Transformers #1: Introduction to Transformer
RPL CV/DL reading group

Sebastian Bujwid

23 Feb 2021

Transformers theme: schudule

e 23 Feb (today) (Sebastian): Introduction to the Transformer model
e 9 Mar (Federico): Transformer models for Image
e (tentative) 23 Mar (Yonk): Transformer models in different applications/domains

» (tentative) 6 Apr (Sofia): Alternative approaches to Transformer

229

Agenda

1. Taxonomy: attention, self-attention, Transformer?
« Why attention?
e Why Transformer?
« Discussion!

2. Transformer
e Transformer vs. RNN; Transformer in general
« Some specifics for text
« Discussion!

3. Some details about the Transformer & results

4. Discussion!

3/29

Taxonomy

Attention! - definition

"Attention is a technique that mimics cognitive attention" (Wikipedia)
"(YOUI') Attention is (our) pI’Oﬁt" (Instagram) A Offical sources might deny it.

"The ability to focus on one thing and ignore others" (Alex Graves, 2020) - 1 might

have taken it out of context :/

"Looking at some places more than at others" (Bujwid, 2021)

5/29

Why attention (in neural networks)?

neural networks)?

7129

Anna ar orolig fér miljén sa anvander sin cykel aret runt

P——

Anna is concemed about the environment so uses

{her

8/29

Taxonomy

Comp_atll?lllty How to
(similarity) look?
function)

+ dot-product

+ scaled dof-product + hard attention
« cosine similarity « soft attention
« additive s (.

()

Attention
mechanism

What to
look at?

self-attention (intra-
attention)
cross-modal attention
seq. 1 &seq. 2

()

Specific
models
(architectures)

Transformer

BERT

AlphaFold 2

Vision Transformer
iGPT

()

Type/domain
of input

text

image
video
graph

time series

(-.-)

9/29

Why Transformer [1]?

Let's look at the issues with RNNs first!

Issue #1: Computational efficiency

® ® ® @
This structure is not efficient on GPUs! ! {
A = [A{AR A A

(Image from: http://colah.github.io/)

[1] Vaswani et al., “Attention Is All You Need,” NeurIPS 2017
10/ 29

http://colah.github.io/

Why Transformer [1]?

Let's look at the issues with RNNs first!

Issue #1: Computational efficiency

118
This structure is not efficient on GPUs! i . [A[A A _»
(x) (x)
(Image from: http://colah.github.io/)
Solution #1: An architecture without
sequential operations Just an illustration!

[1] Vaswani et al., “Attention Is All You Need,” NeurIPS 2017
11/29

http://colah.github.io/

Issue #2: Long-term dependencies

12/29

Issue #2: Long-term dependencies

sv:Viskleken | eng: Telephone (game)

fleas?

13/29

Issue #2: Long-term dependencies

sv:Viskleken | eng: Telephone (game)

fleas?

Our unpublished results:

3

14 /29

Issue #2: Long-term dependencies

sv:Viskleken | eng: Telephone (game)

fleas?

Our unpublished results:

3

Solution #2: Always look at the whole sequence (or rather sub-sequence)

15/29

=%,

& Verewsiar
Y, Son Konsr 87

Transformer

Transformer: scaled dot-product self-attention

T - the number of tokens/elements
Q € RT*? _ queries

K € RT*? _xeys

V € RT*% _values

17 /29

Transformer: scaled dot-product self-attention

T - the number of tokens/elements
Q € RT*? _ queries

K € RT*? _xeys

V € RT*% _values

Self-attention when all), K, and V' are a function of the same input sequence X.
+ Q= fo(X), K = fi(X),V = [, (X)

» Typically all linear functions

18 /29

Transformer: scaled dot-product self-attention

T - the number of tokens/elements
Q € RT*? _ queries

K € RT*? _xeys

V € RT*% _values

For each token (query!) compute the "compatibility" with other tokens (keys!):

QK" X
j{a [RT T}

e Or any other f(Q,K) — RT*T

7
. =)
Queries o £ £ 9 3 S » 9
HF ©® © £ »oE 2 L =
)
T 4
= W 14
E c o © @ o)
Keys o858 .88 833
i@ © 6 £ ®» o= = 8 =

19/29

Transformer: scaled dot-product self-attention

T - the number of tokens/elements
Q € RT*? _ queries

K € RT*? _xeys

V € RT*% _values

Normalize the "compatibility" for each query

QKT
softmax —
Jd
Q
—_— (7]
: g = 2 B3
Queries 9 5%, B85 .3
@ © 0 £ ®» o= = & =
3
E-'—'m - S
D o
Keys 2858288 §3%
Fl®e © 6 £ ®» o= = 8 =

20/ 29

Transformer: scaled dot-product self-attention

T - the number of tokens/elements
Q € RT*? _ queries

K € RT*? _xeys

V € RT*% _values

Compute new values:

attention(Q, K, V') = softmax (ij;) v

7

. & ®
Queries o £ = @ 2 ® »
c c © 92 ¢ = T Q
 © © 0 » o= =2 8

©

T 4

= W 14

E - o O @
Keys 28528 .,88 8o
F®o o £ ® o= 2 8

tired

tired

21/29

Transformer: architecture

Positional

p
| Add & Norm ==
Feed
Forward
| D
1 ~ | Add & Norm Je—~
—(_Add 8 Norm | Multi-Head
Feed Attention
Forward J) J) F)
SR
| Add & Norm Jee=
r+{mmqwmm] cked
Multi-Head Multi-Head
Attention Attention
At) At
S J . _JJ
Encoding ®_@
Input Output
Embedding Embedding
Inputs Outputs

Figure 1:

Qutput
FProbabilities

f

| Softmax)

{

| Linear)

(shifted right)

Q-@ Positional
t .
5 Encoding

The Transformer - model architecture.

22 /29

Some details

Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

23 /29

Some details

Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

track do the we ? keep of How order

24 /29

Some details

Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

track do the we ? keep of How order
« Input encoded positions, e.g. based on the sin function

« Learn input position embeddings

25/29

Some details

Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

track do the we ? keep of How order
« Input encoded positions, e.g. based on the sin function
« Learn input position embeddings

Multi-head attention

» More effective (controlling for #params)

26 /29

Some details

Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

track do the we ? keep of How order
« Input encoded positions, e.g. based on the sin function
« Learn input position embeddings

Multi-head attention
» More effective (controlling for #params)

Interpretability?

2729

Results

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the
English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

BLEU Training Cost (FLOPs)

Model
EN-DE EN-FR EN-DE EN-FR

ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0-10%°
GNMT + RL [38] 24.6 39.92 2.3-10 1.4.10%
ConvS2S [9] 25.16 40.46 9.6-10% 1.5.10%
MoE [32] 26.03 40.56 2.0-10" 1.2.10%
Deep-Att + PosUnk Ensemble [39] 40.4 8.0-10%
GNMT + RL Ensemble [38] 2630 41.16 1.8-10%° 1.1.-10*
ConvS2S Ensemble [9] 2636 41.29 7.7-10 1.2.10%!
Transformer (base model) 27.3 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3-10%°

28 /29

Thank you!

Discussion!

