

Transformers #1: Introduction to Transformer RPL CV/DL reading group

Sebastian Bujwid

23 Feb 2021

Transformers theme: schudule

- 23 Feb (today) (Sebastian): Introduction to the Transformer model
- 9 Mar (Federico): Transformer models for Image
- (tentative) 23 Mar (Yonk): Transformer models in different applications/domains
- (tentative) 6 Apr (Sofia): Alternative approaches to Transformer

Agenda

1. Taxonomy: attention, self-attention, Transformer?

- Why attention?
- Why Transformer?
- Discussion!
- 2. Transformer
 - Transformer vs. RNN; Transformer in general
 - Some specifics for text
 - Discussion!
- 3. Some details about the Transformer & results
- 4. Discussion!

Taxonomy

Attention! - definition

"Attention is a technique that mimics cognitive attention" (Wikipedia)

"(Your) Attention is (our) profit" (Instagram) \triangle Offical sources might deny it.

"The ability to focus on one thing and ignore others" (Alex Graves, 2020) - I might have taken it out of context :/

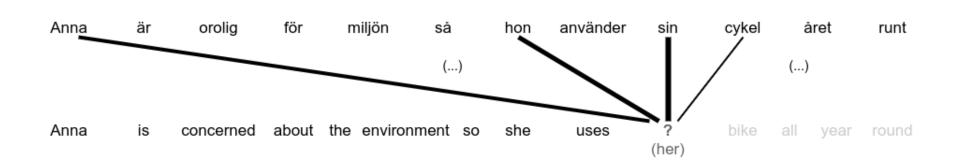
"Looking at some places more than at others" (Bujwid, 2021)

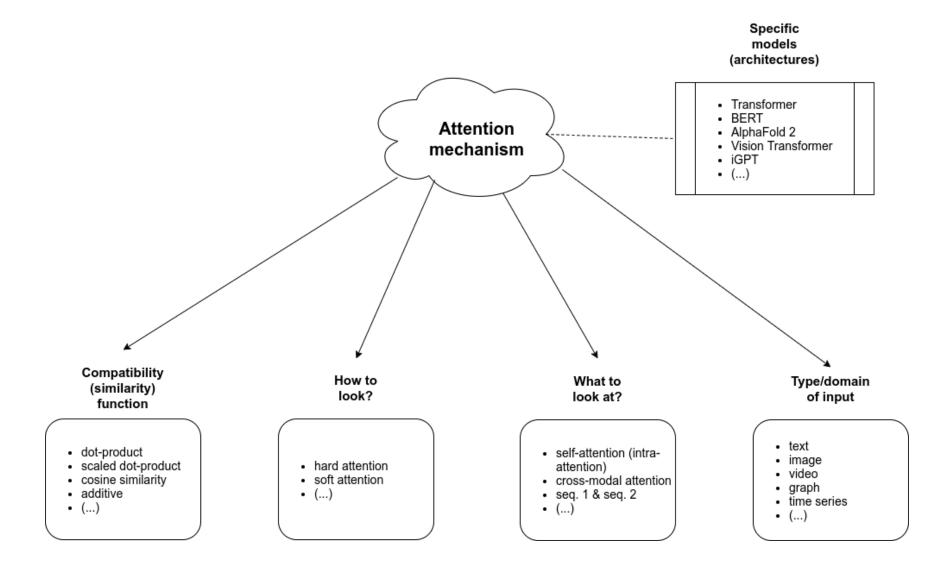
Why attention (in neural networks)?

Why attention (in neural networks)?



Why attention (in neural networks)?



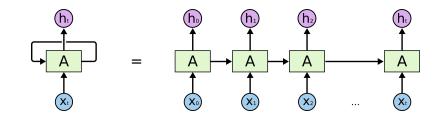


Why Transformer [1]?

Let's look at the issues with RNNs first!

Issue #1: Computational efficiency

This structure is not efficient on GPUs!



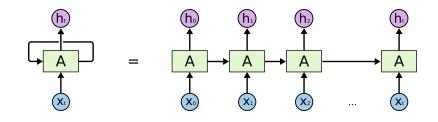
(Image from: http://colah.github.io/)

Why Transformer [1]?

Let's look at the issues with RNNs first!

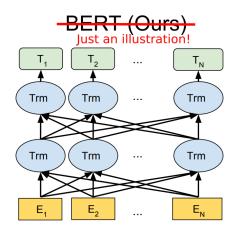
Issue #1: Computational efficiency

This structure is not efficient on GPUs!



(Image from: http://colah.github.io/)

Solution #1: An architecture without sequential operations



[1] Vaswani et al., "Attention Is All You Need," NeurIPS 2017

sv: Viskleken | *eng:* Telephone (game)

sv: Viskleken | *eng:* Telephone (game)

Our unpublished results:

sv: Viskleken | *eng:* Telephone (game)

Our unpublished results:

Doesn't work if too many kids. (Sebastian, 199...)

Solution #2: Always look at the whole sequence (or rather sub-sequence)

Transformer

- T the number of tokens/elements $Q \in \mathbb{R}^{T imes d}$ - queries
- $K \in \mathbb{R}^{T imes d}$ keys $V \in \mathbb{R}^{T imes d_v}$ values

T - the number of tokens/elements $Q \in \mathbb{R}^{T imes d}$ - queries $K \in \mathbb{R}^{T imes d}$ - keys $V \in \mathbb{R}^{T imes d_v}$ - values

Self-attention when all Q, K, and V are a function of the same input sequence X.

•
$$Q=f_q(X)$$
, $K=f_k(X)$, $V=f_v(X)$

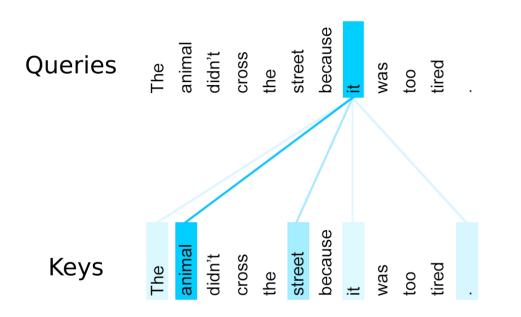
• Typically all linear functions

T - the number of tokens/elements $Q \in \mathbb{R}^{T imes d}$ - queries $K \in \mathbb{R}^{T imes d}$ - keys $V \in \mathbb{R}^{T imes d_v}$ - values

For each token (query!) compute the "compatibility" with other tokens (keys!):

$$rac{QK^T}{\sqrt{d}} \qquad \left[\mathbb{R}^{T imes T}
ight]$$

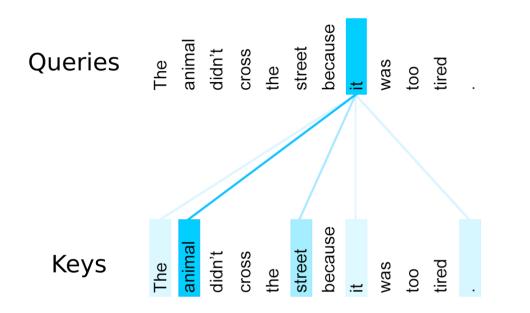
- Or any other $f(Q,K) o \mathbb{R}^{T imes T}$



T - the number of tokens/elements $Q \in \mathbb{R}^{T imes d}$ - queries $K \in \mathbb{R}^{T imes d}$ - keys $V \in \mathbb{R}^{T imes d_v}$ - values

Normalize the "compatibility" for each query

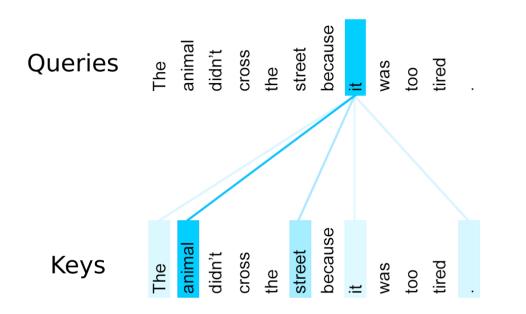
$$\operatorname{softmax}\left(rac{QK^T}{\sqrt{d}}
ight)$$



T - the number of tokens/elements $Q \in \mathbb{R}^{T imes d}$ - queries $K \in \mathbb{R}^{T imes d}$ - keys $V \in \mathbb{R}^{T imes d_v}$ - values

Compute new values:

$$\operatorname{attention}(Q,K,V) = \operatorname{softmax}\left(rac{QK^T}{\sqrt{d}}
ight)V$$



Transformer: architecture

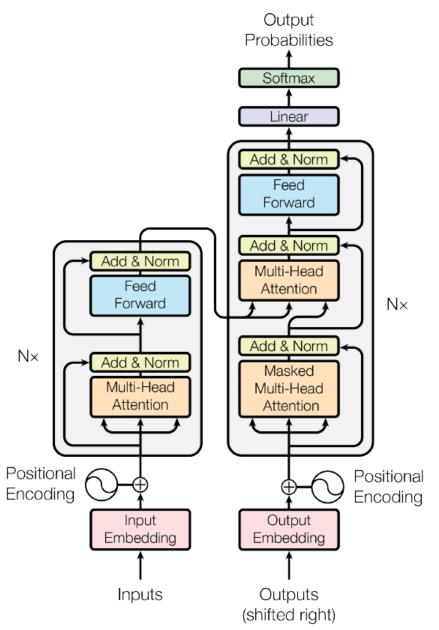


Figure 1: The Transformer - model architecture.

Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(n \cdot d^2)$	O(n)	O(n)
Convolutional	$O(\vec{k}\cdot n\cdot \vec{d}^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(\overline{n} \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

track do the we? keep of How order

Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(\overline{n} \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

track do the we ? keep of How order

- Input encoded positions, e.g. based on the sin function
- Learn input position embeddings

Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(\overline{n} \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

track do the we ? keep of How order

- Input encoded positions, e.g. based on the sin function
- Learn input position embeddings

Multi-head attention

• More effective (controlling for #params)

Complexity

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types. n is the sequence length, d is the representation dimension, k is the kernel size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type	Complexity per Layer	Sequential Operations	Maximum Path Length
Self-Attention	$O(n^2 \cdot d)$	O(1)	O(1)
Recurrent	$O(\overline{n} \cdot d^2)$	O(n)	O(n)
Convolutional	$O(k \cdot n \cdot d^2)$	O(1)	$O(log_k(n))$
Self-Attention (restricted)	$O(r \cdot n \cdot d)$	O(1)	O(n/r)

track do the we ? keep of How order

- Input encoded positions, e.g. based on the sin function
- Learn input position embeddings

Multi-head attention

• More effective (controlling for #params)

Interpretability?

Model	BLEU		Training Cost (FLOPs)	
Model	EN-DE	EN-FR	EN-DE	EN-FR
ByteNet 18	23.75			
Deep-Att + PosUnk [39]		39.2		$1.0\cdot10^{20}$
GNMT + RL 38	24.6	39.92	$2.3\cdot10^{19}$	$1.4\cdot10^{20}$
ConvS2S 9	25.16	40.46	$9.6\cdot10^{18}$	$1.5\cdot10^{20}$
MoE 32	26.03	40.56	$2.0\cdot10^{19}$	$1.2\cdot 10^{20}$
Deep-Att + PosUnk Ensemble 39		40.4		$8.0 \cdot 10^{20}$
GNMT + RL Ensemble 38	26.30	41.16	$1.8\cdot10^{20}$	$1.1\cdot 10^{21}$
ConvS2S Ensemble 9	26.36	41.29	$7.7\cdot 10^{19}$	$1.2\cdot 10^{21}$
Transformer (base model)	27.3	38.1	$3.3 \cdot 10^{18}$	
Transformer (big)	28.4	41.8	$2.3 \cdot 10^{19}$	

Table 2: The Transformer achieves better BLEU scores than previous state-of-the-art models on the English-to-German and English-to-French newstest2014 tests at a fraction of the training cost.

Thank you! Discussion!