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Few-shot learning



Meta-Learning

(Learning to learn)



Meta-Learning Probabilistic Inference for Prediction

I General probabilistic framework for few-shot learning

I Neural network based implementation of the framework

I New state-of-the art in few-shot learning benchmarks
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I Matching networks (2016)

I Prototypical networks (2017)
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I Meta-Learner LSTM (2017)

Ravi, S., & Larochelle, H. Optimization as a Model for Few-Shot Learning. ICLR (2017)



Probabilistic framework

Meta-Learning Probabilistic Inference for Predicition (ML-PIP)



Probabilistic multi-task learning

p(ỹ (t)|x̃ (t), θ) =

∫
p(ỹ (t)|x̃ (t), ψ(t), θ)p(ψ(t)|x̃ ,D(t), θ) dψ(t)



Approximating the predictive distribution

p(ỹ (t)|x̃ (t),D(t), θ) =

∫
p(ỹ (t)|x̃ (t), ψ(t), θ)p(ψ(t)|x̃ ,D(t), θ) dψ(t)

1. Approximate posterior distribution

p(ψ(t)|x̃ (t),D(t), θ) ≈ qφ(ψ(t)|D(t), θ)

e.g. ψ(t) ∼ N (µ, σ), {µ, σ} = f (D(t);φ)

2. Compute approximate predictive distribution

qφ(ỹ (t)|x̃ (t),D(t), θ) =

∫
p(ỹ (t)|x̃ (t), ψ(t), θ)qφ(ψ(t)|D(t), θ) dψ(t)

e.g. using Monte Carlo sampling



Meta-learning the predictive distribution

qφ(ỹ (t)|x̃ (t),D(t), θ) =

∫
p(ỹ (t)|x̃ (t), ψ(t), θ)qφ(ψ(t)|D(t), θ) dψ(t)

Consider tasks as samples from some distribution

D, x̃ , ỹ ∼ p(D, x̃ , ỹ)

Minimize expected divergence

min
φ,θ

Ep(D,x̃)

[
KL
[
p(ỹ |x̃ ,D, θ)

∥∥qφ(ỹ |x̃ ,D, θ)
]]



Meta-learning the predictive distribution

L(θ, φ) = Ep(D,x̃ ,ỹ)

[
log

∫
p(ỹ |x̃ , ψ, θ)qφ(ψ|D, θ) dψ

]

L̂(θ, φ) =
1

MT

∑
m,t

log
1

L

∑
l

p(ỹ
(t)
m |x̃ (t)

m , ψ
(t)
l , θ)

ψ
(t)
l ∼ qφ(ψ|D(t), θ)

D(t), x̃
(t)
m , ỹ

(t)
m ∼ p(D(t), x̃

(t)
m , ỹ

(t)
m )



Inference

Given a new dataset D and test input x

1. Sample L task-specific parameters

ψl ∼ qφ(ψl |D, θ)

2. Estimate predictive distribution

q̂φ(y |x ,D, θ) =
1

L

L∑
l=1

p(y |x , ψl , θ)

3. Take maximum as prediction

ŷ = arg max
y

q̂φ(y |x ,D, θ)



Unification

I Gradient-based Meta-Learning (MAML, Meta-Learner LSTM)

I Metric-based few-shot learning (Prototypical networks,
Matching networks)

I Amortized MAP inference (hypernetworks)

I Conditional models trained via maximum likelihood (neural
processes)



Implementation

Versatile Amortized Inference (VERSA)



A versatile system

Inference system that is rapid and flexible

amortization network −→ rapid

flexibility?



Flexibility challenges

I Datasets as input (i.e. unordered sets as input)

I Different types of tasks (e.g. number of classes)

I High dimensional output space (i.e. many parameters)



Sets as inputs

permutation-invariant instance-pooling

f ({x1, . . . , xn}) ≈ g(h(x1), . . . , h(xn))

Qi, C. R. et. al. PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation. CVPR (2017)

Zaheer, M. et. al. Deep Sets. NIPS (2017)



Few-shot Classification

N-way, k-shot learning

=

discriminate between N classes given k examples of
each class.

What if N and k varies between tasks?



Few-shot Classification

N-way, k-shot learning

=

discriminate between N classes given k examples of
each class.

What if N and k varies between tasks?



Few-shot Classification

Let ψ ∈ Rd×C be the parameters of a linear classifier.

Assume context independency

qφ(ψ|D, θ) ≈
C∏

c=1

qφ(ψc |{hθ(xcn )}kcn=1, θ)

Theoretical support from density estimation and empirically
justified for hθ with sufficient capacity



Experiments

Toy-data
Image classification

Image reconstruction

https://github.com/Gordonjo/versa

https://github.com/Gordonjo/versa


Toy-data

Ground truth model

p(θ) = δ(θ), p(ψ(t)|θ) = N (ψ(t); θ, σ2
ψ)

(y
(t)
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(t)
n ;ψ(t), σ2

y )
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1

σ2
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y
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σ2
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1
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Toy-data

T = 250 tasks, k ∈ {5, 10} shots, M = 15 test observations.



Image Classification

Omniglot

I 1623 characters

I 50 languages

I 20 instances for each character

miniImageNet

I 60 000 images

I 100 classes

I 600 instances for each class



Image classification



Image classification

New state-of-the-art

20-way, 1-shot Omniglot (97.66%, N 0.02%)

5-way 5-shot miniImageNet (67.37%, N 1.38%)

On par with state-of-the-art

5-way, 1-shot Omniglot (99.70%)

5-way, 5-shot Omniglot (99.75%)

5-way 1-shot miniImageNet (53.40%)

Worse than state-of-the-art

20-way 5-shot Omniglot (98.77%, H 0.59%)



Image classification

Performance is robust to variations in “way” and “shots”



Image classification

ML-PIP

LML-PIP =
1

T

T∑
t=1

1

Mt

Mt∑
m=1

log
1

L

∑
l

p(ỹ (t)
m |x̃ (t)

m , ψ
(t)
l , θ)

Variational inference

LVI =
1

T

T∑
t=1

 ∑
(x,y)∈D(t)

(
1

L

L∑
l=1

log p(y |x , ψ(l), θ)

)
− KL

[
qφ(ψ|D(t), θ)‖p(ψ|θ)

]



Image reconstruction

Given an image of an object, produce an image of the object in
any rotation



Image reconstruction

ShapeNetCore v2

I 12 object categories

I 37 108 objects

I 36 views for each object

https://www.shapenet.org/

https://www.shapenet.org/


Image reconstruction



Image reconstruction

MSE = mean square error
SSIM = structural similarity index



Image reconstruction



Summary

I Unifying probabilistic framework

I Flexible and rapid implementation

I Tested on
I Image classification

I Image reconstruction

I New state-of-the-art


