RPL CV /DL Reading Group
26 March 2019

Multitask Learning as Multiobjective Optimization

Ozan Sener and Vladlen Koltun

Outline

* Motivation

» Related Work

c M

* Model definition

* Training details

* Results

« MTL challenges analysis

« Conclusions & Future Work

Multi-task learning

Definition: jointly learn T tasks, sharing inductive bias across
them designing a parameterized hypothesis that shares some
parameters across tasks.

Strategies:

e Soft-sharing: All parameters specific to each task, jointly
constrained.

e Hard-sharing: Part of the parameters fully-shared
between tasks.

Multi-task learning

Definition: jointly learn T tasks, sharing inductive bias across
them designing a parameterized hypothesis that shares some
parameters across tasks.

Strategies:

e Soft-sharing: All parameters specific to each task, jointly
constrained.

e Hard-sharing: Part of the parameters fully-shared
between tasks.

Multi-task learning

Definition: jointly learn T tasks, sharing inductive bias across
them designing a parameterized hypothesis that shares some
parameters across tasks.

Strategies:

e Soft-sharing: All parameters specific to each task, jointly
constrained.
e Hard-sharing: Part of the parameters fully-shared
between tasks.
o Using deep neural networks as model

Multi-task learning

Usually,
weighted sum of empirical risk for each task

i 3
min > L0, 6"
919 o7 1

... cannot handle competing tasks
... ct can be static or dynamic
... uniform weights, found as hyperparameter, heuristics

Multi-task learning

Uncertainty weighting (Kendall et al. 2018)

1. Predict heteroscedastic uncertainty model as mean y, and variance af
for each task t as new model output

2. Weight loss £, with 1/ 26/

GradNorm (Chen et al. 2018) G (t) = [|Vwwi(t)Li(t)]|2
1. For each task, compute gradient wrt selected layer and its norm.
2. Compute average gradient norm Gy (t)
3. Compute rel. training speed as loss / avg. loss. r;(t) = L(t)/Emsk[L(t)]
4. Compute loss to learn loss weights
Lgraq (t; wy(t Z}G(z) w (t) % [rs(£)]

5. Update loss weights, then model parameters

1

Multi-task learning as multi-objective opt.

Instead,

MTL as multi-objective optimization, optimizing set of
possibly contrasting objectives

New goal: Find Pareto optimal solution, not dominated by
any other solution.

A solution @ dominates a solution _é if £L(0%" 8t) < Lt(0°",8") for all tasks t and
L(07%. 0% .. 0F) £ E(0°" 0% 5., OT).

Multi-task learning as multi-objective opt.

Focus on gradient-based multi-objective optimization...
MGDA - Multiple Gradient Descent Algorithm

...well-suited for multitask deep networks trained with
stochastic gradient descent. But two issues need solving:

1. Does not scale to high-dimensional gradients
2. Requires separate computation of gradients for each
task, i.e. one backward pass per task

MGDA - Multiple Gradient Descent Algorithm

Use Karush-Kuhn-Tucker (KKT) conditions to find common
descent direction of shared parameters for all objectives,
necessary for optimality.

e There exist o', ..., a’ > 0 such that Zle a' =1 and Zle atVg:n LE(O%",0%) = 0

e For all tasks £, Vg: £!(6°",0) = 0

Solution satisfying these is Pareto stationary but not
necessarily Pareto optimal.

MGDA - Multiple Gradient Descent Algorithm

min
al,...aT

e Solution is zero:
o Pareto stationary
e Non-zero:
o Gives a descent direction improving all objectives

2

T
> o'V L1067
t=1

T
Zatzl,at >0 Vt}

21 =1

Equivalent to finding a minimum-norm solution in the convex
hull of the set of solutions.

MGDA - Multiple Gradient Descent Algorithm

Case for 2 tasks has analytical solution:

070 < 070 and 070 < 070 070 > 070 Algorithm 1
' ' min.eo.1) |70 + (1 —)03

1: if 8TO > 076 then
! % y=1
(6-6)"0 E 3: elseif 6TO > 070 then
Y=g —elz #=a +: =0
16— 63 ST
5: else 5_ovE
Figure 1: Visualisation of the min-norm point in the convex hull 6: Y = (Il 9__92”3

of two points (min,¢(o,1) |70 + (1 — 7)8|2). As the geometry sug- 7. end if

gests, the solution is either an edge case or a perpendicular vector.

MGDA - Multiple Gradient Descent Algorithm

Use 2D case as subroutine for line search in Frank-Wolfe
optimizer.

Algorithm 2 Update Equations for MTL
1: fort =1to T do

2: 0t = 0 — Ve L1(8°", 6" > Gradient descent on task-specific parameters
3: end for
4: o', ..., a7 = FRANKWOLFESOLVER(8) > Solve (3) to find a common descent direction
5: 950 = 9h — ST @tV LE(6°0, 61) > Gradient descent on shared parameters
6: procedure FRANKWOLFESOLVER(O)
7. Initialize o = (o!,...,aT) = (F,..., 7)
8 Precompute M st. M; j = (Vgen £7(0°",0%)) T (Vgon L7 (6°",67))
9: repeat
10: t = argmax, Y, a'M,,
11: 4 = argmin,, ((1 - y)a +ve;) " M((1 — 7)o + ve;) > Using Algorithm 1
12: a=(1-9)a+75e;
13: until 4 ~ 0 or Number of Iterations Limit
14: return o', ... o

15: end procedure

MGDA - Multiple Gradient Descent Algorithm

Use 2D case as subroutine for line search in Frank-Wolfe
optimizer.

Algorithm 2 Update Equations for MTL
1: fort =1to T do

2: 0t = 0 — Ve L1(8°", 6" > Gradient descent on task-specific parameters
3: end for
4: o', ..., a7 = FRANKWOLFESOLVER(8) > Solve (3) to find a common descent direction
5: 950 = 9h — ST @tV LE(6°0, 61) > Gradient descent on shared parameters
6: procedure FRANKWOLFESOLVER(O)
7. Initialize o = (o!,...,aT) = (F,..., 7)
8 Precompute M st. M; j = (Vgen £7(0°",0%)) T (Vgon L7 (6°",67))
9: repeat
10: t = argmax, Y, a'M,,
11: 4 = argmin,, ((1 - y)a +ve;) " M((1 — 7)o + ve;) > Using Algorithm 1
12: a=(1-9)a+75e;
13: until 4 ~ 0 or Number of Iterations Limit
14: return o', ... o

15: end procedure

MGDA - Multiple Gradient Descent Algorithm

Use 2D case as subroutine for line search in Frank-Wolfe
optimizer.

Algorithm 2 Update Equations for MTL

1:

xR =2 9

11:
12:
13:
14:
15:

fort =1to T do

0t = 0 — Ve L1(8°", 6" > Gradient descent on task-specific parameters
end for
al, ..., a” = FRANKWOLFESOLVER() > Solve (3) to find a common descent direction
65" = 05 — ST o'V L1(0°1, 60Y) I > Gradient descent on shared parameters

procedure FRANKWOLFESOLVER(O)

Initialize = (o*,...,a%) = (F,...,7)
Precompute M st. M; ; = (Vgon £1(0°",07)) T (Vger L7(0°", 67))
repeat
t = argmax, y_, o'M,,
4 = argmin,, ((1 - y)a +ve;) " M((1 — 7)o + ve;) > Using Algorithm 1

a=(1-9)a+ye;
until 4 ~ 0 or Number of Iterations Limit
return o', ... o

end procedure

MGDA - Multiple Gradient Descent Algorithm

Frank-Wolfe solver typically converges within a few iterations,
negligible addition to training time.

But we still need T backward passes...

MGDA - Upper Bound

For the encoder-decoder(s) case where...

F(x; 0°%,0%) = {f5(58%) o.9(0*"))(x) = f¥(g(x; 6°7)50%)

| |

Encoder Decoder
for task t

The shared representation can be expressed as
z; = g(x;;0°")

MGDA - Upper Bound

Upper bound of objective of min-norm point problem...

T 2 - 21 2
t At psh pt t At psh gt
E a'Vesn L(0°",0%)| < 59 a'Vz L (0°",0%)
=1) 211 t=1 2
Does not depend on the Can be computed with a
alphas single backward pass

If 2% is full-rank (tasks not linearly related),
optimizing UB is equivalent.

MGDA - Upper Bound

The rest of the algorithm is exactly the same

Experiments

Baselines for all experiments

Single-task

Uniform weights

Weights found through grid-search
Uncertainty weighting

GradNorm

ok o=

Experiments ;

10 .
20

0 10 20
7:3

MultiMNIST

2 tasks:
e Classify top-left digit “L”

e Classify bottom-right digit “R”

LeNet-based multi-task network

0
10
20
0 10 20 0 10 20 10 20
22 19 08
1.00
0.98
0.96
>
[-4 @
o)
£ 0.9
3
<
0.92
Single Ta:
Grid Sear
0.90 A Uniform Scaling
P> Kendall et al. 2018
< GradNorm
@ Ours
0.88 T T T T
0.90 0.92 0.94 0.96 0.98

Wearing
Hat

Experiments E ™

CelebA

Multi-label classification, Azggrge
each label is a binary class. task Single sk 8.77

40 tasks Uniform scaling 9.62
Kendall et al./12018] 9.53

. GradNorm &8.44
ResNet-18 encoder, linear decoders. Ours 8.25

’ i
Experiments »
Cityscapes _
3 scene-understanding tasks: . o
e Semantic segmentation
a0t 4k eR- e Instance segmentation 1 —
e Depth estimation
“ ResNet-50 encoder, § »
. . 5 a
- pyramid pooling decoders
——————— :%m

100 0425 0.850 0475 0900 0925 0950 0975 1
1-instance Error[%]

Experiments

Effect of upper bound approximation

Table 2: Effect of the MGDA-UB approximation. We report the final accuracies as well as training
times for our method with and without the approximation.

Scene understanding (3 tasks) Multi-label (40 tasks)

Training Segmentation Instance Disparity Training Average
time mloU [%] error [px] error [px] time (hour) error
Ours (w/o approx.) 38.6 66.13 10.28 2.59 429.9 8.33
Ours 23.3 66.63 10.25 2.54 16.1 8.25

60 % 3.7%

Experiments

Effect of upper bound approximation
And surprisingly also better accuracies...
...possibly due to solving problem (min norm point)

in lower-dimensional space
(shared representation instead of parameters)

Conclusions

Applying multi-objective optimization to multi-task learning
achieves better results than traditional approaches based on
weighted sum of losses.

A method and an approximation with negligible computational
overhead are proposed and evaluated on 3 different

multi-task problems, showing it is effective on a wide range of
scenarios.

e MGDA tends to give a shortest path
o 5 B B o to the Pareto front

- , or & o Not necessarily a balanced
'; o L Pareto optimal solution

g e Tl In practice, for cases in which gradient
" co s ¢ e magnitudes differ a lot between tasks,

: .. - this is important. Need to scale gradients:
_ . ’.: . m By the loss

m Bythe L2 norm
m Other...

0.4 4

o

of

Vi
% 0
0.

&

=g

T

ETENS|

HY

KAP

%

CH KONST 8%

o

>

28

