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State-of-the-artState-of-the-art results on VQA and VQA 2.0 datasets
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Soft attention mechanism
 - query

 - keys
 - values

 - compatibility function

q ∈ R
dq

K ∈ R
L×dk

V ∈ R
L×dv

[ , . . . , ] = softmax(f(q,K))α1 αL

attention(q,K,V ) = ∑
i=1

L

αivi

∈ Vvi
f : × →R

dq R
L×dk R

L
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Attention maps - example

Why attention mechanism?
Conditional representations

Meaning of a word in the context of a
sentence
Meaning of an object in the context of a
question

Modeling long-term dependencies
 vs.  for RNNs

Some interpretability

O(1) O(N)
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Attention mechanism - VQA
Focus at relevant regions or relevant
question words
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Attention mechanism - VQA
Focus at relevant regions or relevant
question words

Representations conditioned on the context
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Dot-product attention
 - query

 - keys
 - values

q ∈ R
dq

K ∈ R
L×dk

V ∈ R
L×dv

attention(Q,K,V ) = softmax(Q )VK⊤

=dq dk
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Method: DCNMethod: DCNMethod: DCN
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dense, bi-directional interactions between the two modalities  
 
 

Each word represented in the context of the image

Each image region represented in the context of the question
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DCN - attention maps
 -  question words

 -  image regions

Compute the affinity matrix:

= [ ,…, ] ∈Ql ql1 qlN R
d×N N

= [ ,…, ] ∈Vl vl1 vlT R
d×T T

=Al V ⊤
l WlQl

∈Al R
T×N
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DCN - attention maps
 -  question words

 -  image regions

Compute the affinity matrix:

Two attention maps:

 

 
This is of course notnot exactly what they do!

= [ ,…, ] ∈Ql ql1 qlN R
d×N N

= [ ,…, ] ∈Vl vl1 vlT R
d×T T

=Al V ⊤
l WlQl

∈Al R
T×N
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l
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DCN - the actual attention maps
Multiple attention maps:  instead of , where  - attention numberA
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DCN - the actual attention maps
Multiple attention maps:  instead of , where  - attention number

Weight matrix  is replaced with two matrices of lower-rank:  where 

, 

A
(i)
l Al i

Wl W
(i)

V
~
l

⊤
W

(i)

Q
~
l

∈W
(i)

V
~
l

R
×ddh ∈W

(i)

Q
~
l

R
×ddh

= ( )A
(i)
l ( )W

(i)

V
~
l

V
~
l

⊤
W

(i)

Q
~
l

Q
~
l
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DCN - the actual attention maps
Multiple attention maps:  instead of , where  - attention number

Weight matrix  is replaced with two matrices of lower-rank:  where 

, 

Alternative low-rank approach: 
Kim, Jin-Hwa, Jaehyun Jun, and Byoung-Tak Zhang. "Bilinear attention networks." Advances in Neural Information

Processing Systems. 2018.

A
(i)
l Al i

Wl W
(i)

V
~
l

⊤
W

(i)

Q
~
l

∈W
(i)

V
~
l

R
×ddh ∈W

(i)

Q
~
l

R
×ddh

= ( )A
(i)
l ( )W

(i)

V
~
l

V
~
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⊤
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(i)

Q
~
l

Q
~
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Scaled by  (not justified in the paper)

 

dh
−−√

= softmax( )A
(i)
Ql

A(i)
l

dh√

= softmax( )A
(i)
Vl

A
(i)⊤
l

dh√
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Scaled by  (not justified in the paper)

 

For high  the variance of dot products is high - very small gradients

The scaling results in smoother distribution

dh
−−√

= softmax( )A
(i)
Ql

A(i)
l

dh√

= softmax( )A
(i)
Vl

A
(i)⊤
l

dh√

dh
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Fusion of attention maps by averaging (usually are concatenated):

 

 - word probability for each image region

 - image region probability for each word

=AQl

1
h
∑h

i=1 A
(i)
Ql

=AVl
1
h
∑h

i=1 A
(i)
Vl

∈AQl
R

×T
~

N
~

∈AVl R
×N

~
T
~
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Fusion of attention maps by averaging (usually are concatenated):

 

 - word probability for each image region

 - image region probability for each word

Attended feature representations:Attended feature representations:

 - an average of word vectors weighted by their relevance to (compatibility
with) the image regions

=AQl

1
h
∑h

i=1 A
(i)
Ql

=AVl
1
h
∑h

i=1 A
(i)
Vl

∈AQl
R

×T
~

N
~

∈AVl R
×N

~
T
~

= [1 : T, :Q̂l Q
~
lAQl

]⊤

∈Q̂l R
d×T
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Fusion of attention maps by averaging (usually are concatenated):

 

 - word probability for each image region

 - image region probability for each word

Attended feature representations:Attended feature representations:

 - an average of word vectors weighted by their relevance to (compatibility
with) the image regions

 - an average of image region vectors weighted by their relevance to
(compatibility with) the word

These are still unimodal representationsstill unimodal representations, just attended
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Fusing representations
Each word is fused with a (uniqueunique) representation of the image

 - meaning of the image in the context of the n-th word

Each image region is fused with a (uniqueunique) representation of the question

 - meaning of the question in the context of the t-th image region

= ReLU( [ ]+ ) +q(l+1)n WQl

qln

v̂ln
bQl

qln

v̂ln

= ReLU( [ ]+ ) +v(l+1)t WVl

vlt

q̂ lt

bVi vlt

q̂ lt
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DCN model
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DCN model
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Question representation
 

 

 - GloVe embedding of the n-th word

 

= Bi-LSTM( , )qn
→

qn−1
− →−

e
Q
n

= Bi-LSTM( , )qn
←

qn+1
← −−

e
Q
n

e
Q
n

=qn [ , ]qn
→⊤

qn
←⊤ ⊤

Q = [ ,…, ] ∈q1 qN R
d×N
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Image representation
4 layers from ResNet-152

Each layer of different depth

Different shapes → max pooling and 1 x 1 convolution 
→ 4 layers, each of shape d × 14 × 14
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Image representation
4 layers from ResNet-152

Each layer of different depth

Different shapes → max pooling and 1 x 1 convolution 
→ 4 layers, each of shape 

 
The relative importance of features corresponding to each depth level depends on theThe relative importance of features corresponding to each depth level depends on the
given question:given question:

Features weighted by alphas are summed together

d × 14 × 14

[ , , , ] = softmax(MLP( ))α1 α2 α3 α4 sQ

V = [ , . . . , ] ∈v1 vT R
d×T

T = 14 × 14
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DCN - predicting answers

Different methods for predicting answers:

, (16)
 

, (17)
 

, (18)

=sQL
∑
n=1

N

α
Q
n qLn

=sVL ∑
n=1

N

αV
n vLn

(score of answers encoded as  ) = σ( W ( + ))sA s⊤
A

sQL
sVL

( score of answers ) = σ(MLP( + ))sQL
sVL

( score of answers ) = σ(MLP([ ]))
sQL

sVL
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, (16)
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, (18)

(17) and (18) can produce only answers that are considered when trainingonly answers that are considered when training
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Experiments
Datasets

Images from MS-COCO (200k+ images)

VQA (1.0):

240k+ train, 120k+ val, 240k+ test questions

VQA 2.0:

The largest VQA dataset
440k+ train, 210k+ val, 440k+ test questions
Reduced language bias
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Results VQA 1.0
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Results VQA 2.0
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Ablation study
 - question-guided attention on

image region
 - image-guided attention on

question words
 - DCN co-attention: attention in

both directions

(I ← Q)

(I → Q)

(I ↔ Q)
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How deep features?
Layer 1:

Yes/No questions
is/are/does/can/could

Layer 3:

High importance on questions about
colors

Layer 4:

Highest importance in general
semanticssemantics: what
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Qualitative evaluation
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Thoughts
matter the Does order?
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Processing Systems. 2018.

Often high dataset biases in VQA problems

Do attention maps look at the same regions as humans?

Das, Abhishek, et al. "Human attention in visual question answering: Do humans and deep networks look at the same

regions?." Computer Vision and Image Understanding 163 (2017): 90-100.
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The EndThe EndThe End
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