
Transformers #1: Introduction to Transformer
RPL CV/DL reading group

Sebastian Bujwid

23 Feb 2021

1 / 29

Transformers theme: schudule
23 Feb (today) (Sebastian): Introduction to the Transformer model

9 Mar (Federico): Transformer models for Image

(tentative) 23 Mar (Yonk): Transformer models in different applications/domains

(tentative) 6 Apr (Sofia): Alternative approaches to Transformer

2 / 29

Agenda
1. Taxonomy: attention, self-attention, Transformer?

Why attention?

Why Transformer?

Discussion!

2. Transformer

Transformer vs. RNN; Transformer in general

Some specifics for text

Discussion!

3. Some details about the Transformer & results

4. Discussion!

3 / 29

Taxonomy

4 / 29

Attention! - definition

"Attention is a technique that mimics cognitive attention" (Wikipedia)

"(Your) Attention is (our) profit" (Instagram) ⚠ Offical sources might deny it.

"The ability to focus on one thing and ignore others" (Alex Graves, 2020) - I might

have taken it out of context :/

"Looking at some places more than at others" (Bujwid, 2021)

5 / 29

Why attention (in neural networks)?

6 / 29

Why attention (in neural networks)?

7 / 29

Why attention (in neural networks)?

8 / 29

Taxonomy

9 / 29

Issue #1: Computational efficiency

This structure is not efficient on GPUs!

(Image from: http://colah.github.io/)

Why Transformer [1]?

Let's look at the issues with RNNs first!

[1] Vaswani et al., “Attention Is All You Need,” NeurIPS 2017
10 / 29

http://colah.github.io/

Issue #1: Computational efficiency

This structure is not efficient on GPUs!

(Image from: http://colah.github.io/)

Why Transformer [1]?

Let's look at the issues with RNNs first!

[1] Vaswani et al., “Attention Is All You Need,” NeurIPS 2017

Solution #1: An architecture without
sequential operations

11 / 29

http://colah.github.io/

Issue #2: Long-term dependencies

12 / 29

Issue #2: Long-term dependencies

sv: Viskleken | eng: Telephone (game)

13 / 29

Issue #2: Long-term dependencies

sv: Viskleken | eng: Telephone (game)

Our unpublished results:

14 / 29

Issue #2: Long-term dependencies

sv: Viskleken | eng: Telephone (game)

Our unpublished results:

Solution #2: Always look at the whole sequence (or rather sub-sequence)

15 / 29

Transformer

16 / 29

Transformer: scaled dot-product self-attention

 - the number of tokens/elements
 - queries

 - keys
 - values

T

Q ∈ R
T×d

K ∈ R
T×d

V ∈ R
T×dv

17 / 29

Transformer: scaled dot-product self-attention

 - the number of tokens/elements
 - queries

 - keys
 - values

Self-attention when all , , and are a function of the same input sequence .

, ,

Typically all linear functions

T

Q ∈ R
T×d

K ∈ R
T×d

V ∈ R
T×dv

Q K V X

Q = (X)fq K = (X)fk V = (X)fv

18 / 29

Transformer: scaled dot-product self-attention

 - the number of tokens/elements
 - queries

 - keys
 - values

For each token (query!) compute the "compatibility" with other tokens (keys!):

Or any other

T

Q ∈ R
T×d

K ∈ R
T×d

V ∈ R
T×dv

[]
QK

T

d√
R
T×T

f(Q,K) → R
T×T

19 / 29

Transformer: scaled dot-product self-attention

 - the number of tokens/elements
 - queries

 - keys
 - values

Normalize the "compatibility" for each query

T

Q ∈ R
T×d

K ∈ R
T×d

V ∈ R
T×dv

softmax()
QK

T

d√

20 / 29

Transformer: scaled dot-product self-attention

 - the number of tokens/elements
 - queries

 - keys
 - values

Compute new values:

T

Q ∈ R
T×d

K ∈ R
T×d

V ∈ R
T×dv

attention(Q,K,V) = softmax()V
QK

T

d√

21 / 29

Transformer: architecture

22 / 29

Some details

Complexity

23 / 29

Some details

Complexity

track do the we ? keep of How order

24 / 29

Some details

Complexity

track do the we ? keep of How order

Input encoded positions, e.g. based on the sin function

Learn input position embeddings

25 / 29

Some details

Complexity

track do the we ? keep of How order

Input encoded positions, e.g. based on the sin function

Learn input position embeddings

Multi-head attention

More effective (controlling for #params)

26 / 29

Some details

Complexity

track do the we ? keep of How order

Input encoded positions, e.g. based on the sin function

Learn input position embeddings

Multi-head attention

More effective (controlling for #params)

Interpretability?

27 / 29

Results

28 / 29

Thank you!

Discussion!

29 / 29

