Temporal-Relational CrossTransformers for Few-Shot Action Recognition

T. Perrett, A. Masullo, T. Burghardt, M. Mirmehdi, D. Damen University of Bristol CVPR 2021

CV/DL reading group on Transformers April 6th 2021 Sofia Broomé

In a nutshell

- Few-shot action recognition approach building on tuple matching between query and support set
 - Constructs query-specific class prototypes using CrossTransformer method applied to video frames instead of image parts
 - Main result: SotA on action recognition few-shot benchmarks (Kinetics, Something-something, HMDB51 and UCF101)

Few-shot learning (action recognition setting) preliminaries

- You have an (action recognition) dataset with, say, 100 classes
- Train on e.g. 64 of those, validate on 12, test on 24 (i.e. the classes are new and unseen at test-time)
- For each class you have a small labeled support set (K videos, e.g. 5)
- Given a query video, match it to one of the classes
- Overall goal: Train the system to quickly (with few attempts) learn how to match a query to a support class
- Compute query-class distances and pass through cross-entropy loss
- During training, sample X tasks (64 choose 5 = 7M, 24 choose 5 = 42k), In this paper: X=10 000. Average the results at test time

What are CrossTransformers?

• "CrossTransformers: spatially-aware few-shot transfer" by C. Doersch, A. Gupta and A. Zisserman (NeurIPS 2020)

• Idea: Transformer attention **between** spatial locations in query image and spatial locations in support set images

(hence cross (?))

What are **Temporal-Relational** CrossTransformers?

- Apply CrossTransformer idea to video frames instead
- Sample *tuples* from query video and from all videos in support set, compute attention between these
- Flexible-length ω for tuples (although only 8 frames are sampled from videos here), so $\omega \leq 8$
- Different ω can be combined into Ω set for final classification
- One Transformer per ω
- $\Omega = \{2, 3\}$ works best in this paper

How is this done concretely? For $\omega = 2$

Query representation Q_p for pair p = (p_1, p_2)

$$Q_p = [\Phi(q_{p_1}) + PE(p_1), \Phi(q_{p_2}) + PE(p_2)] \in \mathbb{R}^{2 \times D}$$

• One pair m= (m_1, m_2) from support set representation, similarly: $S_{km}^c = [\Phi(s_{km_1}^c) + PE(m_1), \Phi(s_{km_2}^c) + PE(m_2)] \in \mathbb{R}^{2 \times D}$

Φ is a CNN, c is the class, k is the video Whole support set for one class:

$$\mathbf{S}^c = \{S^c_{km} : (1 \le k \le K) \land (m \in \Pi)\}$$

How is this done concretely? For $\omega = 2$

• Will use these representations in a Transformer query/key/value setting

• To compute query-specific prototypes for each class $\, {f t}_p^c \,$

How is this done concretely? For $\omega = 2$

• Calculate query-specific class prototypes (next slide), \mathbf{t}_p^c and then: distance between prototype and query representation (u_p)

$$T(Q_p, \mathbf{S}^c) = \|\mathbf{t}_p^c - \mathbf{u}_p\|$$

• Consider multiple pairs from query video, take average distance

$$\mathbf{Q} = \{Q_p : p \in \Pi\}$$
$$T(\mathbf{Q}, \mathbf{S}^c) = \frac{1}{|\Pi|} \sum_{p \in \Pi} T(Q_p, \mathbf{S}^c)$$

Scaled dot-product attention to obtain \mathbf{t}_p^c

• Query Y, key Γ and value Λ linear maps (shared across classes) Also query Y and key Γ are always shared within a class

 $\Upsilon, \Gamma : \mathbb{R}^{2 \times D} \mapsto \mathbb{R}^{d_k} \quad \text{and} \quad \Lambda : \mathbb{R}^{2 \times D} \mapsto \mathbb{R}^{d_v}$

• Correspondence between query p and support set tuple km, dot product between key and query:

$$a_{kmp}^{c} = (\Gamma \cdot L(S_{km}^{c})) \cdot (\Upsilon \cdot L(Q_{p}))$$

L is layer normalization.

• Finally, scaling and softmax:

$$\tilde{a}_{kmp}^c = \frac{\exp(a_{kmp}^c)/\sqrt{d_k}}{\sum_{l,n} \exp(a_{lnp}^c)/\sqrt{d_k}}$$

Scaled dot-product attention to obtain \mathbf{t}_p^c continued.

Apply same value-transform Λ to query and support set tuple

 $\Upsilon, \Gamma : \mathbb{R}^{2 \times D} \mapsto \mathbb{R}^{d_k} \quad \text{and} \quad \Lambda : \mathbb{R}^{2 \times D} \mapsto \mathbb{R}^{d_v}$ $\mathbf{v}_{km}^c = \Lambda \cdot S_{km}^c$ $\mathbf{t}_p^c = \sum \tilde{a}_{kmp}^c \mathbf{v}_{km}^c \qquad T(Q_p, \mathbf{S}^c) = \|\mathbf{t}_p^c - \mathbf{u}_p\|$ km $\mathbf{u}_p = \Lambda \cdot Q_p$

Final version for all "cardinalities": T^{Ω}

- Each TRX T^ω includes query, key and value linear maps corresponding to the dimensionality of ω

$$\Upsilon^{\omega}, \Gamma^{\omega} : \mathbb{R}^{\omega \times D} \mapsto \mathbb{R}^{d_k} \text{ and } \Lambda^{\omega} : \mathbb{R}^{\omega \times D} \mapsto \mathbb{R}^{d_v}$$

• Accumulate distances from the different TRXs:

$$\mathbf{T}^{\Omega}(Q, \mathbf{S}^c) = \sum_{\omega \in \Omega} T^{\omega}(\mathbf{Q}^{\omega}, \mathbf{S}^{c\omega})$$

- Query is assigned to class with lowest T^{Ω}

Experiments

• Flagship result: State-of-the-art on 5-way, 5-shot benchmarks

Method	Kinetics	$SSv2^{\dagger}$	SSv2*	HMDB	UCF
CMN [31]	78.9	-	-	-	-
CMN-J [32]	78.9	48.8	-	-	-
TARN [3]	78.5	-	-	-	-
ARN [27]	82.4	-	-	60.6	83.1
OTAM [4]	85.8	-	52.3	-	-
TRX (Ours)	85.9	59.1	64.6	75.6	96.1

Table 1: Results on 5-way 5-shot benchmarks of Kinetics (split from [32]), SSv2 ([†]: split from [32], ^{*}: split from [4]), HMDB51 and UCF101 (both splits from [27]).

Experiments

• TRX with different $\boldsymbol{\Omega}$ values

Cardinalities	Num tuples	Kinetics	$SSv2^{\dagger}$
$\Omega = \{1\}$	-	85.2	53.3
$\Omega = \{2\}$	28	85.0	57.8
$\Omega = \{3\}$	56	85.6	58.8
$\Omega = \{4\}$	70	84.5	58.9
$\Omega = \{2, 3\}$	84	85.9	59.1
$\Omega = \{2, 4\}$	98	84.4	58.4
$\Omega = \{3, 4\}$	126	85.3	59.1
$\Omega{=}\{2,3,4\}$	154	85.3	58.9

Table 2: Comparing all values of Ω for TRX, noting the number of tuples for each model, given by $\sum_{\omega \in \Omega} |\Pi^{\omega}|$.

• Skipping remaining experiments since they mostly are there to ensure that the method is behaving as desired

Conclusion for CV/DL group

- This was another example of how to apply Transformers-principles in a vision setting
- Videos are represented by ordered tuples of frames at different positions, allowing flexibility in what speeds and temporal offsets we match query with support set
- Quite thorough experimentation shows that the method seems to be doing what it should (qualitative examples, uses multiple support videos, etc)

Discussion points

- Thorough paper, following standard recipe for a CV-paper (currently popular task, slightly new idea, extensive experimentation with ablations, beats SotA, well-written)
- "Temporality": Representing videos, first by only 8 frames, and then with pairs and triplets, with frame-wise down-sampling
- Toy-flavor of few-shot task and datasets?
 - A robot that encounters unseen objects. How will it find 5 labels? (Usually N is small in N-way k-shot classification)
 - Videos are short snippets (temporally trimmed)
- Trained end-to-end with CNN. Missing fixed backbone ablation?

Claim

• Section 4.3.5:

"Importantly, the method's runtime scales linearly with the number of frames."

Figure 8: SSv2[†] accuracy (left y-axis) vs runtime analysis (right y-axis in seconds/task) for TRX $\Omega = \{2, 3\}$ as the number of sampled frames varies from 4 to 12 frames.

