	Weak sup.							
j.	Ours [S+A]	46.8	19.0	16.0	6.9	14.1	6.7	
k.	Ours [S+A] - Noisy	46.4	17.6	15.1	6.0	13.4	5.6	

There are no standard deviations of multiple runs, but it's possible that the weakly-supervised training scheme (j) performs just like a noisy training scheme (k)

Unusual Relations Dataset

	bike above person	building has wheel
top 1		
top 2		
top 3		

	With GT	With candidates union subj subj/obj			
Chance	38.4	8.6	6.6	4.2	
Full sup.					
DenseCap [22]	-	6.2	6.8	-	
Reproduce [32]	50.6	12.0	10.0	7.2	
Ours [S+A]	62.6	14.1	12.1	9.9	
Weak sup.					
Ours [S+A]	58.5	13.4	11.0	8.7	
Ours [S+A] - Noisy	55.0	13.0	10.6	8.5	

Table 2: Retrieval on UnRel (mAP) with IoU=0.3

Using candidate boxes gives much lower performances, can this be a problem of the object detection part?

KTH ROYAL INSTITUTE OF TECHNOLOGY

Detecting unseen visual relations using analogies

Julia Peyre, Ivan Laptev, Cordelia Schmid, Josef Sivic

ICCV 2019

Detecting unseen visual relations using analogies

Contributions

- Combine compositional and phrase-based approaches
- Retrieval using *analogy* transformations

Compositional and phrase-based approaches

GMM and PCA from the previous paper have been replaced by MLPs

Training - positive samples

Visual pair i

Language triplet t person - ride - bike

 $\mathcal{L}_b = -\logigl(\sigma \langle v^b_i, w^b_t
angleigr)$

In all four spaces {s, p, o, vp}, the visual and language embeddings are pushed closer together

Training - negative samples

Visual pair i

Language triplet t person - wash - bike

$$\mathcal{L}_b = -\logig(1 - \sigma \langle v^b_i, w^b_t
angleig)$$

In all four spaces {s, p, o, vp}, the visual and language embeddings are pushed apart (also person - person ?)

Transfer by analogy

Retrieval without analogy

- Embed an unseen language query as (s, p, o, vp)
- Retrieve box pairs whose embeddings of (s, p, o, vp) are close to the query

Retrieval with analogy

- Find seen triplets that are similar enough to the unseen query (similarity is based on *s*, *p*, *o*)
- Build a vp embedding by aggregating the vp embeddings of seen triplets translated by an analogy transformation
- Retrieve box pairs whose embedding (s, p, o, vp) is close to the newly built query

Transfer by analogy

- (S) person wear shoe
- (S) person wear skis
- (S) person wear pants
- (S) person wear jeans

Top true positives

Top false positive

Query (Q) / Source (S)

(Q) person pet cat

- (S) person pet dog
- (S) person pet giraffe
- (S) person pet cow
- (S) person pet elephant
- (S) person scratch cat

Top true positives

Top false positive

Main Results

	full	rare	non-rare
Chao [6]	7.8	5.4	8.5
Gupta [13]	9.1	7.0	9.7
Gkioxari [12]	9.9	7.2	10.8
GPNN [34]	13.1	9.3	14.2
iCAN [10]	14.8	10.5	16.1
s+o+p	18.7	13.8	20.1
s+o+vp	17.7	11.6	19.5
s+o+p+vp	19.4	14.6	20.9

Seen triplets

	Base		With aggregation G		
	-	$\Gamma = \emptyset$	$\Gamma {=} 0$	$\Gamma{=}linear$	$\Gamma = deep$
s+o+p	23.2	-	-0	-	-
s+o+vp+transfer	24.1	9.6	24.8	27.6	28.6
s+o+p+vp+transfer	23.6	12.5	24.5	25.4	25.7
supervised	33.7	-	-	-	-

Unseen triplets

Future directions?

- Contextual query embeddings (BERT ?)
- Different predicate visual representation
- Entity-relationship reasoning

KTH ROYAL INSTITUTE OF TECHNOLOGY

Thanks

