
Neural Tangents: Fast and Easy Infinite
Neural Networks in Python

Jevgenija Rudzusika

KTH Royal Institute of Technology

March 24, 2020

Outline
I Gaussian Processes.
I “Deep Neural Networks as Gaussian Processes”, ICLR

2018, [Lee et al., 2018].
I “Deep Convolutional Networks as shallow Gaussian

Processes”, ICLR 2019, [Garriga-Alonso et al., 2019].

I “Neural Tangent Kernel: Convergence and Generalization
in Neural Networks”, NIPS 2018, [Jacot et al., 2018].

I “Wide Neural Networks of Any Depth Evolve as Linear
Models Under Gradient Descent”, NIPS 2019,
[Lee et al., 2019].

I “Neural Tangents: Fast and Easy Infinite Neural Networks
in Python”, ICLR 2020, [Novak et al., 2020].

Outline
I Gaussian Processes.
I “Deep Neural Networks as Gaussian Processes”, ICLR

2018, [Lee et al., 2018].
I “Deep Convolutional Networks as shallow Gaussian

Processes”, ICLR 2019, [Garriga-Alonso et al., 2019].

I “Neural Tangent Kernel: Convergence and Generalization
in Neural Networks”, NIPS 2018, [Jacot et al., 2018].

I “Wide Neural Networks of Any Depth Evolve as Linear
Models Under Gradient Descent”, NIPS 2019,
[Lee et al., 2019].

I “Neural Tangents: Fast and Easy Infinite Neural Networks
in Python”, ICLR 2020, [Novak et al., 2020].

Outline
I Gaussian Processes.
I “Deep Neural Networks as Gaussian Processes”, ICLR

2018, [Lee et al., 2018].
I “Deep Convolutional Networks as shallow Gaussian

Processes”, ICLR 2019, [Garriga-Alonso et al., 2019].

I “Neural Tangent Kernel: Convergence and Generalization
in Neural Networks”, NIPS 2018, [Jacot et al., 2018].

I “Wide Neural Networks of Any Depth Evolve as Linear
Models Under Gradient Descent”, NIPS 2019,
[Lee et al., 2019].

I “Neural Tangents: Fast and Easy Infinite Neural Networks
in Python”, ICLR 2020, [Novak et al., 2020].

Gaussian processes.
I Definition: A Gaussian process is a stochastic process

Y (x), such that for every finite collection of {xi}ni=1 random
variables {Y (xi)}ni=1 have a multivariate normal
distribution.

I Example: Regression

Y (x) = cos(x) + ε (1)

I Inference: Given samples D = {(xi , yi)}ni=1, a posterior
distribution of y = Y (x) at a new point x .

I Prior: Kernel function K (x , x ′) describes a co-variance
between Y (x) and Y (x ′), thus K (x , x) = Var(ε).

Gaussian processes.
I Definition: A Gaussian process is a stochastic process

Y (x), such that for every finite collection of {xi}ni=1 random
variables {Y (xi)}ni=1 have a multivariate normal
distribution.

I Example: Regression

Y (x) = cos(x) + ε (1)

I Inference: Given samples D = {(xi , yi)}ni=1, a posterior
distribution of y = Y (x) at a new point x .

I Prior: Kernel function K (x , x ′) describes a co-variance
between Y (x) and Y (x ′), thus K (x , x) = Var(ε).

Gaussian processes.
I Definition: A Gaussian process is a stochastic process

Y (x), such that for every finite collection of {xi}ni=1 random
variables {Y (xi)}ni=1 have a multivariate normal
distribution.

I Example: Regression

Y (x) = cos(x) + ε (1)

I Inference: Given samples D = {(xi , yi)}ni=1, a posterior
distribution of y = Y (x) at a new point x .

I Prior: Kernel function K (x , x ′) describes a co-variance
between Y (x) and Y (x ′), thus K (x , x) = Var(ε).

Gaussian processes.
I Definition: A Gaussian process is a stochastic process

Y (x), such that for every finite collection of {xi}ni=1 random
variables {Y (xi)}ni=1 have a multivariate normal
distribution.

I Example: Regression

Y (x) = cos(x) + ε (1)

I Inference: Given samples D = {(xi , yi)}ni=1, a posterior
distribution of y = Y (x) at a new point x .

I Prior: Kernel function K (x , x ′) describes a co-variance
between Y (x) and Y (x ′), thus K (x , x) = Var(ε).

Gaussian processes.
Bayesian inference.

I P(y |x ,D) ∼ N (µ̂, K̂)

µ̂ = Kx ,D(KD,D + σ2
ε In)−1y

K̂ = Kx ,x − Kx ,D(KD,D + σ2
ε In)−1K T

x ,D
(2)

Figure: σ2
ε = 0, [Wikipedia contributors, 2020]

Neural Network GP
Fully-connected layers

I z l−1(x), x l(x) are pre/post-activation features for a hidden
layer l

z l
i (x) = b1

i +

Nl∑
j=1

W l
ijx

l
j (x), x l

j (x) = φ
(

z l−1
j

)

I bl
j ∼ N (0, σ2

b),W l
i,j ∼ N (0, σ

2
w

Nl
), thus x l

j (x) and z l
j (x) - i.i.d.

I By the CLT, {z l
i } ∼ GP(0,K l) as Nl →∞.

Neural Network GP
Fully-connected layers

I z l−1(x), x l(x) are pre/post-activation features for a hidden
layer l

z l
i (x) = b1

i +

Nl∑
j=1

W l
ijx

l
j (x), x l

j (x) = φ
(

z l−1
j

)

I bl
j ∼ N (0, σ2

b),W l
i,j ∼ N (0, σ

2
w

Nl
), thus x l

j (x) and z l
j (x) - i.i.d.

I By the CLT, {z l
i } ∼ GP(0,K l) as Nl →∞.

Neural Network GP
Fully-connected layers

K l (x , x ′) ≡ E
[
z l

i (x)z l
i
(
x ′
)]

= σ2
b + σ2

wEz l−1
i ∼GP(0,K l−1)

[
φ
(

z l−1
i (x)

)
φ
(

z l−1
i

(
x ′
))]

= σ2
b + σ2

wFφ
(

K l−1 (x , x ′) ,K l−1(x , x),K l−1 (x ′, x ′))
K 0 (x , x ′) = E

[
z0

j (x)z0
j
(
x ′
)]

= σ2
b + σ2

w

(
x · x ′

din

)

Neural Network GP
Fully-connected layers

Figure: Experimental results from [Lee et al., 2018].

Neural Network GP
Convolutional layers

I Consider feature maps as multidimensional i.i.d. random
variables.

I Use multidimensional CLT as number of channels Cl →∞.
I If you are interested only in variance at the final layer, you

only need variance from the previous layers, because
weights are independent and zero centered:

K (`+1)
µ

(
X,X′

)
=C

[
A(`+1)

i,µ (X),A(`+1)
i,µ

(
X′
)]

=

σ2
b +

C(n)∑
j=1

H(`)D(`)∑
ν=1

σ2
wE
[
φ
(

A(l)
j,ν(X)

)
φ
(

A(`)
j,ν

(
X′
))]

(3)

Neural Network GP
Convolutional layers

I Consider feature maps as multidimensional i.i.d. random
variables.

I Use multidimensional CLT as number of channels Cl →∞.

I If you are interested only in variance at the final layer, you
only need variance from the previous layers, because
weights are independent and zero centered:

K (`+1)
µ

(
X,X′

)
=C

[
A(`+1)

i,µ (X),A(`+1)
i,µ

(
X′
)]

=

σ2
b +

C(n)∑
j=1

H(`)D(`)∑
ν=1

σ2
wE
[
φ
(

A(l)
j,ν(X)

)
φ
(

A(`)
j,ν

(
X′
))]

(3)

Neural Network GP
Convolutional layers

I Consider feature maps as multidimensional i.i.d. random
variables.

I Use multidimensional CLT as number of channels Cl →∞.
I If you are interested only in variance at the final layer, you

only need variance from the previous layers, because
weights are independent and zero centered:

K (`+1)
µ

(
X,X′

)
=C

[
A(`+1)

i,µ (X),A(`+1)
i,µ

(
X′
)]

=

σ2
b +

C(n)∑
j=1

H(`)D(`)∑
ν=1

σ2
wE
[
φ
(

A(l)
j,ν(X)

)
φ
(

A(`)
j,ν

(
X′
))]

(3)

Neural Tangent Kernel
Kernel Gradient Descent

Sample-then-optimize approach:

I Associate a choice of parameters with a function f ∈ F .
I Inner product

〈f ,g〉pin = Ex∼pin

[
f (x)T g(x)

]
(4)

I Kernel product

〈f ,g〉K := Ex ,x ′∼pin

[
f (x)T K

(
x , x ′

)
g
(
x ′
)]

(5)

Neural Tangent Kernel
Kernel Gradient Descent

Sample-then-optimize approach:
I Associate a choice of parameters with a function f ∈ F .

I Inner product

〈f ,g〉pin = Ex∼pin

[
f (x)T g(x)

]
(4)

I Kernel product

〈f ,g〉K := Ex ,x ′∼pin

[
f (x)T K

(
x , x ′

)
g
(
x ′
)]

(5)

Neural Tangent Kernel
Kernel Gradient Descent

Sample-then-optimize approach:
I Associate a choice of parameters with a function f ∈ F .
I Inner product

〈f ,g〉pin = Ex∼pin

[
f (x)T g(x)

]
(4)

I Kernel product

〈f ,g〉K := Ex ,x ′∼pin

[
f (x)T K

(
x , x ′

)
g
(
x ′
)]

(5)

Neural Tangent Kernel
Kernel Gradient Descent

Sample-then-optimize approach:
I Associate a choice of parameters with a function f ∈ F .
I Inner product

〈f ,g〉pin = Ex∼pin

[
f (x)T g(x)

]
(4)

I Kernel product

〈f ,g〉K := Ex ,x ′∼pin

[
f (x)T K

(
x , x ′

)
g
(
x ′
)]

(5)

Neural Tangent Kernel
Kernel Gradient Descent

I Derivative of a cost function with respect to f

∂ in
f C
∣∣∣
f0

=
〈

d |f0 , ·
〉

pin
(6)

I The Kernel Gradient is defined as

∇K C|f0(x) =
1
N

N∑
j=1

K
(
x , xj

)
d |f0

(
xj
)

(7)

I It leads to the steepest descent

∂tC|f (t) = −
〈

d |f (t) , ∇K C|f (t)

〉
pin

= −
∥∥∥d |f (t)

∥∥∥2

K
(8)

Neural Tangent Kernel
Kernel Gradient Descent

I Derivative of a cost function with respect to f

∂ in
f C
∣∣∣
f0

=
〈

d |f0 , ·
〉

pin
(6)

I The Kernel Gradient is defined as

∇K C|f0(x) =
1
N

N∑
j=1

K
(
x , xj

)
d |f0

(
xj
)

(7)

I It leads to the steepest descent

∂tC|f (t) = −
〈

d |f (t) , ∇K C|f (t)

〉
pin

= −
∥∥∥d |f (t)

∥∥∥2

K
(8)

Neural Tangent Kernel
Kernel Gradient Descent

I Derivative of a cost function with respect to f

∂ in
f C
∣∣∣
f0

=
〈

d |f0 , ·
〉

pin
(6)

I The Kernel Gradient is defined as

∇K C|f0(x) =
1
N

N∑
j=1

K
(
x , xj

)
d |f0

(
xj
)

(7)

I It leads to the steepest descent

∂tC|f (t) = −
〈

d |f (t) , ∇K C|f (t)

〉
pin

= −
∥∥∥d |f (t)

∥∥∥2

K
(8)

Neural Tangent Kernel
Optimization with respect to parameters

I Approximate kernel by sampling functions f (p):

E
[
f (p)
k (x)f (p)

k ′
(
x ′
)]

= Kkk ′
(
x , x ′

)
(9)

I Consider linear parametrization:

fθ(t) =
1√
P

P∑
p=1

θp(t)f (p) (10)

I Optimizing the cost with respect to θ is equivalent to kernel
gradient descent with the Neural Tangent Kernel

Θ =
P∑

p=1

∂θp fθ(t) ⊗ ∂θp fθ(t) =
1
P

P∑
p=1

f (p) ⊗ f (p) P→∞−−−−→ K (11)

Neural Tangent Kernel
Optimization with respect to parameters

I Approximate kernel by sampling functions f (p):

E
[
f (p)
k (x)f (p)

k ′
(
x ′
)]

= Kkk ′
(
x , x ′

)
(9)

I Consider linear parametrization:

fθ(t) =
1√
P

P∑
p=1

θp(t)f (p) (10)

I Optimizing the cost with respect to θ is equivalent to kernel
gradient descent with the Neural Tangent Kernel

Θ =
P∑

p=1

∂θp fθ(t) ⊗ ∂θp fθ(t) =
1
P

P∑
p=1

f (p) ⊗ f (p) P→∞−−−−→ K (11)

Neural Tangent Kernel
Optimization with respect to parameters

I Approximate kernel by sampling functions f (p):

E
[
f (p)
k (x)f (p)

k ′
(
x ′
)]

= Kkk ′
(
x , x ′

)
(9)

I Consider linear parametrization:

fθ(t) =
1√
P

P∑
p=1

θp(t)f (p) (10)

I Optimizing the cost with respect to θ is equivalent to kernel
gradient descent with the Neural Tangent Kernel

Θ =
P∑

p=1

∂θp fθ(t) ⊗ ∂θp fθ(t) =
1
P

P∑
p=1

f (p) ⊗ f (p) P→∞−−−−→ K (11)

Neural Tangent Kernel
Theoretical results

I In the general case parametrization is not linear, therefore
∂θp fθ(t) and Θt depend on θ(t).

I Theorem, [Jacot et al., 2018]: In the infinite-width limit
NTK converges in probability to a determenistic kernel,
thus stays almost constant during training.

I Theorem, [Lee et al., 2019]: For a sufficiently wide neural
network and sufficiently small learning rate the training
trajectory is close the the trajectory of a linearized network:

f lin
t (x) ≡ f0(x) + ∇θf0(x)|θ=θ0

ωt (12)

Neural Tangent Kernel
Theoretical results

I In the general case parametrization is not linear, therefore
∂θp fθ(t) and Θt depend on θ(t).

I Theorem, [Jacot et al., 2018]: In the infinite-width limit
NTK converges in probability to a determenistic kernel,
thus stays almost constant during training.

I Theorem, [Lee et al., 2019]: For a sufficiently wide neural
network and sufficiently small learning rate the training
trajectory is close the the trajectory of a linearized network:

f lin
t (x) ≡ f0(x) + ∇θf0(x)|θ=θ0

ωt (12)

Neural Tangent Kernel
Theoretical results

I In the general case parametrization is not linear, therefore
∂θp fθ(t) and Θt depend on θ(t).

I Theorem, [Jacot et al., 2018]: In the infinite-width limit
NTK converges in probability to a determenistic kernel,
thus stays almost constant during training.

I Theorem, [Lee et al., 2019]: For a sufficiently wide neural
network and sufficiently small learning rate the training
trajectory is close the the trajectory of a linearized network:

f lin
t (x) ≡ f0(x) + ∇θf0(x)|θ=θ0

ωt (12)

Neural Tangent Kernel
Theoretical results

I Theorem, [Lee et al., 2019]: As the width goes to infinity
distribution f lin

t (x) converges to a normal distribution with
mean

µ (XT) = Θ (XT ,X) Θ−1
(

I − e−ηΘt
)
Y (13)

which in turn converges to Θ (XT ,X) Θ−1Y as t →∞.

I Remark: “The distribution resulting from GD training does
not generally correspond to a Bayesian posterior”,
[Lee et al., 2019].

Neural Tangent Kernel
Theoretical results

I Theorem, [Lee et al., 2019]: As the width goes to infinity
distribution f lin

t (x) converges to a normal distribution with
mean

µ (XT) = Θ (XT ,X) Θ−1
(

I − e−ηΘt
)
Y (13)

which in turn converges to Θ (XT ,X) Θ−1Y as t →∞.
I Remark: “The distribution resulting from GD training does

not generally correspond to a Bayesian posterior”,
[Lee et al., 2019].

Neural Tangents

Figure: Training dynamics for an ensemble of finite-width networks
compared with an infinite network, [Novak et al., 2020].

Neural Tangents

Figure: Convergence of the Monte Carlo (MC) estimates,
[Novak et al., 2020].

Neural Tangents

Figure: CIFAR-10 classification with varying neural network
architectures, [Novak et al., 2020].

Thank you!

References I

Garriga-Alonso, A., Rasmussen, C. E., and Aitchison, L.
(2019).
Deep convolutional networks as shallow gaussian
processes.
In International Conference on Learning Representations.

Jacot, A., Gabriel, F., and Hongler, C. (2018).
Neural tangent kernel: Convergence and generalization in
neural networks.
In Advances in neural information processing systems,
pages 8571–8580.

Lee, J., Sohl-dickstein, J., Pennington, J., Novak, R.,
Schoenholz, S., and Bahri, Y. (2018).
Deep neural networks as gaussian processes.
In International Conference on Learning Representations.

References II

Lee, J., Xiao, L., Schoenholz, S., Bahri, Y., Novak, R.,
Sohl-Dickstein, J., and Pennington, J. (2019).
Wide neural networks of any depth evolve as linear models
under gradient descent.
In Advances in neural information processing systems,
pages 8570–8581.

Novak, R., Xiao, L., Hron, J., Lee, J., Alemi, A. A.,
Sohl-Dickstein, J., and Schoenholz, S. S. (2020).
Neural tangents: Fast and easy infinite neural networks in
python.
In International Conference on Learning Representations.

References III

Wikipedia contributors (2020).
Gaussian process — Wikipedia, the free encyclopedia.
https://en.wikipedia.org/w/index.php?title=
Gaussian_process&oldid=944998270.
[Online; accessed 23-March-2020].

https://en.wikipedia.org/w/index.php?title=Gaussian_process&oldid=944998270
https://en.wikipedia.org/w/index.php?title=Gaussian_process&oldid=944998270

