Semi-supervised Learning

Temporal Ensembling for Semi-Supervised Learning - samuli Laine, Timo Aila - ICLR 2017

Meta Pseudo Labels - Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, Quoc V. Le - CVPR 2021

L Jr =3 L

1




Semi-supervised learning

Learning from both labeled and
unlabeled data

Scenario 1:
You have ImageNet, but want to use
even more data

Scenario 2:
You have few labels, but loads of
unlabeled data

Source: xview2 dataset




How to make use of the unlabeled data?

1. Pre-train model on unlabeled data, then fine-tune on labeled dataset
- self-supervised learning

2. Train on labeled and unlabeled data at the same time.

a.

Assign labels to unlabeled data
- Pseudo labels

Train unsupervised objective in parallel to supervised
— Consistency regularisation / Label propagation
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Consistency Regularisation

M-model
w(t)
Vi Z """" | cross- ¢
. , > I entr > :
X; stochastic network > Sntropy weighted I
augmentation || with dropout N squared [—> sum 055
Z difference

e Loss = Supervised + Unsupervised

e Unsupervised: Consistency regularisation. Different stochastic influences should lead to
same results

e Unsupervised loss also used for labeled images




Average predictions over time
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Self-ensembling over time
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Self-ensembling over time
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Advantages:

 Compare prediction to moving average of past predictions
— Less noisy than current prediction!
* Only one pass per epoch = Faster!

Disadvantage:
 Memory needed to store prediction for whole dataset
* Prediction targets are too old when training on large datasets




Semi-supervised learning on CIFAR-10

Error rate (%) with # labels
4000 All (50000)
Supervised-only 35.56 £ 1.59 7.33 £0.04
with augmentation 34.85 £ 1.65 6.05 & 0.15
Conv-Large, I'-model (Rasmus et al., 2015) 20.40 £ 0.47
CatGAN (Springenberg, 2016) 19.58 £ 0.58
GAN of Salimans et al. (2016) 18.63 £ 2.32
IT-model 16.55 + 0.29 6.90 + 0.07
IT-model with augmentation 12.36 + 0.31 5.56 + 0.10
Temporal ensembling with augmentation 12.16 + 0.24 5.60 =+ 0.10




Semi-supervised learning on CIFAR-10

Error rate (%) with # labels

4000 All (50000)

Supervised-only 35.56 £ 1.59 7.33 £0.04

with augmentation 34.85 £ 1.65 6.05 & 0.15
Conv-Large, I'-model (Rasmus et al., 2015) 20.40 £ 0.47
CatGAN (Springenberg, 2016) 19.58 £ 0.58
GAN of Salimans et al. (2016) 18.63 £ 2.32

IT-model 16.55 + 0.29 6.90 + 0.07

IT-model with augmentation 12.36 + 0.31 5.56 + 0.10

Temporal ensembling with augmentation 12.16 + 0.24 5.60 =+ 0.10

Why better than supervised on the full dataset?
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Semi-supervised learning on CIFAR-10

Error rate (%) with # labels
4000 All (50000)
Supervised-only 35.56 £ 1.59 7.33 £0.04
with augmentation 34.85 £ 1.65 6.05 & 0.15
Conv-Large, I'-model (Rasmus et al., 2015) 20.40 £ 0.47
CatGAN (Springenberg, 2016) 19.58 £ 0.58
GAN of Salimans et al. (2016) 18.63 £ 2.32
IT-model 16.55 + 0.29 6.90 + 0.07
IT-model with augmentation 12.36 + 0.31 5.56 + 0.10
Temporal ensembling with augmentation 12.16 + 0.24 5.60 =+ 0.10

Why better than supervised on the full dataset?
— Consistency regularisation




Semi-supervised learning on CIFAR-100

Table 3: CIFAR-100 results with 10000 labels, averages of 10 runs (4 runs for all labels).

Error rate (%) with # labels
10000 All (50000)
Supervised-only 51.21 £0.33 29.14 + 0.25
with augmentation 44.56 £ 0.30 26.42 + 0.17
[T-model 43.43 £ 0.54 29.06 £ 0.21
II-model with augmentation 39.19 £ 0.36 26.32 +0.04
Temporal ensembling with augmentation 38.65 £+ 0.51 26.30 = 0.15




Semi-supervised learning on CIFAR-100 + Tinylmages
Table 3: CIFAR-100 results with 10000 labels, averages of 10 runs (4 runs for all labels).

Error rate (%) with # labels
10000 All (50000)
Supervised-only 01.21 +0.33 29.14 £0.25
with augmentation 44.56 £+ 0.30 26.42 +0.17
IT-model 43.43 + 0.54 29.06 £0.21
[I-model with augmentation 39.19 £0.36 26.32 £0.04
Temporal ensembling with augmentation 38.65 + 0.51 26.30 + 0.15

Table 4: CIFAR-100 + Tiny Images results, averages of 10 runs.

Error rate (%) with # unlabeled
auxiliary inputs from Tiny Images
Random 500k Restricted 237k
IT-model with augmentation 25.79 £ 0.17 25.43 +0.32
Temporal ensembling with augmentation 23.62 + 0.23 23.79 + 0.24




Classification accuracy (%)

Standard supervised
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Classification accuracy (%)
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Standard supervised Temporal ensembling
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Temporal ensembling gets >90% accuracy with 80% false labels.
Discussion: How can that be?
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Connections to other approaches

Ensembling over past predictions takes a lot of memory, changes slowly
— Ensemble over past weights of the model: Mean Teacher

Making outputs for differently augmented versions match:
Consistency Regularisation, FixMatch, Contrastive Learning

Soft knowledge of old model (temporal ensemble prediction) gets transferred
to new model: ~ knowledge distillation, teacher-student approaches

Model’s predictions are used as soft labels for the next time step.
Hard labels - Pseudo Label | Self-Training, a form of Entropy
Regularization

Encouraging local smoothness by adding noise:
Virtual Adversarial Training (VAT), Noisy Student

16



Meta Pseudo Labels

Hieu Pham, Zihang Dai, Qizhe Xie, Minh-Thang Luong, Quoc V. Le - CVPR 2021
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Pseudo-labeled data

Meta Pseudo Labels
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Pseudo-labeled data
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Student

Student’s performance

Problem in regular pseudo-labels: Confirmation bias

on labeled data

Solution: Use labeled data as validation of student’s learning success,
adjust the teacher to construct better pseudo-labels
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Meta Pseudo Labels: Algorithm

Pre-train the teacher model on the labeled dataset

Create hard pseudo labels from teacher’s prediction on unlabeled data
Train student on this batch of pseudo-labeled data

Check student’s learning progress on batch L of labeled data

Compute teacher’s gradient based on:
a. Student’'s performance on L
b. Teacher’s performance on the labeled batch L
c. Teacher’s performance on consistency regulariser on L

Update teacher’s parameters

Go to 2.
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Comparison on TwoMoon dataset

Supervised Pseudo Labels Meta Pseudo Labels

 MLP with two hidden layers, eight hidden nodes each
e 1000 points per cluster, three points labeled per cluster
* Pseudo labels based on supervised model
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Comparison on TwoMoon dataset

Supervised Pseudo Labels Meta Pseudo Labels

 MLP with two hidden layers, eight hidden nodes each
e 1000 points per cluster, three points labeled per cluster
* Pseudo labels based on supervised model

Discussion: Why does the pseudo labels model not learn the supervised
decision boundary?
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Experimental settings

Training details

Architectures that are commonly used in previous work

Hyperparameters the same as in previous work

Only dropped some augmentations in RandAugment that don’t make sense
Fine-tune on labeled data after teacher-student-training

Last model checkpoint is evaluated, not chosen via validation set, since
labeled data is limited
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Experimental settings

Training details

Architectures that are commonly used in previous work

Hyperparameters the same as in previous work

Only dropped some augmentations in RandAugment that don’t make sense
Fine-tune on labeled data after teacher-student-training

Last model checkpoint is evaluated, not chosen via validation set, since
labeled data is limited

Comparisons

* Only compare to methods using the same architecture

* No comparison to methods using self-distillation or distillation from bigger
teacher

“[...] since it is known that larger architectures and distillation can improve
any method, possibly including Meta Pseudo Labels.”
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L Experiments on small datasets

Method CIFAR-10-4K SVHN-1K ImageNet-10%
(mean = std) (mean + std) Top-1  Top-5
Temporal Ensemble [35] 83.63+£063 92.81+£0.27 —
Mean Teacher [64] 84.13 £0.28 94.35 + 0.47 —
VAT + EntMin [44] 86.87 £0.39  94.65+0.19 - 83.39
LGA + VAT [30] 87.944+0.19 93.42+£0.36 —
. ICT [71] 92.71£0.02 96.11£0.04 —
Label Propagation Methods y yiovrich 5 93.76 £0.06  96.73 %+ 0.31 _
ReMixMatch [4] 94.86 £0.04 97.17+£0.30 -
EnAET [72] 94.65 97.08 -
FixMatch [58] 95.74 +£0.05 97.72+0.38 T71.5 89.1
UDA™ [70] 94.53 £0.18 97.114£0.17 68.07 88.19
SimCLR [5, 9] — — 71.7 90.4
MOCOv2 [10] — — 71.1 —
Self-Supervised Methods PCL [38] — — — 85.6
PIRL [43] — — — 84.9
BYOL [21] - - 68.8 89.0
Meta Pseudo Labels 96.11 £ 0.07 98.01 +0.07 73.89 91.38
Supervised Learning with full dataset™  94.92+0.17 97.41+0.16 76.89  93.27
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931 Large-scale experiment: Adding unlabeled data
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Method # Params Extra Data ImageNet ImageNet-ReaL [0]

Top-1  Top-5 Precision@1
ResNet-50 [24] 26M — 76.0 93.0 82.94
ResNet-152 [24] 60M — 77.8 93.8 84.79
DenseNet-264 [28] 34M — 77.9 93.9 —
Inception-v3 [62] 24M 78.8 944 83.58
EfficientNet-B7 [63] 66M — 85.0 97.2 —
EfficientNet-B7 + FixRes [70] 66M — 85.3 97.4 —
EfficientNet-L2 [63] 430M — 85.5 97.5 —
ResNet-50 Billion-scale SSL [79] 26M 3.5B labeled Instagram  81.2 96.0 —
ResNeXt-101 Billion-scale SSL [79] 193M 3.5B labeled Instagram  84.8 — —
ResNeXt-101 WSL [42] 829M 3.5B labeled Instagram  85.4 97.6 88.19
FixRes ResNeXt-101 WSL [69] 829M 3.5B labeled Instagram  86.4 98.0 89.73
Big Transfer (BiT-L) [33] 928M 300M labeled JFT 87.5 98.5 90.54
Noisy Student (EfficientNet-1.2) [77] 430M 300M unlabeled JFT  88.4 98.7 90.55
Noisy Student + FixRes [70] 480M 300M unlabeled JFT 88.5 98.7 —
Vision Transformer (ViT-H) [14] 632M 300M labeled JFT 88.55 — 90.72
EfficientNet-L2-NoisyStudent + SAM [16] 480M 300M unlabeled JFT  88.6 98.6 —
Meta Pseudo Labels (EfficientNet-B6-Wide) 390M 300M unlabeled JFT 90.0 98.7 91.12

Meta Pseudo Labels (EfficientNet-L2) 480M 300M unlabeled JFT 90.2 98.8 91.02




Meta Pseudo Labels - lite version

Reduced Meta Pseudo Labels

1. Train large teacher model T until convergence

2. Pre-compute all soft pseudo-labels

3. Small MLP as teacher T’ that is trained together with the student:
Input: pre-computed distributions
Output: adjusted distributions

4. Train T’ and student with Meta Pseudo Labels

Performs slightly better than Noisy Student (+1% on ImageNet, less on smaller
datasets)

86.9% on ImageNet instead of 90.2%, but smaller architecture and smaller,
different unlabeled dataset.
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Conclusion

Pros:
* Semi-supervised method that works on rather small and very large datasets
e Can beat pure supervised learning while using much fewer labels (!)
* Very interesting way to use labeled data as validation set

Lite version for ‘regular’ users
Cons:

e Unclear how good the reduced model is, since it uses a different
experimental setup

e Possibly unfair comparisons on small datasets, since they have the
advantage of distillation

* Unclear why they don’t use soft pseudo labels and gradient descent
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