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Invariance to Transformations

e Pose-invariant classification. Recognize an object
category regardless of the object translation, rotation, and
scale.

* Pose regression. Detect an object and estimate its
translation, rotation, and scale.

e Detection. Find an object location (center), without
estlmatmg Its orlentatlon and scale




Invariance and Equivariance

e Consider some
transformation,
like rotation.

 We would like object
classification to be
Invariant to rotation.

* \We would like object
detection to be
equivariant to rotation.




The Problem

Input space: X
Output space: Y

Consider a transformation t acting on the input
and output:

t=(t,,t,)€T
t X—>X
t,:Y oY

We want to learn a predictor f(x,w) that is
iInvariant or equivariant to the transformation t:

fltyx;w)=f(x;w) invariance (tyzl)
fltyx;w)=t, f(x;w) equivariance



The Problem

* Most of the time we do not have enough
training data, representing all possible
transformations.



One Approach

» Can generate more training data by
transforming the original data.

 How many samples should be generated? How
densely? What samples are relevant?



Another Approach

* Could explicitly model and estimate
transformations as latent variables.

* Learning problem becomes non-convex.
Inference might be slower.



Their Approach

 Generalize Structured SVM to incorporate
iInvariance and equivariance into a convex
training procedure.

 Removes the need for ad-hoc sampling
strategies. Only generates the virtual samples

that are necessary.

* |Inference does not require the estimate of latent
variables.



Toy Example

Assuming rotation invariance

X=R’
Y=\r, g, bj

Gradually enforce invariance to larger rotations —



Standard Structured SVM

 Let X and Y be the input and output and let Q,
and Q) be their sample spaces. These can be

ANY spaces, not just integers or real vector
spaces.

« A feature function W is used to map a pair from
these complicated spaces to something we can
compute with:

¥:Q,xQ,—R*



Standard Structured SVM

A classifier described by a vector w predicts a
class by solving

f(x;o)=argmax o-¥(x,y)

y

* This imposes a restriction on W



Standard Structured SVM

During training the STRUCTURE of the output

space is taking into account by defining a loss
function

A:Q,XQ, >R

which quantifies the loss of predicting y_when
the true output is y. It should fulfill

Aly,y,)=0
Aly,y,)=0 iff y=y,

A should thus reflect the quantity which
measures how well the classifier performs.



Standard Structured SVM

. Given a training set (x.,y.)...(X.,y,) of “only

positives” and a regularization constant C a
classifier w is trained by solving the convex
optimization problem:

min [0l +C X max(A(y,, ) +o-W(x,, »)=0-W(x, »,)

y

3

Search for difficult classifications



Their Generalization of S-SVM

Standard S-SVM:
min |0l +C 2 max(A(y, y) + o¥(x, y) — o¥(x,,,)

y

Transformation equivariant generalization:

min (ol +C 2 max(A(t, y,, y)+o- Wty x,, y)=0- ¥ty x,,1,7,))

n y,t

When looking for the difficult classifications
we search over all possible equivariant
variations of input and output.



Training

* The problem can be optimized using standard
S-SVM solvers.

* These solvers handle the large number of
constraints by generating the necessary ones
on the fly.

* This corresponds to generating relevant virtual
training data.



Advantages

* Principled approach to the generation of
relevant virtual training data.

e Training is convex and no more expensive than
standard Structured SVM and latent SVM.

* Inference is faster than latent SVM, since the
latent variable, corresponding to the
transformation, is not estimated.



Experiment 1
Rotation Equivariant Object Detection

Let O(x,y) be the HOG-descriptor of a block
of 7x7 HOG-cells at position y in the image x.

A linear HOG model is not sufficient to
capture arbitrary object rotations.

They use something they call “slot kernel”.

The cluster the HOG-space into Q=18
clusters.

The total feature function is the outer product:

‘P(x,y)=<|>(x, y)eg(q)(x,y))



Aerial car detection.
30 images having a
total of 1000 cars with
different rotations.
Unclear division of
training and test data.
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Motion as Natural Transformations

« Consider pedestrian detection in video.

* Training data consists of many sequences of moving
persons.

 The frames from the same sequence are highly
correlated.

e This breaks the assumption of i.i.d. samples, which is
fundamental for most machine learning methods.




Motion as Natural Transformations

» Consider a sequence as a single training
sample, and the different frames in it as
transformations of it.
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Experiment 2
Pedestrian Classification

» DaimlerChrysler pedestrian classification
benchmark. The training data consists of 800
positive images and 5000 negative images, and
two test sets of the same size.

» Consider mirroring and translation by 1 pixel as
transformations.

e Also consider motion as natural
transformations.

* They derive and compare an invariant binary
SVM and an invariant rank SVM.
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Conclusion

* The authors propose the use of their algorithm
instead of ad-hoc sampling strategies or latent
variables to incorporate invariance and
equivariance.
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