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Domain Adaptation

Supervised Learning:

> Let X denote some input space and ) some output space and that we are interested in
fitting a classifier n : X — ) on some finite-sized sample S C X’ x ) of some underlying
(joint) distribution Py« defined on X x V.

» Find n that minimizes expected loss w.r.t to some loss function £(-,-) and Pxxy

. iid. . S
» Common assumption: si,...,Sm ~ Pxxy, to enable learning on finite-sized samples

Domain Adaption

» \We assume that we are ultimately interested in applying 7 on a different (but related)
distribution P’y v,
» Sampling s{,...,s, i Pyxy and training 7 directly is presumed to be difficult, due to:
» Complicated acquisition protocol
» Scarcity of labeled data
> Label noise

» Idea: Also use samples from Pﬁcxy in training process to accomplish objective




Domain Adaption [cont.]

Assume S = {s1,...,Sn} ~ Pxxy resp. S'={s1,..., s} ~ Phyy
Disciplines:

» Unsupervised: S is labeled, S’ is not

» Semi-supervised: S is labeled, S’ contains a few labeled examples
» Supervised: Both S and S’ are labeled

Common Representation Space Architectures

» Most common case (for F(") = F,0...0 F):
1. Fixsome i€ {1,...,n}

2. Define random variables Z = F()(X) and Z' = F()(X') for X ~ Px resp. X' ~ P4
3. Incentivize Z and Z’ to become indistinguishable

» Adversarial learning: Let discriminator decide whether output of F() comes from source
or target distribution




Motivation of Paper

» Task: Semantic segmentation
» Source: GTA-V, SYNTHIA
» Target: CityScapes, Oxford-RobotCar
» Main challenge (Tran et al., 2019): It is difficult to capture all modes of the data
distribution

» Authors’ hypothesis: Discriminators that have not learned to capture a majority of the
data distribution’s modes can only evaluate low-level differences

> Suggested solution: Enforce the discriminator to learn many modes in an unsupervised
manner

» Implication: Novel discriminator can be plugged into other architectures to enhance their
capabilities




Related Work

> Segmentation:
> Pixel-Level:
1. CyCADA, Hoffman et al., 217: Leverages CycleGAN to align domains on the pixel-level.
Trained encoder-decoder pairs can then translate between domains.
> Feature-Level:
1. FCNs in the Wild, Hoffman et al., 2016: Both feature-level & category-specific alignment
» Output-Level:

1. ROAD, Chen et al., 2018: Model-destillation driven approach where the segmentation in the
target domain should follow the one of a pre-trained network
2. OUTPUT SPACE, Tsaj et al., 2018: Aligns probability output distributions between source
and target domain
» Pseudo-Label Re-Training:

1. CBST, Zou et al., 2018: Alternate between generating pseudo-labels on target data and
re-training the network using these newly-generated labels. No adversarial training.
Pseudo-labels are target-domain decisions that the net is confident about.




Idea

Step A: Patch Mode Discovery
Source Data (w/ labels) Clustered Space

Patch
Clustering ‘ #

Step B: Patch Alignment _ Projected
Feature Space
Target Data (no labels)
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Patch Mode Discovery

Suppose that h € RZN*2w)xC denotes some arbitrary (one-hot encoded) patch extracted
from the ground-truth segmentation (covering C classes) of a training set image:

> Mode discovery typically requires a supervised setting and thus labels

> How to get one label for each patch?

> Unsupervised representation learning: Does not guarantee a semantic separation of patches
» Histogram-based:

hi1 hio
hy:1 hyp

2. Compute normalized histogram &; ; € [0,1]¢ for each h;; € R"***¢

1. Partition h into 2 x 2 grid of vectors { } along height and width dimension

3. Gather histograms to get £ = El’l 51’2} € [0,1]2x2x¢
21 822

» Perform K-Means on resulting histograms to discover K modes
» Map each patch to index of closest cluster
» If we have a label map Y; of u x v patches we get a new cluster-indexed map
M(Y:) €{0,...,K —1}uxv
» We add a classification head that acts on the segmentation output and tries to predict the
logits Fy € RYXV*K of the patches’ cluster indices (i.e. ['(Y;))




Adversarial Alignment

> What we have now:
> A clustered space (of dim. C) as well as K modes of the patches of the label maps
» A K-dimensional space where the j-th coordinate is equal to one whenever the i-th cluster is
the closest one
> Idea: Align the representations of the target patches with the K modes of the clustered
space = K-ary classification
> Let F; € R“¥V*K denote the predicted logits from the classification head (as defined on
the last slide) for some target example:
» Give F; and F; to a discriminator and let it decide from where the examples are coming from
(i.e. source vs. target)
P Loss components:

» Segmentation loss: L

» Patch cluster index loss: L4 (K-way cross-entropy)

> Adversarial source vs. target loss: L.qy (binary cross-entropy)
» Combine linearly w.r.t weights Ay, Aagv




Network Architecture

» Segmentation network: DeepLab-v2 w. ResNet-101
» Patch cluster-index network:

> Gets the output G(/) € RFXWXC of the segmentation network as input
» Has to output logits of shape U x V x K

» Use global average pooling to get intermediate size U x V x C

» Apply two conv. layers where the last layer produces K output channels

» Discriminator

» Input is of shape K
> MLP of three layers (256, 512, 1) w. Leaky-ReLU activations




Overview
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Implementation Details

> Optimizer:
» Discriminator: Adam

> Initial learning rate: 107*
» Momentum: 0.99

» Generator: SGD

> Initial learning rate: 2.5-107*
> Momentum: 0.9
> Weight decay: 5-10~*

> Learning rate schedule: Polynomial decay (o = 0.9)
> Hyperparameters:

» Patch cluster-index loss: Ay = 1072
» Adversarial loss: A\agy = 5-107%
» Number of clusters: K =50




Experiments

Datasets
» GTA-V: Car rides extracted from computer game GTA-V (synthetic)
> Cityscapes: Real road-scene images [labeled]
P> SYNTHIA: Frames are rendered given a highly-realistic computer-generated city
>

Oxford RobotCar: Contains 100 repetitions of a consistent route through Oxford, UK,
captured over a period of over a year [unlabeled]

Evaluation
» Intersection-over-Union [loU]




Ablation Study

Loss Functions

GTAS5 — Cityscapes

Method Loss Func. mloU
Without Adaptation Ly 36.6
Discriminative Feature L. + L4 38.8
Patch-level Alignment L+ Lq + Lagw 413

Outcome
Performance increases consistently




Experiments

Impact of Cluster Number K
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No noticeable effect




t-SNE

Impact of Cluster Number K

Without Patch-level Alignment Our Method

Outcome
Suggested method enables a good source/target overlap while reference method does not




SOTA-Comparisons

GTA-V:
GTAS — Cityscapes
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Method E§ ¥ E § 3 2 2 2 ¢ 5 ¥ 2 T OE EGEE ZE omwu
FCNs inthe Wild [17] 704 324 62.1 149 54 109 142 27 792 213 646 441 42 704 80 73 00 35 0.0 271
CDA [47] 749 220 71.7 6.0 119 84 163 11.1 757 133 66.5 38.0 9.3 552 188 189 0.0 16.8 146 289
ST [51] 83.8 174 72.1 143 29 165 160 6.8 81.4 242 472 407 7.6 71.7 102 76 05 11.1 09 281
CBST [51] 66.7 26.8 73.7 148 9.5 283 259 10.1 755 157 51.6 47.2 62 719 37 22 54 189 324 309
CyCADA [16] 83.5 38.3 76.4 20.6 16.5 22.2 26.2 21.9 804 287 65.7 494 42 746 16.0 266 2.0 80 0.0 348
Output Space [40] 87.3 29.8 78.6 21.1 18.2 225 21.5 11.0 79.7 29.6 713 468 6.5 80.1 23.0 269 0.0 10.6 0.3 350
Ours (VGG-16) 87.3 357 79.5 32.0 145 21.5 24.8 13.7 80.4 32.0 70.5 50.5 16.9 81.0 20.8 28.1 4.1 155 4.1 37.5
Without Adaptation  75.8 16.8 77.2 12.5 21.0 25.5 30.1 20.1 81.3 246 70.3 53.8 264 499 17.2 259 6.5 253 36.0 36.6
Feature Space [40] 83.7 27.6 75.5 20.3 199 274 283 274 79.0 284 70.1 55.1 20.2 729 225 357 83 20.6 23.0 393
Road [5] 76.3 36.1 69.6 28.6 22.4 28.6 29.3 148 82.3 353 729 544 17.8 789 27.7 303 4.0 249 126 394
Output Space [40] 86.5 259 79.8 22.1 20.0 23.6 33.1 21.8 81.8 259 759 57.3 26.2 76.3 29.8 32.1 7.2 29.5 325 414
Ours (ResNet-101) 92.3 51.9 82.1 29.2 25.1 24.5 33.8 33.0 82.4 32.8 82.2 58.6 27.2 84.3 334 46.3 2.2 29.5 323 46.5




SOTA-Comparisons

SYNTHIA:
SYNTHIA — Cityscapes
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Method § 3 B £ 22 2 % ¢ ZF &2 2% 8§ 2 E Z moU mou
FCNs inthe Wild [17] 11.5 19.6 30.8 4.4 0.0 203 0.1 1.7 423 687 512 38 540 32 02 06 202 221
CDA [47] 652 26.1 749 01 05 107 37 30 76.1 70.6 47.1 82 432 207 0.7 13.1 290 348
Cross-City [6] 627 256 783 - - - 12 54 813 810 374 64 635 161 12 46 - 357
ST [51] 02 145 538 1.6 00 189 09 78 722 803 481 63 677 47 02 45 239 278
Output Space [40] 789 292 755 - - - 01 48 726 767 434 88 711 160 36 84 - 37.6
Ours (VGG-16) 726 295 772 35 04 210 14 79 733 79.0 457 145 694 196 74 165 33.7 396
Without Adaptation ~ 55.6 23.8 746 92 02 244 6.1 121 748 79.0 553 19.1 39.6 233 13.7 250 335 38.6
Feature Space [40] 624 219 763 115 0.1 249 1.7 114 753 809 53.7 185 59.7 13.7 206 240 354 40.8
Output Space [40] 792 372 788 105 03 251 99 10,5 782 80.5 535 196 67.0 295 21.6 313 39.5 459
Ours (ResNet-101) 824 38.0 786 87 0.6 260 39 111 755 84.6 535 21.6 714 32.6 193 3.7 40.0 46.5




Open Review Opinions

> Most reviewers emphasize that the paper is clearly structured and technically sound

v

Some criticize that the related-work section is incomplete

» Others state that the results are not good enough:

- Although consistently improving over Tsai et al., CVPR18, the introduced methods does not show very significant gain in multiple experiments. On
SYNTHIA-to-City, only 0.4 mIoU gain is obtained. In addition, while the proposed method is empirically effective, it is largely task-specific and restricted
to domain adaptation for scene parsing only. It seems difficult to generalize the same method to other domain adaptation tasks. The limitation on the
performance gain and generalizability somehow reduced the contribution from this work to the community.

> Two reviewers criticize that the patch-level alignment idea is not entirely new:

- The idea of using patches in domain adaptation is not completely new. ROAD: Reality Oriented Adaptation for Semantic Segmentation of Urban
Scenes, CVPR 2018 also uses the patch level information to help domain adaptation. Although the ideas are not entirely identical, this paper should at
least cite and compare this work.

- The idea of relying on patches to model the structure is not new. This was achieved by Chen et al., CVPR 2018, "ROAD: Reality Oriented Adaptation...".
In this work, however, the patches were assumed to be in correspondence, which leaves some novelty to this submission, although reduced.

> Most of the authors did not like the presumptuous use of the word disentanglement:

» Was removed from the final version eventually and renamed to “discriminative” (e.g. in the
title)




Conclusion

> Novelty:

» Patch-level alignment: Ablation study shows that this is an advancement in terms of
performance albeit novelty might only be due to using K-Means

» Technically sound paper that features state-of-the-art performance on common datasets
P> Using K-Means to structure the latent space is an interesting idea

P> There is no implementation available




