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Announcements 📅
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● 23 March
○ Transformers for NLP 

○ Youssef

● 6 April
○ Transformers application, other domains and alternatives

○ Yonk and Sofia



Outline 📋
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● Main paper
○ An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale

(Vision Transformer)

○ Discussion

● Secondary papers
○ End-to-End Object Detection with Transformers

(DETR)

○ Discussion

○ Generative Pretraining from Pixels
(iGPT)

○ Discussion

● General comments and discussion



An Image is Worth 16x16 Words: 
Transformers for Image Recognition at Scale

Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, 
Gelly, Uszkoreit, Houlsby (Google Research)

Published at ICLR 2021 (Oral)



Motivation
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● From NLP: large-scale pre-training of Transformers

● Convolution is an established inductive bias. Can attention replace it?

● Related works using attention require specialized architectures



Approach: the Vision Transformer
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Image as 16x16 patches
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● 16x16 patches ➔ sequence of tokens

● Weak 2D locality prior (bias #1)

● Convolution hiding in plain sight?



Reintroducing spatial information
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● Learned embedding for each patch position

● For inference at higher resolutions, embeddings are interpolated in a 2D grid 
(bias #2)



Embedding interpolation
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Rearrange

Rearrange

2D Upsample

Pre-training embeddings 3x4 = 12

Fine-tuning embeddings 4x5 = 20



Almost a standard Transformer
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● Sequence: 
image patches + classification token

● Output class is predicted from 
the classification token

● During fine-tuning, the MLP 
head is replaced



Experiments
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General setting:
● Pre-train on a large-scale supervised classification task (low resolution)
● Fine-tune on a specific classification task (high resolution)

Research questions:
● Comparison with CNNs (training cost, transfer accuracy)
● Interplay between convolutional bias and compute budget
● Inspection of learned weights and typical attention maps



Datasets
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● ImageNet 
○ 1k classes
○ 1.3M images

● ImageNet-21k
○ 21k classes
○ 14M images

● JFT
○ 18k classes
○ 303M images
○ Private Google dataset

● CIFAR 10/100

● ImageNet

● Oxford Pets/Flowers

● VTAB 19-task suite

Pre-training Fine-tuning

Pre-training uses a lower resolution than fine-tuning. Both are supervised.



Comparison with CNNs
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“Small” pre-train datasets

ResNet ≻ Transformer

Top-1 ImageNet accuracy when using different pre-training datasets

Larger pre-train datasets

Transformer ≈ ResNet

Saturation for bigger Vision 
Transformers not yet observed



Training time ⏱

14^ BiT-L is trained on JFT: Big Transfer (BiT): General Visual Representation Learning, Kolesnikov et al.

Parameters 307M 928M307M632M

^

https://arxiv.org/abs/1912.11370


Training cost💲

15TPU prices only, virtual machine billed separately: Cloud TPU pricing

https://cloud.google.com/tpu/pricing


Convolutional bias vs. compute budget
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Vision Transformer     vs. Big Transfer

● Given similar budget, 
Transformers perform generally 
better than CNNs

Hybrid      vs. pure transformer

● In low-compute regime, the 
convolutional bias helps

● With enough budget, the bias 
becomes unnecessary.

All models are pre-trained on JFT



Discussion: just add data?

17Revisiting Unreasonable Effectiveness of Data in Deep Learning Era, Sun et al, 2017 (JFT-300M dataset)

COCO object detection with ResNet

https://ieeexplore.ieee.org/document/8237359


Model inspection
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Learned linear projection filters 
resemble low-level filters in CNNs

Learned position embeddings 
encode 2D information



Model inspection
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Learned attention patterns match 
the typical CNN receptive fields

Attention maps of the classification head have 
(seemingly) learned to localize objects



Conclusions
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With large amounts of data:

● The convolutional bias can be dropped

● Weak 2D biases remain necessary

● Transformers are more efficient than CNNs

Future work:

● Other computer vision tasks, e.g. DETR

● ViT remains fully-supervised, see iGPT



Vision Transformer

Discussion
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End-to-End Object Detection with Transformers

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, 
Sergey Zagoruyko (Facebook AI)

Published at ECCV 2020



Ideas
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● Object detection can be seen as a set-to-set problem

● Transformers are efficient set-to-set architectures



Goal: simplicity
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Faster R-CNN:

● Several components
● Detectron2 codebase is 

well-written but complex

DETR:

● Straightforward set-to-set prediction
● Off-the-shelf Transformer layers

Source: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, Ren et al.

https://github.com/facebookresearch/detectron2
https://arxiv.org/abs/1506.01497


Feature extraction

25

● Transformer encoder: a stack of self-attention layers

● Features from a CNN backbone

● 2D positional encoding



Set-to-set prediction
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● Transformer decoder: object queries attend to image patches

● Parallel decoding (all at once, not autoregressive)



Matching loss
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● Bipartite matching between predictions and ground-truth boxes

● Loss is a combination of object classification and box regression



Results
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● Competitive with highly-optimized Faster R-CNN models

● Detection of small objects needs to be improved (likely with a FPN)



Encoder self-attention inspection
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● Self-attention weights resemble object masks

● Encoder already builds a representation for object detection



Decoder object queries inspection
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● Specialised for certain sizes at certain locations

● “Is there an object here?”

Green: small boxes
Red: large horizontal boxes
Blue: large vertical boxes

Where are the object boxes that are predicted by each object query?



Conclusions
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Novel approach for object detection

● Set-to-set transformers with matching loss

● Drop hand-engineered components

● Attention maps might be useful for inspecting the model 
and panoptic segmentation



DETR

Discussion
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Generative Pretraining from Pixels

Mark Chen, Alec Radford, Rewon Child, Jeff Wu, Heewoo Jun, Prafulla Dhariwal, David Luan, 
Ilya Sutskever (OpenAI)

Published at ICML 2020



Ideas
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● Pixel-by-pixel image generation using an autoregressive transformer

● Self-supervised pre-training, no labels needed

● Evaluate learned representation using linear probes



Next-pixel prediction
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● Each pixel is a token

● Resolution limitations

● Reduced color palette

● Autoregressive architecture

● Standard sequence modeling objective



Linear probe
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● Average over the latent codes of each pixel in one layer

● Train a linear classifier over the layer representation



Datasets
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● ImageNet 
○ 1.2M images
○ Low resolution
○ 9-bit color palette
○ No labels

● CIFAR-10

● CIFAR-100

● STL-10

Self-supervised 
pre-training

Supervised
linear probing

Pre-training and fine-tuning use the same resolution. For most experiments 32x32, otherwise 48x48, or 64x64.

● Web images 
○ 100M images
○ Low resolution
○ 9-bit color palette
○ No labels

● ImageNet



Representation quality by layer
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● Best representations 
in the middle

● Authors’ hypothesis:
iGPT behaves similarly to 
an autoencoder, but without 
the bottleneck

Low-level input 
representation

Semantic 
representation

Low-level output 
representation



Representation quality by model size
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● Horizontal axis: larger models 
are better generators

● Correlation: generation 
performance and probe 
accuracy

● Generation performance being 
equal, larger models learn 
more discriminative features

d = 512
d = 1024
d = 1536

* Note the different sizes of dim model. In iGPT-L, the linear probe has 3x more values to work with.

*



State-of-the-art accuracies

40

iGPT linear probe accuracy iGPT fine-tuning accuracy

iGPT is pre-trained on ImageNet (unlabeled and downsampled). Sup transfer means pre-trained on ImageNet with labels. iGPT-L is bigger and more expensive than the other models.



Conclusions
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Confirm that

● Self-supervised pixel-wise pre-training can learn good representations

● 2D inductive biases can be abandoned (no patches, no conv layer at the input)

However:

● Abandoning 2D priors causes scaling issues at higher resolutions

● Humans do not “see” the world one pixel at the time, row-by-row. 
Is this the best kind of self-supervision to learn meaningful representations?



iGPT

Discussion
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General discussion



General discussion
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Adapting Transformers for vision, approaches:

● Features from a CNN become tokens (DETR)

● Pixel patches become tokens (ViT)

● Quantized pixels become tokens (iGPT)

Fewer biases,
More compute



General discussion
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Comparison with CNNs:

● Can attention layers generalize convolutional layers?
○ Translational equivariance
○ Sparsity of connections
○ Locality
○ Positional embedding

● Are Transformers more computationally efficient than ConvNets? 
Why? Is it related to how GPUs kernels work?



General discussion
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Research trends and future directions:

● Making architectures more general

● Removing inductive biases

● Training on huge datasets

● Is this the way to go?

Related read: The Bitter Lesson, Sutton, 2019

http://www.incompleteideas.net/IncIdeas/BitterLesson.html


Thanks for the attention!
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Extra slides
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ViT state-of-the-art comparison
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ViT: model inspection

50



ViT: small architectural difference
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❗

❗

“Attention Is All You Need”, Vaswani et al. “Vision Transformer”, Dosovitskiy et al.



DETR: panoptic segmentation
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● For each detected object, the attention map of the corresponding 
object query can be used as the input to a segmentation model

● Can be trained jointly with the object detector or later

● Performs well on COCO (53 stuff classes, 80 object classes)



iGPT: autoregressive (GPT) vs masking (BERT)
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