

Robust Learning Through Cross-Task Consistency

Amir R. Zamir, Alexander Sax, Nikhil Cheerla, Rohan Suri, Zhangjie Cao, Jitendra Malik, Leonidas J. Guibas, CVPR 2020

Outline

- Introduction
- Related Work
- Method
 - From elementary consistency unit...
 - ... to globally consistent graphs
- Experiments
 - Accuracy (in/out distribution)
 - Consistency energy utilities
- Conclusion

Introduction

- Visual perception → multiple tasks
 - Predictions from same input are not independent, expected to be consistent (not contradicting)
- Idea: augment learning with cross-task consistency constraints
 - Through inference path invariance on a graph of arbitrary tasks, data-driven
 - Better accuracy, better generalization to out-of-distribution samples
- Consistency energy
 - Confidence metric
 - Detect out-of-distribution inputs

Related work

Utilizing consistency

- Consistency constraints proven useful in:
 - Back-translation in NMT and cycleconsistency in image translation
 - Temporal consistency and 3D geometry constraints in vision

Uncertainty metrics

- Consistency energy similar to ensemble averaging
 - Estimations from different paths instead of from different trainings of same model with different initializations / seeds.
 - More effective at capturing uncertainty (?)

Multi-task and transfer learning

• Multiple output domains from a single input, using shared representation

or

Predict a target output with another task solution as a source

Output domains not automatically consistent, no mechanisms to enforce so

Basic consistency unit

x - input domain

 $y = \{y_1, \dots, y_n\}$ – set of output domains

 $(x, y_1, ..., y_n) - sample$

We want to learn functions $f_{x \to y_j} \forall y_j \in y$ mapping input to output domains

We can however also define functions $f_{y_i \rightarrow y_j} \forall y_i, y_j \in y, i \neq j$ that map output domains, i.e. cross-task functions.

To enforce cross-task consistency between two tasks, use the following loss

 $\begin{aligned} \mathcal{L}_{xy_{1}y_{2}}^{triangle} \\ &= \left| f_{xy_{1}}(\mathbf{x}) - \mathbf{y}_{1} \right| + \left| f_{xy_{2}}(\mathbf{x}) - \mathbf{y}_{2} \right| \\ &+ \left| f_{y_{1}y_{2}}(f_{xy_{1}}(\mathbf{x})) - f_{xy_{2}}(\mathbf{x}) \right| \end{aligned}$

Separability

- *L^{triangle}* requires simultaneous training of two networks
- We can get a loss separable into functions of f_{xy_1} or of f_{xy_2}

 $\mathcal{L}_{xy_{1}y_{2}}^{separable} = |f_{xy_{1}}(\mathbf{x}) - \mathbf{y}_{1}| + |f_{y_{1}y_{2}}(f_{xy_{1}}(\mathbf{x})) - \mathbf{y}_{2}|$

Perceptual loss

- We relied on:
 - perfect mappings $f_{y_i \rightarrow y_j}$
 - datasets with multidomain annotations for all samples
- We can get a perceptual loss $\mathcal{L}_{xy_1y_2}^{perceptual} = |f_{xy_1}(\mathbf{x}) - \mathbf{y}_1| + |f_{y_1y_2}(f_{xy_1}(\mathbf{x})) - f_{y_1y_2}(\mathbf{y}_1)|$

Consistency with multiple domains

Extension to multiple domains is straightforward

$$\mathcal{L}_{xy_{1}Y}^{perceptual} = |Y| |f_{xy_{1}}(\mathsf{x}) - \mathsf{y}_{1}| + \sum_{y_{i} \in Y} |f_{y_{1}y_{i}}(f_{xy_{1}}(\mathsf{x})) - f_{y_{1}y_{i}}(\mathsf{y}_{1})|$$

Globally consistent graphs

The objective is formulated over a graph $\mathcal{G} = (\mathcal{D}, \mathcal{F})$ with nodes \mathcal{D} representing all (input and output domains) and edges being the functions mapping between domains.

Now, more generally, we can define the consistency constraints as arbitrary path invariance, i.e. **two paths with the same endpoints should have the same result**.

Globally consistent graphs

Reaching *global* cross-task consistency for graph G is defined as satisfying the constraint for all feasible paths (\mathcal{P}) in G.

$$\mathcal{L}_{\mathcal{G}} = \sum_{p \in \mathcal{P}} \mathcal{L}_{p}^{perceptual}$$

This is intractable, but an approximate solution similar to *approximate message passing* in graphical models is used.

Algorithm 1: Globally Cross-Task Consistent Learning of Networks \mathcal{F}
Result: Trained edges \mathcal{F} of graph \mathcal{G}
 Train each f∈F independently. ▷ initialization by standard direct training.
2 for $k \leftarrow 2$ to L do
3 while LossConvergence(F) not met do
4 $f_{ij} \leftarrow SelectNetwork(\mathcal{F}) \triangleright$ selects target network to be trained.
5 $p \leftarrow SelectPath(f_{ij}, k, P) \triangleright$ selects a feasible consistency path
for f_{ij} with maximum length k from \mathcal{P} .
6 optimize $\mathcal{L}_{i}^{perceptual} \ge \text{trains } f_{i,i}$ using path constraint p in loss 8.
and and
7 end
8 end

Consistency energy

Aim: quantify amount of cross-task consistency.

Standardized average of pairwise inconsistencies:

 $\operatorname{Energy}_{\mathcal{Y}_k}(x) \triangleq \frac{1}{|\mathcal{Y}| - 1} \sum_{\substack{\mathcal{Y}_i \in \mathcal{Y}, i \neq k}} \frac{|f_{\mathcal{Y}_i \mathcal{Y}_k} \circ f_{\mathcal{X}_{\mathcal{Y}_i}}(x) - f_{\mathcal{X}_{\mathcal{Y}_k}}(x)| - \mu_i}{\sigma_i}$

Turns out to be informative as:

- Confidence/uncertainty metric
- Domain-shift metric

- Inconsistency≜disagreement among paths.
- Energy ext{ total inconsistency/disagreement in the system.}
- A informative test-time unsupervised quantity.

Experiments

Datasets Taskonomy as main training dataset, Replica and NYU for evaluation, CocoDoom and ApolloScape for out-of-training-distribution evaluation

Architecture UNet for all mapping functions

Training details All networks with same details. All losses are L1 and maximum path length in G set to 3.

Baselines

- Independent learning (main baseline)
- Multi-task learning
- Cycle-consistency special case triangle consistency with $y_2 = x$
- Baseline perceptual loss random mappings bw. output domains
- Some others, including curated (not data driven) consistency GeoNet

Accuracy of predictions

Accuracy of predictions

Experiments

Consistency of predictions

Inconsistency reduced through training with cross-task consistency constraints. Does not occur with multi-task baseline.

Experiments

Consistency energy utilities

 As a domain shift metric: out-ofdistribution data points have high consistency energy. Using this to detect out-of-distribution images yielded ROC-AUC of 0.95.

• As a confidence metric: 0.67 Pearson correlation coefficient with error

Conclusion and limitations

- Cross-task consistency is a **general** and **data-driven** framework to augment standard learning in multiple output domain datasets.
- It gives **more accurate** predictions and **generalizes better** to out-ofdistribution data samples.
- Consistency energy is informative as confidence metric and domain-shift metric
- Limitations:
 - Only used in dense prediction tasks, not easily portable to e.g. classification tasks, for which the cross-task functions can be extremely ill-posed.
 - Requires labelled training data in samples with annotations for *some* output domain
 - Added constraints can make the optimizer to have a hard time and/or introduce artifacts