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Loss landscape

Goal: study properties of the loss surface and optimisation
» theoretical studies
» given strong assumptions on the network architecture or
data
» characterise the minima found by gradient descent
» hypothesis: sgd brings optimisations in regions with good
minima (global under strong assumptions)
» empirical studies
» study the geometry of the loss landscape to achieve better
optimisers
» attempt to drive optimisation towards wide basins of the
error surface
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Loss landscape

Not covered in this presentation:
» “Flat minima”. Hochreiter, and Schmidhuber. 1997.

» “The loss surface of multilayer networks”. Choromanska,
Henaff, Mathieu, Ben Arous, LeCun. 2015.

» “Entropy-SGD: biasing gradient descent into wide valleys”.
Chaudhari et al. 2016.

» “On large-batch training for deep learning: generalisation
and sharp minima’. Keskar et al, 2016.

» “The loss surface of deep and wide neural networks”.
Nguyen, Q. and Hein, M. 2017.

» “Theoretical insights into the optimisation landscape of

over-parameterised shallow neural networks”.
Soltanolkotabi, Javanmard and Lee. 2018.
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Loss landscape

Theoretical studies

Not covered in this presentation: “The loss surface of deep and
wide neural networks”. Nguyen, Q. and Hein, M. 2017.

» square activation, square loss, rank of weight matrices
maximal in each critical point
» every critical point is a global minimum

“Theoretical insights into the optimisation landscape of
over-parameterised shallow neural networks”. Soltanolkotabi,
Javanmard and Lee. 2018.

» square loss, single layer network, synthetic data

» all local minima are global, independent of labelling of data
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Loss landscape

Empirical studies

Not covered in this presentation:

» “Entropy-SGD: biasing gradient descent into wide valleys”.
Chaudhari et al. 2016.

» “On large-batch training for deep learning: generalisation
and sharp minima”. Keskar et al, 2016.

Based on: “Flat minima”. Hochreiter, and Schmidhuber. 1997.

» in a flat minimum, the loss varies slowly in a relatively lare
neighbourhood.
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Flat minima

Study the loss function in a neighbourhood of a solution.
Conjecture:

» “flat” minima are robust to perturbations in the parameter
space and numerical errors (Hochreiter and Schmidhuber,
1997).

» information theory: low-precision weights encode less
information from the training data

» hence they favour a “simpler” model and tend to generalise
well in practice




Flat minima

Motivation:

» (Chaudhari, 2016) intuitive: wide valleys of the loss contain
close to optimal minima

» (Keskar, 2016) small batch SGD finds wider basins,
observed to generalise better than wider basins found by
large batch methods

» (Hinton and Vancamp, 1993) bayesian argument.



Sharp minima can generalise

Bayesian argument is non-parametric, while the definitions of
flatness proposed in the literature depend on the
parametrisation of the weight space

Any measure expressing how the weights should change, for a
given unit change in the model behaviour, would depend on the
highly non-linear geometry induced on the parameter space by
the network architecture.
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Sharp minima can generalise

Outline of the presentation:

» definitions of flathess
theoretical setting
methodology
theoretical results
connection to empirical studies
open questions
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Sharp minima can generalise

Interesting insights:
» geometry induced by ReLU on the parameter space

» how to control eigenvalues without altering the behaviour
of the model

» for a given minimum with good generalisation power, there
exist another minimum with the same generalisation
performance but arbitrary measure of flatness.



Definitions of flatness

All definitions are given in a neighbourhood of a minimum
0 e 0O.

» c-flatness (Hochreiter and Schmidhuber. 1997)

» c-sharpness (Keskar et al. 2017)

» Second-order measures (Chaudhari et al. 2017)

» Eigenvalues of the Hessian (Chaudhari et al. 2017 and
Keskar et al. 2017)
» spectral norm and trace of the Hessian



Definitions of flatness

e-flatness

0

For e > 0, flatness is defined as the largest connected region in
the param space for which the error is approximately constant
(up to a factor of ¢).



Definitions of flatness

e-sharpness

0
maxgr g, (c,0) (L(0")—L(0))
1+L(0)

For e > 0, Bx(e, 0),




Definitions of flatness

Hessian based measures

» characterise flatness with the eigenvalues of the hessian at
0

» spectral radius (x largest eigenvalue)
» trace norm (o< sum of eigenvalues)



Setting

Framework:
» study deep rectifier networks
» supervised learning setting
» scalar output (scalar loss)

» network learns a scalar function fy : X — R, parametrised
by 6 € ©



Setting

» loss assumed non-negative

» with continuous second order partial derivatives (in a
neigh. of a minimum 6).
» depth-K rectifier network with linear output layer formalised
as:
Y = bretu(Preiu(- - - rei(X - 01)--+) - Ok_1)0k



Methodology

» Loss L(fy(x)) as a function of the weights only, L(9).

» Symmetries induced by non-negative homogeneity of
RelLU:
Va >0, ¢ren(a-X) = a - dreu(X)

e.g. for a 2-layer network

Greu(01 - X) - 02 = breu(X - (aby)) - (0‘_192)

» parameter space: © : (61,02) = (6],...,6} ,6%,...,63)



Methodology

Observational equivalence:
» (6,0) € ©2 are observationally equivalent if

fg(X) = fgl(X) Vx e X

» w.r.t ReLU (1,62) and (afy,a~165) are equivalent.



Methodology

Parameter transformations:
> T, (01,02) — (01191,047192)
» produce obs. equivalent parameters

» the behaviour of the prediction function is not altered
(same output of the network)



Navigating the parameter space

r

Same loss value, network architecture and input x
—> same generalisation error

=~ same flatness

The definitions depend on the parameter 6



Results

Strategy:

» exploit symmetries induced on the parameter space by the
architecture

» equivalence of norms for finite spaces
» control the proposed measures and make them diverge

Move along level curves of the loss function in © to control the
flatness around a minimum



e-flatness

Proof provided Ve > 0, for a 2-dimensional NN

y= ¢relu(X : 91) - 02

sketch of the proof:

» consider the largest connected region C’ of © containing 6,
where the loss remains approx. constant

» show that C’ can be lower-bounded by one with infinite
volume



e-flatness

B (1, 0)

T.(Bx(r,0))

T3 (B (r',0))

Every minimum is contained in a region of infinite volume
with approximately constant loss.

Hence, all minima are equally e-flat.




e-sharpness

Proof provided Ve > 0, for a 2-dimensional NN.
» for each minimum 6 it is possible to find another minimum
6’ with high e-sharpness
» for #’, the maximum loss in Bx(e, #') is as high as that of the
degenerate model y = 0, which is assumed to be high.

By

61




Second order measures
Preliminary results

The loss and hessian depend on the parameter transformation
To.

by differentiating both sides of L(61,02) = L(abq,a'65)
—1
> (VL)(afh,a7"02) = (VL)(01.62) (a 0" )

> (VZL)(OZH1 s O[_1 02) =

(a_:)]ln‘ >(V2L)(91,9z) (0‘ I, 0) )

allp,



Given a minimum with non
degenerate Hessian, the
transformations allow to find an
obs. equivalent minimum with
arbitrarily large spectral norm
(and thus, trace norm and
spectral radius).

Second order measures

(a) Loss function with default parametrization

(b) Loss function with reparametrization

(c) Loss function with another reparametrization




Full eigenspectrum
Wide valleys

To move in the parameter space along multiple directions while
exploiting the geometry induced by RelLU:

» depth-K rectifier networks are considered
» forae >0:T,: (01,...,0;{) — (a191,...,aK9K)

K
sothat [] ax =1.
k=1



Full eigenspectrum

» then, eq. 1 becomes
(VZL)(Ta(6)) = Da(V2L)(6)Da
» where D, is the inverse of the Jacobian J(T,(0)):

a1_1]In1 0 0
0 a2_1]I,,2 0

0 0 ... ag'ly




Full eigenspectrum

» If the hessian matrix in a minimum @ in the full space has
rank r

» the authors provide a sufficient condition to make r — ng
eigenvalues arbitrarily large.

» i.e. they can control all but n, eigenvalues (k < K is
chosen arbitrarily).

» let n:=>_ nk, no control over the n — r eigenvalues that
K

are zero.



Hessian matrix in practice

Summary:

» Assuming a positive, semidefinite Hessian, up to (r — n)
eigenvalues can be made arbitrarily large.
» How does the Hessian at a minimum look in practice?



Hessian matrix in practice

“Empirical analysis of the Hessian of over-parametrised
neural networks”. Sagun, L. and Evci, U. and Glney, V. and
Dauphin, Y. and Bottou, L. ICLR 2018 Workshop paper.

» Empirical study of the Hessian matrix before and after
optimisation.

» Interesting case: depth-2 fully connected rectifier network
with scalar output.



Hessian matrix in practice

le—1 Full spectrum at large scale
> Atinitial point
151 At final point
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Order of eigenvalues

Two hidden-layer ReLU network (=~ 5000 params). Eigenvalues
before (random initial point) and after (minimum?) training.



Eigenvalues

Two hidden-layer ReLU network (=~ 4 — 5000 params), k

Hessian matrix in practice

le—2

Data vs eigenvalues

Gaps in eigenvalue distribution - ReLU

X

X
X

104 ~

Heuristic threshold

100 80 60 40

Order of largest eigenvalues

20

outputs, synthetic data (k clusters).

The number of large eigenvalues (above threshold)




Hessian matrix in practice
Number of parameters vs eigenvalues

le-1 Right edge of the spectrum
x 7960
23860
081 x 39760
X 55660
8 0.6
=
3
> X
g
o o
204 ;x
0.24 §
0.0 -
120 100 80 60 40 20

Order of large eigenvalues

Two hidden-layer ReLU network trained on subset of
MNIST.

Top 120 eigenvalues. Almost no change in size and




Hessian matrix in practice
Batch size vs eigenvalues

lel Right eigenvalue distribution
—— Heuristic threshold X
2009 . small batch x
175{ x Large batch
150
o
2125
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x
x
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Order of largest eigenvalues

CNN with ReLU and maxpooling + 2 FC layers, trained on
subset of MNIST.

Batch size of 10 vs 512.

Top 40 eigenvalues. Large batch produces larger positive
eigenvalues.




Hessian matrix in practice
Negative eigenvalues

1e-5 Left edge of the spectrum

Eigenvalues

7960

23860
39760
55660

-6

-7

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
Percentage of small eigenvalues

Two hidden-layer ReLU network trained on subset of
MNIST.

Negative eigenvalues at the end of training have smaller
magnitude than the positive ones.

x-axis: percentage of small eigenvalues.




Hessian matrix in practice
Negative eigenvalues

le—2 Left eigenvalue distribution
-0.5 -3%’ . ;
-1.0 ¥
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Eigenvalues

|
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-3.01
Small batch
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0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Percentage of largest eigenvalues

CNN with ReLU and maxpooling + 2 FC layers, trained on
subset of MNIST.

Batch size of 10 vs 512.




Open questions

» What is the geometry induced on the parameter space the
the size of each layer?

» How does overparametrisation of a hidden layer affect the
Hessian at a minimum?

» Does the gradient always find a minimiser?

» |Is e-sharpness a well defined measure when averaged
over random subspaces of the parameter space (Keskar et
al. 2017)?



Sharp minima can generalize for deep
networks

Questions?




e-flatness

proof

One-layer rectifier network:
Y = bre(x - 01) - 02

fd€c© minimumst 61#0,00+#0
Ve > 0, C(L,0, ) has infinite volume.

Note:
» T.:(61,02) — (aby,a”'62) has Jacobian determinant
am=—ne,
> Ta o T/B = Ta/B



e-flatness

proof

Case 1: ny # no

» goal: show that Ve > 0 there exists a region of
approximately constant loss with infinite volume.

1. 3r>0 st Bo(e,0) C C(L,6,e¢).
In fact, L continuous = L~'(Bx(e, L(0)) is open in ©, so
r>0.

2. since 61 # 0 and 6, # 0, B (e, 6) has volume
v=2rmtn > Q.

3. the volume of T, (B (¢, 0)) is va™ .

4. hence, by picking « arbitrarily large, the volume of C(L, 6, ¢€)
can be controlled.



e-flatness
proof

Case2:ny=no

» goal: show that Ve > 0 there exists a region of
approximately constant loss with infinite volume.
1. let C' = Uyisg Tar(Bso(r, 0))
To (B (r,0)) has volume v, Vo' >0
2. C'is a connected region with approximately constant
volume.

Goal: lowerbound C’ with a region of infinite volume.



e-flatness
proof

Case2:ny=no

» goal: lowerbound C’ with a region of infinite volume.

3. Bo(r,0) = Boo(r,61) x Boo(r, 62).
4. then T, (B (r,0)) = Bo(ar,ab) x Bo(a~'r,a=16,) for

AT
2 —r

and T ( (B> o (r,0)) N B (r,8) =0

similarly {Tg(Boo(r, 0))}«k>o are disjoint sets, each of
volume v

7. then,volume C' > v+v+v+...

.CD.U"



e-sharpness

proof

One-layer rectifier network:
y= ‘z)relu(x ) 91) - 02

fdc©® minimumst 61 #0,00#0
Ve > 0,30" € © with higher e-sharpness than 6.

Note:

» For (61,62) = (0,62) the prediction function degenerates to
y=0, Vxed.



e-sharpness

proof

» goal: show thatVe >0, 30'€© s.t.
{(91,92) €0,6; = 0} N 82(6,9/) #* 0

1. define a = HG:HZ
2. let To(61,02) = (e @ '02).

3. since ||91 ||2 < ||9||2 then (0,04_192) S Bz(e, Ta(a)).




Spectral norm

proof

One-layer rectifier network:
Y = bre(x - 01) - 02

Ifo € © minimum s.t. (V2L)(0) #0
YM>0,3a>0 st ||(VEL)(Ta(0))ll2 > M.



Spectral norm

proof

» goal: lower bound ||(VZ(L)(Tw(6))||2 with arbitrary M > 0
1. if hessian is non-zero, since 6 is minimum, there exists a
positive eigenvalue v > 0, e.g. for 64.
2. hence, the Frobenius norm ||(V2(L)(T.(0))||F is at least
ofzfy.
3. by the equivalence of norms in finite spaces, 3r > 0 s.t.
r||Al|r < ||A||2 for any symmetric matrix A.

4. by picking oo < |/, the thesis follows.



Hessian in many dimensions

K-layer rectifier network:

Y = Oretu(Preiu(- - - Pre(X - 01) ...)0k_-1)0k

If0=(0,...,0k) €© minimum s.t.
hessian in § has rank r

VM > 0,3 > 0 so that r — ;gli;r}(nk) eigenvalues are
greater than M. -

Note:
> (VEL)(Ta(6)) = Da(VAL)(8)Ds



Hessian in many dimensions

» goal: sort eigenvalues of the hessian and lower bound
r— lr{n<|lr} ny of them with an arbitrary M > 0

1. the hessian of L is assumed to be positive semidefinite and
symmetric in a neighbourhood of 6.
» idea: compute the singular values of D,(V2L)(#)D, and
apply Horn’s inequalities
» Horn’s inequalities: given the singular values of A and B,
relationship on the singular values of AB

«O» 4F» « >



Hessian in many dimensions

» goal: sort eigenvalues of the hessian and lower bound
r— lr(n<|’r} ny of them with an arbitrary M > 0

2. To apply the inequalities, we work on the singular values
(V2L)(0)Dz, which are the square root of the eigenvalues
of the D,(V2L)(0)D,,
3. for k < K, ax is chosen as: ax = =" and ax = K1,
4. Horn’s inequalities: Vi < n, j<(n-—ng):

Aiaj-n((VEL)(O)DZ) = Ni((V2L)(6))82, forany 5 >0



Hessian in many dimensions

» goal: sort eigenvalues of the hessian and lower bound
r— lr(n<|lr} ny of them with an arbitrary M > 0

M
5. for g > M(V2D)(0)
6. Vi< (r—ng)

M((VEL)(O)DZ) = Aien (VEL)(0))52 = A((VEL)(9))5% > M



Weight normalisation

Weight normalisation allows to define isotropic rescalings:
» non-zero weight v
» normalised as w < SW’ s scale
» since w is invariant to rescaling of v

» define T, =ve—=av, a#0.



Weight normalisation

Implications

» every minimum has infinite volume e-flatness

» every minimum is obs. equivalent to an infinitely sharp
minimum and to an infinitely flat minimum when
considering the eigenvalues of the hessian

» every minimum is obs. equivalent to a minimum with
arbitrarily low full-space e-sharpness and a minimum with
high full-space e-sharpness.
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