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Domain Adaptation

Supervised Learning:

I Let X denote some input space and Y some output space and that we are interested in
fitting a classifier η : X → Y on some finite-sized sample S ⊂ X × Y of some underlying
(joint) distribution PX×Y defined on X × Y.

I Find η that minimizes expected loss w.r.t to some loss function `(·, ·) and PX×Y
I Common assumption: s1, . . . , sm

i.i.d.∼ PX×Y , to enable learning on finite-sized samples

Domain Adaption

I We assume that we are ultimately interested in applying η on a different (but related)
distribution P ′X×Y

I Sampling s ′1, . . . , s
′
m

i.i.d.∼ P ′X×Y and training η directly is presumed to be difficult, due to:
I Complicated acquisition protocol
I Scarcity of labeled data
I Label noise

I Idea: Also use samples from P ′X×Y in training process to accomplish objective



Domain Adaption [cont.]

Assume S = {s1, . . . , sn} ∼ PX×Y resp. S ′ = {s ′1, . . . , s ′m} ∼ P ′X×Y
Disciplines:

I Unsupervised: S is labeled, S ′ is not

I Semi-supervised: S is labeled, S ′ contains a few labeled examples

I Supervised: Both S and S ′ are labeled

Common Representation Space Architectures

I Most common case (for F (n) = Fn ◦ . . . ◦ F1):

1. Fix some i ∈ {1, . . . , n}
2. Define random variables Z = F (i)(X ) and Z ′ = F (i)(X ′) for X ∼ PX resp. X ′ ∼ P ′X
3. Incentivize Z and Z ′ to become indistinguishable

I Adversarial learning: Let discriminator decide whether output of F (i) comes from source
or target distribution



Motivation of Paper

I Task: Semantic segmentation
I Source: GTA-V, SYNTHIA
I Target: CityScapes, Oxford-RobotCar

I Main challenge (Tran et al., 2019): It is difficult to capture all modes of the data
distribution

I Authors’ hypothesis: Discriminators that have not learned to capture a majority of the
data distribution’s modes can only evaluate low-level differences

I Suggested solution: Enforce the discriminator to learn many modes in an unsupervised
manner

I Implication: Novel discriminator can be plugged into other architectures to enhance their
capabilities



Related Work

I Segmentation:
I Pixel-Level:

1. CyCADA, Hoffman et al., 217: Leverages CycleGAN to align domains on the pixel-level.
Trained encoder-decoder pairs can then translate between domains.

I Feature-Level:

1. FCNs in the Wild, Hoffman et al., 2016: Both feature-level & category-specific alignment

I Output-Level:

1. ROAD, Chen et al., 2018: Model-destillation driven approach where the segmentation in the
target domain should follow the one of a pre-trained network

2. OUTPUT SPACE, Tsai et al., 2018: Aligns probability output distributions between source
and target domain

I Pseudo-Label Re-Training:

1. CBST, Zou et al., 2018: Alternate between generating pseudo-labels on target data and
re-training the network using these newly-generated labels. No adversarial training.
Pseudo-labels are target-domain decisions that the net is confident about.



Idea



Overview



Patch Mode Discovery

Suppose that h ∈ R(2h)×(2w)×C denotes some arbitrary (one-hot encoded) patch extracted
from the ground-truth segmentation (covering C classes) of a training set image:

I Mode discovery typically requires a supervised setting and thus labels
I How to get one label for each patch?

I Unsupervised representation learning: Does not guarantee a semantic separation of patches
I Histogram-based:

1. Partition h into 2× 2 grid of vectors

[
h1,1 h1,2

h2,1 h2,2

]
along height and width dimension

2. Compute normalized histogram ξi,j ∈ [0, 1]C for each hi,j ∈ Rh×w×C

3. Gather histograms to get ξ =

[
ξ1,1 ξ1,2

ξ2,1 ξ2,2

]
∈ [0, 1]2×2×C

I Perform K-Means on resulting histograms to discover K modes
I Map each patch to index of closest cluster

I If we have a label map Ys of u × v patches we get a new cluster-indexed map
Γ(Ys) ∈ {0, . . . ,K − 1}u×v

I We add a classification head that acts on the segmentation output and tries to predict the
logits Fs ∈ Ru×v×K of the patches’ cluster indices (i.e. Γ(Ys))



Adversarial Alignment

I What we have now:
I A clustered space (of dim. C ) as well as K modes of the patches of the label maps
I A K -dimensional space where the i-th coordinate is equal to one whenever the i-th cluster is

the closest one

I Idea: Align the representations of the target patches with the K modes of the clustered
space =⇒ K -ary classification

I Let Ft ∈ Ru×v×K denote the predicted logits from the classification head (as defined on
the last slide) for some target example:
I Give Fs and Ft to a discriminator and let it decide from where the examples are coming from

(i.e. source vs. target)

I Loss components:
I Segmentation loss: Ls

I Patch cluster index loss: Ld (K -way cross-entropy)
I Adversarial source vs. target loss: Ladv (binary cross-entropy)
I Combine linearly w.r.t weights λd , λadv



Network Architecture

I Segmentation network: DeepLab-v2 w. ResNet-101

I Patch cluster-index network:
I Gets the output G (I ) ∈ RH×W×C of the segmentation network as input
I Has to output logits of shape U × V × K
I Use global average pooling to get intermediate size U × V × C
I Apply two conv. layers where the last layer produces K output channels

I Discriminator
I Input is of shape K
I MLP of three layers (256, 512, 1) w. Leaky-ReLU activations



Overview



Implementation Details

I Optimizer:
I Discriminator: Adam

I Initial learning rate: 10−4

I Momentum: 0.99

I Generator: SGD
I Initial learning rate: 2.5 · 10−4

I Momentum: 0.9
I Weight decay: 5 · 10−4

I Learning rate schedule: Polynomial decay (α = 0.9)

I Hyperparameters:
I Patch cluster-index loss: λd = 10−2

I Adversarial loss: λadv = 5 · 10−4

I Number of clusters: K = 50



Experiments

Datasets
I GTA-V: Car rides extracted from computer game GTA-V (synthetic)

I Cityscapes: Real road-scene images [labeled]

I SYNTHIA: Frames are rendered given a highly-realistic computer-generated city

I Oxford RobotCar: Contains 100 repetitions of a consistent route through Oxford, UK,
captured over a period of over a year [unlabeled]

Evaluation
I Intersection-over-Union [IoU]



Ablation Study

Loss Functions

Outcome
Performance increases consistently



Experiments

Impact of Cluster Number K

Outcome
No noticeable effect



t-SNE

Impact of Cluster Number K

Outcome
Suggested method enables a good source/target overlap while reference method does not



SOTA-Comparisons

GTA-V:



SOTA-Comparisons

SYNTHIA:



Open Review Opinions

I Most reviewers emphasize that the paper is clearly structured and technically sound

I Some criticize that the related-work section is incomplete

I Others state that the results are not good enough:

I Two reviewers criticize that the patch-level alignment idea is not entirely new:

I Most of the authors did not like the presumptuous use of the word disentanglement:
I Was removed from the final version eventually and renamed to “discriminative” (e.g. in the

title)



Conclusion

I Novelty:
I Patch-level alignment: Ablation study shows that this is an advancement in terms of

performance albeit novelty might only be due to using K-Means

I Technically sound paper that features state-of-the-art performance on common datasets

I Using K-Means to structure the latent space is an interesting idea

I There is no implementation available


