
1/ 58

Sensitivity and Generalization in Neural
Networks: an Empirical Study

R. Novak, Y. Bahri, D. Abolafia, J. Pennington, J.
Sohl-Dickstein

ICLR 2018

Matteo Gamba

21st January 2020



2/ 58

Understanding Deep Networks
model interpretability

Perspective of model interpretability.

Leading question:
I make sense of the generalization ability of deep networks
I explain “empirical priors” (design choices that boost

generalization)
I explain empirical phenomena
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Main Tracks

Main tracks (non-exhaustive):
I Loss landscape and quality of solutions (Keskar et al.

2017. Choromanska et al. 2015).
I Optimization paths (Arora 2019, Arora et al. 2019).
I Implicit bias of network architectures (and

overparametrization) (Arora et al., 2018).
I Implicit bias of SGD (Neyshabur et al., 2015, 2017 and

2018).
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Main Tracks

Main tracks (non-exhaustive):
I Capacity control and complexity measures (bounds on

population error) (Dziugaite et al. 2017. Neyshabur et al.
2015).

I Expressivity (Montufar el al. 2014, Pascanu et al. 2013.
Raghu et al. 2016).

I Effective capacity of deep networks (Hanin and Rolnick,
2019. Zhang et al., 2016).
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Common goals

Common goals:
I Find good predictors of generalization.
I Novel regularization strategies (impose explicit

constraints).
I Improved architectures / initialization schemes /

optimization algorithms.
I Novel theory? (Arora: describe and study optimization

paths).
I Explain empirical observations.

Focus on “understanding” as making predictions.
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Empirical observations
Exploring generalization in deep learning

Figure: Single-layer perceptron trained on MNIST.

(source: Neyshabur et al. Exploring generalization in deep learning. 2017)
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Empirical Observations
Understanding deep learning requires rethinking generalization

Understanding Deep Learning Requires Rethinking
Generalization. Zhang el al. 2016.

I state-of-the-art networks can fit random labellings of the
data (MNIST and CIFAR-10).

I related to empirical Rademacher complexity and empirical
VC dimension.
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Preliminary Experiments

Figure: 2160 networks with various hyperparameters trained on
CIFAR-10.

I Increasing the capacity of a model allows for overfitting, but
the largest models are the best performing.

I Train loss does not correlate well with generalization. Best
model has high loss compared to others.



9/ 58

Occam’s Razor and Model Selection

Apparent empirical paradox: deep networks seem to defy
Occam’s razor for model selection.

Intuitive argument:
I consider statistical hypothesis H ∈ H.
I evidence P(D|H) interpreted as a normalized probability

distribution over “dataset space”
I a larger model can in principle fit more datasets, hence

distributes the evidence more evenly across datasets
I model selection based on evidence favours smaller models
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Occam’s Razor and Model Selection
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Occam’s Razor and Model Selection
apparent paradox

I expressivity studies show exponential gains in
representational power for deeper networks

I larger networks can fit arbitrary labellings of data =⇒
more weights may correspond to more usable capacity

I in practice, higher capacity doesn’t necessarily imply
higher complexity
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Occam’s Razor and Model Selection
hypothesis

I Stochastic optimization and natural image data may
concentrate probability mass on simple functions.

I I.e. available capacity is biased towards “simple” functions.
I If the difference in evidence between two competing

models is small, keeping into account input data is crucial.
I Imposing a good prior P(H) (non-uniform and computable)

enables model comparison.
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Occam’s Razor and Model Selection
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Contributions

Large-scale empirical study of fully connected networks.

Main contributions:
I Study the behaviour of trained networks on and off the

“data manifold”.
I Study local properties (sensitivity) of the learned function,

in the vicinity of training data.
I Relate the proposed measures of sensitivity to

generalization.
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Toy Example

Intuitively, why is input sensitivity important?

Consider, in [− 0.1,0.1], the functions:
I f (x) = x
I g(x) = x3 sin x

In a small neighbourhood of zero, g is constant while f remains
linear.
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Why Linear Regions?

Goal: find good predictors of generalization.

I Intuition: nonlinearity is key to expressing complex decision
functions.

I Evidence in the literature that measures of nonlinearity
correlate well with generalization (Jiang et al. 2018. Collins
et al. , 2018).

I Number of linear regions related to nonlinear behaviour &
expressivity.

I Track: study linear regions to find proxy for model
complexity.

I Open question: is the number of linear regions a good
predictor of generalization ability?
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Recap: Linear Regions

I ReLU nets compute continuous piecewise linear functions
I affine transformations in the input space
I transition between linear “pieces” corresponds to

discontinuity in the gradient ∇xf
I linear regions: connected components of input space r

transition boundaries

I on each region, the network computes a single affine
function

I in general, a linear region is the union of polytopes in the
input space

I on each polytope, the activation pattern is constant
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Recap: Linear Regions
visualization

(source: Hanin and Rolnick. “Deep ReLU Networks Have Surprisingly Few Activation Patterns”. 2019)
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Sensitivity Metrics
Leading questions

Sensitivity measures w.r.t. input for FC networks with no biases
+ piece-wise linear activation functions.

Leading questions:
1. How does the output change when input perturbed within a

linear region?
2. If input perturbed, how likely is it to change linear region?
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Sensitivity Metrics
Proposed measures

Let f : Rd → Rn function learned by the network. Let fσ = σ ◦ f
network + softmax.

1. Input-output Jacobian norm: ||J(x)||F .
2. Transition count t(x).
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Jacobian Norm
definition

For an input x ∈ Rd :
I J(x) = ∂fσ(x)

∂xT

I J(x)ij = ∂fσ(x)i
∂xj

I recall ||J||F :=
√∑

ij
J2

ij .

Strategy:
I Given data points xtest:
I compute Extest [||J(xtest)||F ].
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Jacobian Norm
interpretation

The Jacobian norm measures the avg sensitivity of fσ(x)
around x.

Let ∆x ∼ N (0, εI).
E∆x[||fσ(x)− fσ(x + ∆x)||22] (finite difference approx.)
≈ E∆x[||J(x)∆x||22] = E∆x[

∑
i

(
∑

j
Jijxj)

2]

=
∑
ijj ′

JijJij ′E∆x[xjxj ′ ]

=
∑
ij

J2
ij E∆x[x2

j ]

= ε||J(x)||2F .
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Transition Count

Goal: starting from a sample x, move along a trajectory in the
input space and count the number of linear regions crossed by
the trajectory.

I How to identify linear regions?

I Strategy: use activation patterns
I Generally, activation regions fall in different linear regions*
I (*corner cases exist)
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Transition Count
Linear regions

Recall:

I each data point x lies in one linear region
I on such region the network computes a single linear

function
I the linear region is defined as the preimage of the

activation f(x) of the network, for each neuron in the
network
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Transition Count
activity patterns

Idea:
I Identify each linear region by the corresponding activity

pattern.
I If activity pattern is used, different codes identify different

regions* (by def. of preimage)
I *corner cases are not considered in the paper
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Transition Count
code

Code x 7→ c(x):

I concatenation of the values of activity patterns for all
neurons in the network

I e.g. for ReLU, c(x) ∈ {0,1}N , N = # neurons in the
network

Transitions computed by detecting changes in the code c(x).
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Transition Count
sampling

Consider a one-dimensional trajectory T (x) in the input space.

I sample k equidistant points z0, . . . , zk−1 along T (x).
I count the transitions along the trajectory:

t(x) :=
k−1∑
i=0
||c(zi)− c(z(i+1)%k )||1

I ≈
∮

z∈T (x)

∣∣∣∣ ∂c(z)
∂(dz)

∣∣∣∣
1dz

Estimate Extest [t(xtest)].
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Transition Count
interpretation

Given a function f, its curvature along a path T (x) is:

I C(f, T (x)) =
∮

z∈T (x)

∣∣∣∣∂f′(z)
∂(dz) dz

∣∣∣∣
F .

I piecewise linear function has constant first derivative
everywhere apart from transition boundaries

I for k � 1, C(f, T (x)) = 1
2

k−1∑
i=0
||f′(zi)− f′(z(i+1)%k )||F .

I z0, . . . , zk−1 equidistant samples on T (x)
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Observations

Qualitatively, if we consider Taylor expansion of f centered at x:

I Jacobian norm encodes first-order information of f
I Transition count encodes second-order information f
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Experiments

I Analyze a large number of FC networks with different
hyper-parameters and optimization algorithms.

I 8 seeds per configuration, each trained until 100% training
accuracy or discarded.

Empirical study:
1. Study sensitivity metrics on and off the training data

manifold.
2. Sensitivity metrics and model selection (factors of

generalization).
3. Sensitivity metrics as predictors of the generalization gap.
4. Sensitivity metrics and per-point generalization.
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1. Sensitivity on and off the Data Manifold
strategy

Strategy: measure the sensitivity metrics along circular
trajectories intersecting the data “manifold” at certain points.

1. Random ellipse.
I Unlikely to pass from training data.
I Sensitivity at points not seen during training.

2. Ellipse through training points of different classes.
I Include linear combination of points of different classes.
I Study sensitivity on and off the data manifold.

3. Ellipse through points of the same class.
I Include linear combinations of points of the same class.
I Overall closer to data manifold.
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Trajectories and Data “Manifold”

Trajectories close to the “data manifold” are generated by:
I Augmenting training data with horizontal and vertical

translations.
I For a test sample xtest, T (xtest) is constructed through

horizontal translations of xtest in pixel space.
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Trajectories and Data “Manifold”
example

Figure: Interpolation between 28 horizontal translations of xtest. All
points lie close to the translation-augmented data. k = 220 points
sampled per trajectory.
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1. Sensitivity on and off the Data Manifold
results

I Both metrics show increased robustness near training
points.

I Measures of generalization should consider input data as
well.
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Transition Boundaries
visualization

I 2D slice in MNIST pixel space.
I 15-layer network of width 300, trained for 218 epochs.
I SGD with momentum and data augmentation (flips).
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2. Sensitivity and Generalization Factors

Study relationship between sensitivity and generalization
factors, for networks trained to 100% training accuracy.

Factors considered:
I Random labels.
I Data augmentation.
I Activation functions (ReLU vs HardSigmoid)
I minibatch SGD+momentum vs full-batch training.

Dataset used: CIFAR-10.
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2. Sensitivity and Generalization Factors
experimental details

335671 networks trained for 219 steps with random
hyper-parameters, including:

I SGD, Momentum, Adam, RMSProp, LBFGS.
I Learning rates (0.01, 0.005, 0.0005) & batch size (128,

512).
I Activation functions (ReLU, ReLU6, Tanh, HardSigmoid,

HardTanh).
I Widths (1,2,4, . . .216).
I Depths (2,3,5, . . . ,26 + 1).
I True and random labels.
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2. Sensitivity and Generalization Factors
results

Generalization gap := training accuracy - test accuracy
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2. Sensitivity and Generalization Factors
data augmentation

Experimental details:
I CIFAR-10
I SGD + momentum for 218 steps, learning rate 0.005
I Width of 100, 200, 500, 1000, 2000, 3000
I depth of 2, 3, 5, 10, 15, 20
I ReLU, ReLU6, HardTanh, HardSigmoid
I Random translation of input by 4 px; flipping.
I Keep models for which data augmentation resulted in

higher test accuracy than the same model without.
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2. Sensitivity and Generalization Factors
results

Generalization gap := training accuracy - test accuracy
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3. Sensitivity and Generalization Gap

Establish direct relationship between sensitivity and
generalization.

I Consider all architectural choices and HPs simultaneously.
I CIFAR-10, CIFAR-100, MINIST, Fashion MNIST.
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3. Sensitivity and Generalization Gap
results

Figure: Jacobian norm correlates with generalization gap.
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3. Sensitivity and Generalization Gap
results

Figure: Transition count does not correlate with generalization gap.
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4. Sensitivity and Per-Point Generalization

Is the Jacobian norm predictive of generalization at individual
test points?

I Study relationship between Jacobian norm and test loss for
1000 test points.

I Consider 5 networks trained to 100% train accuracy.
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4. Sensitivity and Per-Point Generalization
experimental setup

5 random networks trained with 100% training accuracy.

I Trained for 219 steps.
I Evaluated on 1000 test images.
I ReLU, ReLU6, Tanh, HardSigmoid, HardTanh.
I SGD, Momentum, ADAM, RMSProp.
I Widths 50, 100, 200, 500, 1000.
I Depths 2, 5, 10, 20, 30.
I Learning rate 0.0001, 0.001, 0.01.
I One seed.
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4. Sensitivity and Per-Point Generalization
results

I Points with high Jacobian norm are mostly misclassified.
I Some misclassified points have small Jacobian norm.
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4. Sensitivity and Per-Point Generalization
results
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Cross-Entropy Loss and Jacobian Norm

I Jacobian norm considered for fσ = σ ◦ f.
I Jacobian norm at the logits level did not perform well (not

reported in the paper).
I Authors derive analytic bounds for the Jacobian norm in

terms of the cross-entropy loss.
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Cross-Entropy Loss and Jacobian Norm
analytic bounds

Given a labeled test sample (x, y(x)), express the relationship
between Jy(x) and the cross-entropy loss ` = − log [fσ(x)]y(x) as

n
n − 1

Mσ2
y (1− σy )2 ≤ ||Jy ||22 ≤ 2Mσ2

y (1− σy )2

with:
I M = Extest || ∂f

∂xT
test
||2F .

I n = # classes.
Let ` = − log σy , then:√

nM
n − 1

e−`(1− e−`) < ||Jy ||2 <
√

2Me−`(1− e−`)
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Cross-Entropy Loss and Jacobian Norm
analytic bounds

When the target class y is unknown:

I the lower bound still holds.
I Assuming maximum entropy case for
σy : σi ≈ (1− σy )/(n − 1), for i 6= y .

I Lower bound:√
nM

n − 1
e−`(1− e−`) < ||Jj ||2 ≤ ||J||F

I Norm approximation:

||J||F ≈
√

M
(n − 1)

(1− e−`)
√

n2e−2` + n − 2
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Cross-Entropy Loss and Jacobian Norm
experimental details

Single random trained network with 100% accuracy on
CIFAR-10, sampled from networks trained.

I for 218 steps.
I evaluated on 1000 test points.
I ReLU, ReLU6, Tanh, HardSigmoid, HardTanh.
I Widths 50, 100, 200.
I Depths 2, 5, 10, 20.
I One seed.
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Cross-Entropy Loss and Jacobian Norm
results

I Lines (top) show analytic bounds.
I Lines (bottom) lower bound and norm approximation.
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Conclusions

Empirical study of two sensitivity measures in the vicinity of
input data.

I FC networks seem biased towards functions that are
robust in proximity of training points.

I For FC networks, the local geometry around input data is
predictive of generalization.

I The behaviour of the learned function drastically changes
away from training data.

I Number of linear regions does not clearly correlate with
generalization.

I Left unexplained: why do large networks converge to more
robust functions?

I What is the role of optimization (implicit bias of SGD)?
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Further Work
Complexity of Linear Regions in Deep Networks

Hanin and Rolnick, ICML19.

I for a FC network with output dimension 1
I weights at initialization
I expected density of transition boundaries between linear

regions is upper bounded by
(# neurons

k

)
Ck

I C constant, k ∈ {1, . . . ,d}.
I irrespective of depth
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Further Work
Deep ReLU Networks Have Surprisingly Few Activation Patterns

Hanin and Rolnick, NeurIPS19.

I for a FC network at initialization with no tied weights
I further hypothesis in distribution of gradients and weights
I expected local density of activation regions upper bounded

by (T # neurons)d/d !

I irrespective of depth
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Further Work
Are All Layers Created Equal?

I FC network trained on MNIST
I At each checkpoint (x-axis), the corresponding layer

(y-axis) is reinitialized to its value before training.
I How are the sensitivity measures affected?

Are All Layers Created Equal? Zhang, Bengio and Singer. ICLM19,
Workshops Track.
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Distinguishing Linear Regions

Activation regions typically fall in different linear regions.

Edge cases1:
I Formally, # linear regions ≤ # activity regions
I In fact, multiple neighboring activity regions can collapse to

a single linear region if they are all zeroed-out by a layer
I the set of weights for which this happens is a

zero-measure set
I activity regions typically fall on different linear regions
I on average # linear regions ≈ # activity regions

1(from Rolnick and Hanin, NeurIPS 19)
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