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Transformers theme: schudule
23 Feb (today) (Sebastian): Introduction to the Transformer model

9 Mar (Federico): Transformer models for Image

(tentative) 23 Mar (Yonk): Transformer models in different applications/domains

(tentative) 6 Apr (Sofia): Alternative approaches to Transformer
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Agenda
1. Taxonomy: attention, self-attention, Transformer?

Why attention?

Why Transformer?

Discussion!

2. Transformer

Transformer vs. RNN; Transformer in general

Some specifics for text

Discussion!

3. Some details about the Transformer & results

4. Discussion!
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Taxonomy
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Attention! - definition

"Attention is a technique that mimics cognitive attention" (Wikipedia)

"(Your) Attention is (our) profit" (Instagram) ⚠ Offical sources might deny it.

"The ability to focus on one thing and ignore others" (Alex Graves, 2020) - I might

have taken it out of context :/

"Looking at some places more than at others" (Bujwid, 2021)

5 / 29



Why attention (in neural networks)?
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Why attention (in neural networks)?
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Why attention (in neural networks)?
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Taxonomy
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Issue #1: Computational efficiency

This structure is not efficient on GPUs!

(Image from: http://colah.github.io/)

Why Transformer [1]?

Let's look at the issues with RNNs first!

[1] Vaswani et al., “Attention Is All You Need,” NeurIPS 2017
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Issue #1: Computational efficiency

This structure is not efficient on GPUs!

(Image from: http://colah.github.io/)

Why Transformer [1]?

Let's look at the issues with RNNs first!

[1] Vaswani et al., “Attention Is All You Need,” NeurIPS 2017

Solution #1: An architecture without
sequential operations
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Issue #2: Long-term dependencies
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Issue #2: Long-term dependencies

sv: Viskleken | eng: Telephone (game)
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Issue #2: Long-term dependencies

sv: Viskleken | eng: Telephone (game)

Our unpublished results:
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Issue #2: Long-term dependencies

sv: Viskleken | eng: Telephone (game)

Our unpublished results:

Solution #2: Always look at the whole sequence (or rather sub-sequence)
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Transformer
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Transformer: scaled dot-product self-attention

 - the number of tokens/elements  
 - queries  

 - keys  
 - values

T

Q ∈ R
T×d

K ∈ R
T×d

V ∈ R
T×dv
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Transformer: scaled dot-product self-attention

 - the number of tokens/elements  
 - queries  

 - keys  
 - values

Self-attention when all , , and  are a function of the same input sequence .

, , 

Typically all linear functions

T

Q ∈ R
T×d

K ∈ R
T×d

V ∈ R
T×dv

Q K V X

Q = (X)fq K = (X)fk V = (X)fv
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Transformer: scaled dot-product self-attention

 - the number of tokens/elements  
 - queries  

 - keys  
 - values

For each token (query!) compute the "compatibility" with other tokens (keys!):

Or any other 

T

Q ∈ R
T×d

K ∈ R
T×d

V ∈ R
T×dv

[ ]
QK

T

d√
R
T×T

f(Q,K) → R
T×T
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Transformer: scaled dot-product self-attention

 - the number of tokens/elements  
 - queries  

 - keys  
 - values

Normalize the "compatibility" for each query

T

Q ∈ R
T×d

K ∈ R
T×d

V ∈ R
T×dv

softmax( )
QK

T

d√
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Transformer: scaled dot-product self-attention

 - the number of tokens/elements  
 - queries  

 - keys  
 - values

Compute new values:

T

Q ∈ R
T×d

K ∈ R
T×d

V ∈ R
T×dv

attention(Q,K,V ) = softmax( )V
QK

T

d√
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Transformer: architecture
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Some details

Complexity
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Some details

Complexity

track do the we ? keep of How order
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Some details

Complexity

track do the we ? keep of How order

Input encoded positions, e.g. based on the sin function

Learn input position embeddings
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Some details
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Input encoded positions, e.g. based on the sin function
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Multi-head attention

More effective (controlling for #params)
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Some details

Complexity

track do the we ? keep of How order

Input encoded positions, e.g. based on the sin function

Learn input position embeddings

Multi-head attention

More effective (controlling for #params)

Interpretability?
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Results
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Thank you!

Discussion!
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