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Outline

» Gaussian Processes.

> “Deep Neural Networks as Gaussian Processes”, ICLR
2018, [Lee et al., 2018].

» “Deep Convolutional Networks as shallow Gaussian
Processes”, ICLR 2019, [Garriga-Alonso et al., 2019].
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» “Neural Tangent Kernel: Convergence and Generalization
in Neural Networks”, NIPS 2018, [Jacot et al., 2018].

» “Wide Neural Networks of Any Depth Evolve as Linear
Models Under Gradient Descent”, NIPS 2019,
[Lee et al., 2019].
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» “Neural Tangents: Fast and Easy Infinite Neural Networks
in Python”, ICLR 2020, [Novak et al., 2020].
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Gaussian processes.

» Definition: A Gaussian process is a stochastic process
Y (x), such that for every finite collection of {x;}]_; random
variables {Y(x;)}?_, have a multivariate normal
distribution.

» Example: Regression

Y(Xx) = cos(x) + ¢ (1)

» Inference: Given samples D = {(x;, y;)}7_4, a posterior
distribution of y = Y(x) at a new point x.

» Prior: Kernel function K(x, x") describes a co-variance
between Y(x) and Y(x'), thus K(x, x) = Var(e).



Gaussian processes.

Bayesian inference.
> P(y|x,D) ~ N(f,K)

fi = Ky p(Kpp +a2ln)~y @)
K = Kex — Kp(Kpp + 021n) 7 Kl

Prediction with Uncertainty

Pgsterlqr : 15

Figure: 02 = 0, [Wikipedia contributors, 2020]
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Fully-connected layers

» z/=1(x), x!(x) are pre/post-activation features for a hidden
layer /

= b)] +ZW,,’ ), x0) =0 (27

> bj ~ N(0,05), W/, ~ N (O, ) thus x/(x) and z{(x) - i.i.d.
> By the CLT, {z/} ~ GP(0, K’) as N; — oc.
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Fully-connected layers

K'(x,x') =E [z,-’(x)z/ (x’)}
= B+ BB gy [6(27100) 6 (27 (¢))]

= o8+ 0% F, (KT (xx) K (x,x0), KT (X X))

K (x,x') =E [Z/Q(X)Z/o (X/)} =5+ 0w <Xd| Xl)
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Fully-connected layers
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Figure: Experimental results from [Lee et al., 2018].
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Neural Network GP

Convolutional layers
» Consider feature maps as multidimensional i.i.d. random
variables.
» Use multidimensional CLT as number of channels C; — oo.

> If you are interested only in variance at the final layer, you
only need variance from the previous layers, because
weights are independent and zero centered:

R
cm H®) ple)

ab—i-z Z oA |6 (ADX)) 6 (A (X))]
(3)

K}SZ-H) (X,X/) -C [AI('Z-H)(X)’A(E‘H) (X/)} _
)D
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Kernel Gradient Descent

Sample-then-optimize approach:
» Associate a choice of parameters with a function f € F.
» Inner product

(F.9)pn = Exepn |1(x)T9(0)] (4)

» Kernel product

(F,9)k = By [f)TK (x,X) g ()] (8)
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Kernel Gradient Descent

» Derivative of a cost function with respect to f
fo - <d’f0 ’ '>pf"

» The Kernel Gradient is defined as

o

N
1
ViCly(x) = 5 DK (x.) g, (x)
j=1

> |t leads to the steepest descent

1Cly = = (Al TxClun),, == o
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Optimization with respect to parameters

» Approximate kernel by sampling functions 7(P):

E [f,ﬁp)(x)féf’) (x’)] = K (x,X') (9)

» Consider linear parametrization:

P
’
fary = NG > 0p(1)f® (10)
p=1
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Optimization with respect to parameters

» Approximate kernel by sampling functions 7(P):

E [f,ﬁp)(x)féf)) (x’)] = K (x,X') (9)

» Consider linear parametrization:
;P

foy = —= D Op(t)fP 10

(1) \/ﬁ; b(1) (10)

» Optimizing the cost with respect to 6 is equivalent to kernel
gradient descent with the Neural Tangent Kernel

P P

1 00
© =" dufony @ Dol = 5 »_ 1P @ 1P Fooes ko (11)
p=1 p=1
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Theoretical results

> In the general case parametrization is not linear, therefore
s, To(ry and © depend on 6(t).

> Theorem, [Jacot et al., 2018]: In the infinite-width limit
NTK converges in probability to a determenistic kernel,
thus stays almost constant during training.

> Theorem, [Lee et al., 2019]: For a sufficiently wide neural
network and sufficiently small learning rate the training
trajectory is close the the trajectory of a linearized network:

F"(x) = o(x) + Volo(x)lg_g, wt (12)
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Neural Tangent Kernel

Theoretical results

» Theorem, [Lee et al., 2019]: As the width goes to infinity
distribution f’"(x) converges to a normal distribution with
mean

p(xr) =0 @)’ (I-e®)y (13

which in turn converges to © (X7, X)©~ 'Y ast — cc.

» Remark: “The distribution resulting from GD training does
not generally correspond to a Bayesian posterior”,
[Lee et al., 2019].
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Figure: Training dynamics for an ensemble of finite-width networks
compared with an infinite network, [Novak et al., 2020].
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Figure: Convergence of the Monte Carlo (MC) estimates,
[Novak et al., 2020].
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Figure: CIFAR-10 classification with varying neural network
architectures, [Novak et al., 2020].
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