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Gaussian processes.
I Definition: A Gaussian process is a stochastic process

Y (x), such that for every finite collection of {xi}ni=1 random
variables {Y (xi)}ni=1 have a multivariate normal
distribution.

I Example: Regression

Y (x) = cos(x) + ε (1)

I Inference: Given samples D = {(xi , yi)}ni=1, a posterior
distribution of y = Y (x) at a new point x .

I Prior: Kernel function K (x , x ′) describes a co-variance
between Y (x) and Y (x ′), thus K (x , x) = Var(ε).
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Gaussian processes.
Bayesian inference.

I P(y |x ,D) ∼ N (µ̂, K̂ )

µ̂ = Kx ,D(KD,D + σ2
ε In)−1y

K̂ = Kx ,x − Kx ,D(KD,D + σ2
ε In)−1K T

x ,D
(2)

Figure: σ2
ε = 0, [Wikipedia contributors, 2020]



Neural Network GP
Fully-connected layers

I z l−1(x), x l(x) are pre/post-activation features for a hidden
layer l
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j (x) - i.i.d.

I By the CLT, {z l
i } ∼ GP(0,K l) as Nl →∞.
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Fully-connected layers

K l (x , x ′) ≡ E
[
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i
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Neural Network GP
Fully-connected layers

Figure: Experimental results from [Lee et al., 2018].



Neural Network GP
Convolutional layers

I Consider feature maps as multidimensional i.i.d. random
variables.

I Use multidimensional CLT as number of channels Cl →∞.
I If you are interested only in variance at the final layer, you

only need variance from the previous layers, because
weights are independent and zero centered:

K (`+1)
µ

(
X,X′

)
=C

[
A(`+1)

i,µ (X),A(`+1)
i,µ

(
X′
)]

=

σ2
b +

C(n)∑
j=1

H(`)D(`)∑
ν=1

σ2
wE
[
φ
(

A(l)
j,ν(X)

)
φ
(

A(`)
j,ν

(
X′
))]

(3)



Neural Network GP
Convolutional layers

I Consider feature maps as multidimensional i.i.d. random
variables.

I Use multidimensional CLT as number of channels Cl →∞.

I If you are interested only in variance at the final layer, you
only need variance from the previous layers, because
weights are independent and zero centered:

K (`+1)
µ

(
X,X′

)
=C

[
A(`+1)

i,µ (X),A(`+1)
i,µ

(
X′
)]

=

σ2
b +

C(n)∑
j=1

H(`)D(`)∑
ν=1

σ2
wE
[
φ
(

A(l)
j,ν(X)

)
φ
(

A(`)
j,ν

(
X′
))]

(3)



Neural Network GP
Convolutional layers

I Consider feature maps as multidimensional i.i.d. random
variables.

I Use multidimensional CLT as number of channels Cl →∞.
I If you are interested only in variance at the final layer, you

only need variance from the previous layers, because
weights are independent and zero centered:

K (`+1)
µ

(
X,X′

)
=C

[
A(`+1)

i,µ (X),A(`+1)
i,µ

(
X′
)]

=

σ2
b +

C(n)∑
j=1

H(`)D(`)∑
ν=1

σ2
wE
[
φ
(

A(l)
j,ν(X)

)
φ
(

A(`)
j,ν

(
X′
))]

(3)



Neural Tangent Kernel
Kernel Gradient Descent

Sample-then-optimize approach:

I Associate a choice of parameters with a function f ∈ F .
I Inner product

〈f ,g〉pin = Ex∼pin

[
f (x)T g(x)

]
(4)

I Kernel product

〈f ,g〉K := Ex ,x ′∼pin

[
f (x)T K

(
x , x ′

)
g
(
x ′
)]

(5)
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Neural Tangent Kernel
Kernel Gradient Descent

I Derivative of a cost function with respect to f

∂ in
f C
∣∣∣
f0

=
〈

d |f0 , ·
〉

pin
(6)

I The Kernel Gradient is defined as

∇K C|f0(x) =
1
N
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j=1

K
(
x , xj

)
d |f0

(
xj
)

(7)

I It leads to the steepest descent

∂tC|f (t) = −
〈

d |f (t) , ∇K C|f (t)

〉
pin

= −
∥∥∥d |f (t)

∥∥∥2

K
(8)
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Neural Tangent Kernel
Optimization with respect to parameters

I Approximate kernel by sampling functions f (p):

E
[
f (p)
k (x)f (p)

k ′
(
x ′
)]

= Kkk ′
(
x , x ′

)
(9)

I Consider linear parametrization:

fθ(t) =
1√
P

P∑
p=1

θp(t)f (p) (10)

I Optimizing the cost with respect to θ is equivalent to kernel
gradient descent with the Neural Tangent Kernel

Θ =
P∑

p=1

∂θp fθ(t) ⊗ ∂θp fθ(t) =
1
P

P∑
p=1

f (p) ⊗ f (p) P→∞−−−−→ K (11)
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Neural Tangent Kernel
Theoretical results

I In the general case parametrization is not linear, therefore
∂θp fθ(t) and Θt depend on θ(t).

I Theorem, [Jacot et al., 2018]: In the infinite-width limit
NTK converges in probability to a determenistic kernel,
thus stays almost constant during training.

I Theorem, [Lee et al., 2019]: For a sufficiently wide neural
network and sufficiently small learning rate the training
trajectory is close the the trajectory of a linearized network:

f lin
t (x) ≡ f0(x) + ∇θf0(x)|θ=θ0

ωt (12)
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Neural Tangent Kernel
Theoretical results

I Theorem, [Lee et al., 2019]: As the width goes to infinity
distribution f lin

t (x) converges to a normal distribution with
mean

µ (XT ) = Θ (XT ,X ) Θ−1
(

I − e−ηΘt
)
Y (13)

which in turn converges to Θ (XT ,X ) Θ−1Y as t →∞.

I Remark: “The distribution resulting from GD training does
not generally correspond to a Bayesian posterior”,
[Lee et al., 2019].
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Neural Tangents

Figure: Training dynamics for an ensemble of finite-width networks
compared with an infinite network, [Novak et al., 2020].
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Figure: Convergence of the Monte Carlo (MC) estimates,
[Novak et al., 2020].



Neural Tangents

Figure: CIFAR-10 classification with varying neural network
architectures, [Novak et al., 2020].



Thank you!
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