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Semi-supervised learning
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Learning from both labeled and 
unlabeled data

Scenario 1:
You have ImageNet, but want to use 

even more data

Scenario 2:
You have few labels, but loads of 

unlabeled data

Source: xview2 dataset



How to make use of the unlabeled data?
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1. Pre-train model on unlabeled data, then fine-tune on labeled dataset
 ➙ self-supervised learning

2. Train on labeled and unlabeled data at the same time.

a. Assign labels to unlabeled data 
 ➙ Pseudo labels

b. Train unsupervised objective in parallel to supervised
 ➙ Consistency regularisation / Label propagation



Temporal Ensembling for Semi-Supervised Learning
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Samuli Laine, Timo Aila - ICLR 2017
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Consistency Regularisation

● Loss = Supervised + Unsupervised
● Unsupervised: Consistency regularisation. Different stochastic influences should lead to 

same results
● Unsupervised loss also used for labeled images
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Average predictions over time
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Self-ensembling over time
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Advantages:
• Compare prediction to moving average of past predictions

 Less noisy than current prediction!➙
• Only one pass per epoch  Faster!➙

Disadvantage:
• Memory needed to store prediction for whole dataset
• Prediction targets are too old when training on large datasets

Self-ensembling over time



Semi-supervised learning on CIFAR-10
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Semi-supervised learning on CIFAR-10
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Why better than supervised on the full dataset? 



Semi-supervised learning on CIFAR-10
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Why better than supervised on the full dataset? 
 ➙ Consistency regularisation



Semi-supervised learning on CIFAR-100
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Semi-supervised learning on CIFAR-100 + TinyImages
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Robustness to noisy labels on SVHN dataset
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Robustness to noisy labels on SVHN dataset
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Temporal ensembling gets >90% accuracy with 80% false labels.
Discussion: How can that be?



Connections to other approaches
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• Ensembling over past predictions takes a lot of memory, changes slowly
 ➙ Ensemble over past weights of the model: Mean Teacher

• Making outputs for differently augmented versions match:
Consistency Regularisation, FixMatch, Contrastive Learning

• Soft knowledge of old model (temporal ensemble prediction) gets transferred 
to new model: ~ knowledge distillation, teacher-student approaches

• Model’s predictions are used as soft labels for the next time step.
Hard labels  ➙ Pseudo Label / Self-Training, a form of Entropy 
Regularization

• Encouraging local smoothness by adding noise:
Virtual Adversarial Training (VAT), Noisy Student



Meta Pseudo Labels
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Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, Quoc V. Le - CVPR 2021



Meta Pseudo Labels
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Problem in regular pseudo-labels: Confirmation bias

Solution: Use labeled data as validation of student’s learning success, 
adjust the teacher to construct better pseudo-labels



Meta Pseudo Labels: Algorithm
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1. Pre-train the teacher model on the labeled dataset

2. Create hard pseudo labels from teacher’s prediction on unlabeled data

3. Train student on this batch of pseudo-labeled data

4. Check student’s learning progress on batch L of labeled data

5. Compute teacher’s gradient based on:
a. Student’s performance on L
b. Teacher’s performance on the labeled batch L
c. Teacher’s performance on consistency regulariser on L

6. Update teacher’s parameters

7. Go to 2.



Comparison on TwoMoon dataset
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• MLP with two hidden layers, eight hidden nodes each
• 1000 points per cluster, three points labeled per cluster
• Pseudo labels based on supervised model



Comparison on TwoMoon dataset
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• MLP with two hidden layers, eight hidden nodes each
• 1000 points per cluster, three points labeled per cluster
• Pseudo labels based on supervised model

Discussion: Why does the pseudo labels model not learn the supervised 
decision boundary?



Experimental settings

Training details

• Architectures that are commonly used in previous work
• Hyperparameters the same as in previous work
• Only dropped some augmentations in RandAugment that don’t make sense 
• Fine-tune on labeled data after teacher-student-training
• Last model checkpoint is evaluated, not chosen via validation set, since 

labeled data is limited
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Experimental settings

Training details

• Architectures that are commonly used in previous work
• Hyperparameters the same as in previous work
• Only dropped some augmentations in RandAugment that don’t make sense 
• Fine-tune on labeled data after teacher-student-training
• Last model checkpoint is evaluated, not chosen via validation set, since 

labeled data is limited

Comparisons

• Only compare to methods using the same architecture
• No comparison to methods using self-distillation or distillation from bigger 

teacher

“[...] since it is known that larger architectures and distillation can improve 
any method, possibly including Meta Pseudo Labels.”
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Experiments on small datasets
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Large-scale experiment: Adding unlabeled data
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Meta Pseudo Labels - lite version

Reduced Meta Pseudo Labels

1. Train large teacher model T until convergence
2. Pre-compute all soft pseudo-labels
3. Small MLP as teacher T’ that is trained together with the student:

Input: pre-computed distributions
Output: adjusted distributions

4. Train T’ and student with Meta Pseudo Labels

Performs slightly better than Noisy Student (+1% on ImageNet, less on smaller 
datasets)

86.9% on ImageNet instead of 90.2%, but smaller architecture and smaller, 
different unlabeled dataset.
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Conclusion

Pros:

• Semi-supervised method that works on rather small and very large datasets
• Can beat pure supervised learning while using much fewer labels (!)
• Very interesting way to use labeled data as validation set
• Lite version for ‘regular’ users

Cons:

• Unclear how good the reduced model is, since it uses a different 
experimental setup

• Possibly unfair comparisons on small datasets, since they have the 
advantage of distillation

• Unclear why they don’t use soft pseudo labels and gradient descent
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