Fast, Robust and Scalable Clustering Algorithms
with Applications in Computer Vision

Vahan Petrosyan

Department of Automatic Control, KTH Royal Institute of Technology

Supervisor: Alexandre Proutiere, Co-supervisor: Mikael Johansson

30 November 2018
Outline

- Introduction to Clustering Algorithms
- Motivation
- Cluster Validation
- Cluster Initialization
- Density Transformation
- Clustering Pixels in the Images
 - Application: Image Annotation
Outline

- Introduction to Clustering Algorithms
- Motivation
- Cluster Validation
- Cluster Initialization
- Density Transformation
- Clustering Pixels in the Images
 - Application: Image Annotation
Clustering

Clustering is the task of grouping a set of objects such that more “similar” object will appear in the same group

Applications:
- Document Classification
- Insurance Fraud Detection
- Gene Expression
- Image Segmentation
- etc.
Clustering Algorithms

- K-means
- Spectral Clustering
- Level Set Clustering
- Hierarchical Clustering
- Density-Based Clustering
- Mode-Based Clustering
- Expectation Maximization
- etc.
Clustering Algorithms

- K-means
- Spectral Clustering
- Level Set Clustering
- Hierarchical Clustering
- Density-Based Clustering
- Mode-Based Clustering
- Expectation Maximization
- etc.
K-means

- **Objective:**

\[
J(C) = \sum_{j=1}^{k} \sum_{x_i \in c_j} \|x_i - \mu_j\|^2
\]

- **Algorithm**

K-means

1. Select an initial partition with k clusters.
2. Repeat steps 3 and 4 until cluster membership stabilizes.
3. Generate a new partition by assigning each pattern to its closest cluster center.
K-means cont.

- Parameters
 - Number of Clusters, k
 - Cluster Initialization
 - Distance Metric

- Drawbacks
 1. Finds only center based clusters
 2. k is not known
 3. Sensitive to initialization
 4. Sensitive to outliers
K-means cont.

- Parameters
 - Number of Clusters, k
 - Cluster Initialization
 - Distance Metric

- Drawbacks
 1. Finds only center-based clusters
 2. k is not known
 3. Sensitive to initialization
 4. Sensitive to outliers
Spectral Clustering

1. Input dataset X and select the number of clusters k.
2. Construct S.
3. Compute normalized Laplacian L.
4. Compute the first k eigenvectors u_1, \cdots, u_k of L.
5. Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors u_1, \cdots, u_k as columns.
6. Form the matrix $T \in \mathbb{R}^{n \times k}$ from U by normalizing the rows to norm 1.
7. Use the matrix T as an input to k-means algorithm.
8. Set output of k-means as the cluster assignment of input data X.

$$S_{i,j} = e^{-\frac{|x_i - x_j|^2}{\sigma^2}}$$
Spectral Clustering

1. Input dataset X and select the number of clusters k.
2. Construct S
3. Compute normalized Laplacian L
4. Compute the first k eigenvectors u_1, \cdots, u_k of L
5. Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors u_1, \cdots, u_k as columns
6. Form the matrix $T \in \mathbb{R}^{n \times k}$ from U by normalizing the rows to norm 1
7. Use the matrix T as an input to k-means algorithm
8. Set output of k-means as the cluster assignment of input data X

where $S_{i,j} = e^{ \frac{|x_i - x_j|^2}{\sigma^2} }$
Spectral Clustering cont.

- **Parameters**
 - Same as K-means
 - σ

- **Drawbacks**
 1. Finds only center-based clusters
 2. k is not known
 3. Sensitive to Initialization
 4. Sensitive to Outliers
Spectral Clustering cont.

- **Parameters**
 - Same as K-means
 - σ

- **Drawbacks**

Tuning σ is a challenging problem
Level Set Clustering

- Given: \(X = \{x_1, \cdots, x_n\} \) i.i.d. sample drawn from \(p(x|\theta) \)

- Upper Level Set: \(L_\lambda(p) = \{x \in \mathbb{R}^d : p(x|\theta) \geq \lambda\} \).

- Connected components of \(L_\lambda(p) \) form a cluster at each level \(\lambda \)

- Challenge: The estimation of \(p(x|\theta) \) is not trivial
Level Set Clustering cont.

$L_\lambda(p) = \{x \in \mathbb{R}^d : p(x|\theta) \geq \lambda\}.$

Visualize Clusters with Cluster Trees
Level Set Clustering cont.

- **Parameters**
 - Parameters for estimating $\hat{p}(x|\theta)$
 - λ

- **Drawbacks**
 1. Finds only center-based clusters
 2. k is not known
 3. Sensitive to Initialization
 4. Sensitive to Outliers
Level Set Clustering cont.

Problems:
1. Fails when clusters overlap
2. Suffers from curse of dimensionality
Summary

- All clustering algorithms come with their advantages and disadvantages.
Outline

- Introduction to Clustering Algorithms
- Motivation
- Cluster Validation
- Cluster Initialization
- Density Transformation
- Clustering Pixels in the Images
 - Application: Image Annotation
Motivation

User Dilemma:

- How do we define the pairwise similarity/distance?
- How many clusters are present in the data?
- Does the algorithm require multiple runs?
- Does the data contain any outliers?
- Does it suffer from curse of dimensionality?
- Does the algorithm scale well with increase in dataset size?
- Is it easy to tune the parameters?
Outline

- Introduction to Clustering Algorithms
- Motivation
- Cluster Validation
- Cluster Initialization
- Density Transformation
- Clustering Pixels in the Images
 - Application: Image Annotation
Determining the number of clusters

- Choose a clustering algorithm (usually K-means is used)
- Choose a cluster validation metric (Gap, BIC, AIC, Silhouette or other indices)
Determining the number of clusters

- Choose a clustering algorithm (usually K-means is used)
- Choose a cluster validation metric (Gap, Jump, Silhouette or other indices)

- Run the given clustering algorithm for $k = 1, 2, \ldots, k_{max}$ (often K-means)
- For each k run the algorithm multiple times for different initialization
- Compute the validation index for each value of k and initialization
- Choose the number of clusters by maximizing the value of a given validation index.
Determining the number of clusters

- Choose a clustering algorithm (usually K-means is used)
- Choose a cluster validation metric (Gap, Jump, Silhouette or other indices)
- Run the given clustering algorithm for $k = 1, 2, \ldots, k_{max}$ (often K-means)
- For each k run the algorithm multiple times of better initialization
- Computer the validation index for each value of k and initialization
- Choose the number of clusters by maximizing/minimizing the value of a given validation index.
Viral Clustering ("A Robust Method to Extract Structures in Heterogeneous Datasets")

- Run the algorithm once
- Start each point as a separate cluster
- Alternate between **Spread Virus** and **Suppress Virus** until convergence
Spread Virus

1. Randomly sample a point from the smallest cluster without replacement
2. Change the label of sampled point with the label of one of its NN, randomly
3. Repeat 1 and 2, until all the points in the dataset are sampled

Interpretation: Spread the epidemic and kill the small and well-connected clusters

Algorithm 1: Spread Virus

```
1 Input: y ∈ \{1, 2, \ldots, n\}^m, m ;
2 Initialization: s = \{1, 2, \ldots, n\};
3 while s ≠ ∅ do
   4   \( l \leftarrow \text{rand_smallest}(y, s) \);
   5   s ← s\{l\};
   6   \( l' \leftarrow \text{rand_m}(D_l) \);
   7   y_l ← y_{l'} ;
8 end
9 Output: y;
```
Suppress Virus

1. perform one iteration of K-means

- **Interpretation**: Stop the spreading epidemic based on the cluster center distance

Algorithm 2: Suppress Virus

1. **Inputs**: $y \in \{1, 2, \cdots, n\}^n$;
2. $k \leftarrow \text{nb_clusters}(y), \ y \leftarrow \text{re_index}(y)$;
3. $(\mu_1, \ldots, \mu_k) \leftarrow \text{centers}(y)$;
4. for $l = 1 : n$ do
 5. $y_l \leftarrow \arg\min_{j \in \{1, \ldots, k\}} d(x_l, \mu_j)$
5. end
6. **Output**: y;
Viral Clustering: Demo

https://www.youtube.com/watch?v=h4xYrQZn5B4
Viral Clustering: Simulated Data

- Exponential Clusters
- Student-t Clusters
- Beta Clusters
- Mixed Clusters
Comparison: Number of Clusters

![Image of bar chart and graph](image)

<table>
<thead>
<tr>
<th></th>
<th>Exp</th>
<th>T</th>
<th>Beta</th>
<th>Mixture</th>
<th>Gaussian</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$\mu_k \pm \sigma_k$</td>
</tr>
<tr>
<td>KL</td>
<td>20.9±11</td>
<td>16±12.6</td>
<td>18.9±11.8</td>
<td>17.8±12.6</td>
<td>23.7±5.2</td>
</tr>
<tr>
<td>CH</td>
<td>31.5±5.3</td>
<td>25.5±4.5</td>
<td>24.9±3.8</td>
<td>26.2±6.3</td>
<td>24±2.5</td>
</tr>
<tr>
<td>HR</td>
<td>4.9±5.2</td>
<td>3.2±0.6</td>
<td>3.9±2.5</td>
<td>5.5±5.9</td>
<td>3.6±1.5</td>
</tr>
<tr>
<td>SL</td>
<td>19.2±7.4</td>
<td>3.6±2.3</td>
<td>5.7±4.5</td>
<td>9.9±5.8</td>
<td>2±0</td>
</tr>
<tr>
<td>Gap</td>
<td>2.1±1.5</td>
<td>1.6±0.9</td>
<td>1.9±1.1</td>
<td>1.9±1.2</td>
<td>2.4±1.7</td>
</tr>
<tr>
<td>BIC</td>
<td>23.3±1.5</td>
<td>22.4±5.7</td>
<td>21.3±2.3</td>
<td>20.6±2.6</td>
<td>1±0</td>
</tr>
<tr>
<td>Jump</td>
<td>26.4±5.6</td>
<td>21.6±1.9</td>
<td>20.3±4.2</td>
<td>23.7±6.6</td>
<td>39.2±0.9</td>
</tr>
<tr>
<td>VC</td>
<td>20±0</td>
<td>19.9±0.1</td>
<td>19.7±0.6</td>
<td>19.7±0.7</td>
<td>20±0</td>
</tr>
</tbody>
</table>

Fig. Mean and Standard deviation of predicted number of clusters out of 50 experiment
Comparison: Accuracy and Initialization

Accuracy of the various clustering algorithms on the artificial datasets (100 realizations for each dataset). **Left column:** Adjusted Rand Index (the higher, the better) and **right column:** Variation of Information Index (the lower, the better).
We proposed a technique towards solving 2 major drawbacks of K-means clustering:

- Number of Clusters, \(k \)
- Cluster Initialization
- Distance Metric

Drawbacks:

1. Finds only center-based clusters
2. \(k \) is not known
3. Sensitive to Initialization
4. Sensitive to Outliers
What about the following 2 cases?

Center based clusters

Sensitivity to outliers

Cannot be addressed with K-means algorithm, because of its objective
Viral Spectral Clustering

Spectral Clustering

1. Input dataset X and select the number of clusters k.
2. Construct S.
3. Compute normalized Laplacian L.
4. Compute the first k eigenvectors u_1, \cdots, u_k of L.
5. Let $U \in \mathbb{R}^{n \times k}$ be the matrix containing the vectors u_1, \cdots, u_k as columns.
6. Form the matrix $T \in \mathbb{R}^{n \times k}$ from U by normalizing the rows to norm 1.
7. Use the matrix T as an input to k-means algorithm.
8. Set output of k-means as the cluster assignment of input data X.

More details are discussed in Chapter 4.
Outline

- Introduction to Clustering Algorithms
- Motivation
- Cluster Validation
- Cluster Initialization
- Density Transformation
- Clustering Pixels in the Images
 - Application: Image Annotation
Density Estimation: Preliminaries

- Given: \(X = \{x_1, \cdots, x_n\} \subseteq \mathbb{R}^d \)
- The \(k \)-th nearest neighbor density estimate \(f_k(x) \) is defined
 \[
 f_k(x) \triangleq \frac{k}{n \cdot v_d \cdot r_k(x)^d},
 \]
 \(v_d \) is the volume of the unit sphere in \(\mathbb{R}^d \), and \(r_k(x) \) is the \(k \)-th nearest neighbor distance of point \(x \)

- The closest mode of point \(x_i \)
 \[
 \mathcal{M}(x_i) = \arg\max_{x_j \in C_i} [f_k(x_j)] = \arg\min_{x_j \in C_i} [r_k(x_j)]
 \]
Transformed Density

- Define Modal Density (MDR) Ratio

\[\theta_k(x) = \frac{r_k(x)}{r_k(M(x))} = \left(\frac{f_k(M(x))}{f_k(x)} \right)^{1/d} \]

- Transformed density \(\tilde{f}_k(x) \)

\[\tilde{f}_k(x) = e^{-\gamma[\theta_k(x) - 1]} \]
Properties of Transformed Density

- Transformed density $\tilde{f}_k(x)$ preserves the local minima and maxima of the original density.
- Transformed density $\tilde{f}_k(x) = 1$, for every local maximum, i.e. when $x = \mathcal{M}(x)$.
- Normalizes cluster modes to one, while increasing the gap between the clusters.
Applications of $\tilde{f}_k(x)$: Level Set Clustering

- Level Set Clustering requires distance matrix as an input
- We modify the input of the distance matrix by the following:

$$\tilde{d}_k(x_i, x_j) = \frac{d(x_i, x_j)}{\mathcal{K}_k(x_i, x_j)}$$

where

$$\mathcal{K}_k(x_i, x_j) = \left[\frac{\tilde{f}_k(x_i) + \tilde{f}_k(x_j)}{2} \right] \mathbb{I}[i \in \mathcal{N}_k(x_j) || j \in \mathcal{N}_k(x_i)]$$

- Instead we used the modified distance as an input of level set clustering
Toy Example: $\tilde{f}_k(x)$ on Mixture of 3 Gaussian
Toy Example: Level-Set Clustering
Applications of $\tilde{f}_k(x)$: T-sne Dim. Reduction

- T-sne is a dimensionality reduction technique that takes an input the similarity matrix
- We modify the input of the similarity matrix by the following

$$\tilde{S}_k(x_i, x_j) = S(x_i, x_j) \cdot K_k(x_i, x_j)$$

where

$$K_k(x_i, x_j) = \left[\frac{f_k(x_i) + f_k(x_j)}{2} \right] \mathbb{1}[i \in \mathcal{N}_k(x_j) \land j \in \mathcal{N}_k(x_i)]$$

- Instead we used the modified similarities as an input of T-sne
The transformation increases the gap between the clusters.
Clusters are less uniform when transformation is applied.
The transformation increases the gap between the clusters.
Clusters are less uniform when transformation is applied.
Summary

- Transformed Density, $\tilde{f}_k (x)$
- Defining similarity or distance using $\tilde{f}_k (x)$

\[
\tilde{S}_k(x_i, x_j) = S(x_i, x_j) \cdot \mathcal{K}_k(x_i, x_j),
\]
\[
\tilde{d}_k(x_i, x_j) = \frac{d(x_i, x_j)}{\mathcal{K}_k(x_i, x_j)}
\]

where,
\[
\mathcal{K}_k(x_i, x_j) = \left[\frac{\tilde{f}_k(x_i) + \tilde{f}_k(x_j)}{2} \right] \mathbb{I} [i \in \mathcal{N}_k(x_j) \mid j \in \mathcal{N}_k(x_i)]
\]

This can be viewed as semi-supervised approach for defining distance or similarity i.e. better we estimate $\tilde{f}_k (x)$, better the similarity or distance metric would be.
Outline

- Introduction to Clustering Algorithms
- Motivation
- Cluster Validation
- Cluster Initialization
- Density Transformation
- Clustering Pixels in the Images
 - Application: Image Annotation
Clustering Pixels in the Images

- Superpixel algorithms group neighboring pixels with similar color intensities into small patches such that object boundaries are well preserved.
Desirable properties of Superpixel Algorithms

- Boundary adherence
- Compactness
- Smoothness
- Size homogeneity
- Runtime
- Number of superpixels
Desirable properties of Superpixel Algorithms

- Boundary adherence
- Compactness
- Smoothness
- Size homogeneity
- Runtime
- Number of superpixels

Motivation: Create an algorithm that will satisfy all the requirements above
Setup

- Given
 - The image $X = \{x_1, \ldots, x_n\}$
 - Image contour $C = \{c_1, \ldots, c_n\}$
 - Weighted neighborhood graph of degree 4, $G = \{\mathcal{V}, \mathcal{E}, \mathcal{W}\}$

- Define:
 - Contour pixel similarity: $w_{l,l'} = e^{-\frac{c_l + c_{l'}}{\sigma_1}}$, if $(l, l') \in \mathcal{E}$
Cut and Average Linkage

- For the given superpixels S_i and S_j define

$$\text{Cut}(S_i, S_j) = \sum_{\ell \in S_i} \sum_{\ell' \in S_j} w_{\ell, \ell'}$$

- Define average linkage as

$$\text{Link}(S_i, S_j) = e^{-\frac{||\mu_i - \mu_j||_2}{\sigma^2}}$$

where μ_i and μ_j are average color intensity of S_i and S_j
Superpixel Similarity

Define the Superpixel Similarity

\[A(S_i, S_j) = \frac{\text{Cut}(S_i, S_j) \times \text{Link}(S_i, S_j)}{|S_i||S_j|} \]
Superpixel Similarity

Define the Superpixel Similarity

\[A(S_i, S_j) = \frac{\text{Cut}(S_i, S_j) \times \text{Link}(S_i, S_j)}{|S_i||S_j|} \]

- Contour similarity
- Color similarity
- Size Homogeneity
Algorithm: greedy hierarchical merge, which promotes the characteristics we discussed earlier.

\[A(S_i, S_j) = \frac{\text{Cut}(S_i, S_j) \times \text{Link}(S_i, S_j)}{|S_i||S_j|} \]
Algorithm 7: PALC Superpixels

1. **Input:** image \mathcal{X}, contour C, k, σ_1, σ_2, h;
2. $C_G = C + \text{Grid}(\mathcal{X}, k, \sigma_1)$;
3. $S \leftarrow \text{Watershed}(C_G)$;
4. $K \leftarrow \max(S)$;
5. Compute $A = (A(S_i, S_j))_{i,j \in \{1, \ldots, K\}}$ from \mathcal{X}, C_G and S using Eq. (6.1);
6. while $K > k$ do
 7. Choose $(i, j) \in \text{argmax} A(S_i, S_j)$;
 8. if $\frac{|S_i| + |S_j|}{|S_{(1)}|} < h$ then
 9. $S_i \leftarrow S_i \cup S_j$, $S \leftarrow S \setminus \{S_j\}$
 10. else
 11. $i' \in \text{argmax} A(S_{(1)}, S_{i'})$;
 12. $S_{i'} \leftarrow S_{(1)} \cup S_{i'}$, $S \leftarrow S \setminus \{S_{(1)}\}$
 13. end
 14. Update A;
 15. $K \leftarrow K - 1$;
7. end
8. Output: S;
Effect of parameter h

Algorithm 7: PALC Superpixels

1. **Input**: image \mathcal{X}, contour C, k, σ_1, σ_2, h.
2. $C_G = C + \text{Grid}(\mathcal{X}, k, \sigma_1)$
3. $S \leftarrow \text{Watershed}(C_G)$
4. $K \leftarrow \max(S)$
5. Compute $A = (A(S_i, S_j))_{i,j\in\{1,...,K\}}$ from \mathcal{X}, C_G and S using Eq. (6.1).
6. **while** $K > k$ **do**
7. Choose $(i, j) \in \text{argmax} A(S_i, S_j)$;
8. **if** $\frac{|S_i|+|S_j|}{|S_{(1)}|} \geq h$ **then**
9. $S_i \leftarrow S_i \cup S_j, S \leftarrow S \setminus \{S_j\}$
10. **else**
11. $i' \in \text{argmax} A(S_{(1)}, S_{i'})$;
12. $S_{i'} \leftarrow S_{(1)} \cup S_{i'}, S \leftarrow S \setminus \{S_{(1)}\}$
13. **end**
14. Update A;
15. $K \leftarrow K - 1$
16. **end**
17. **Output**: S;
Experiments

Contour Matters!

Contour Matters!
Experiments on DAVIS dataset
Visual Comparison

- Preserves object boundaries
- Has smooth boundaries
- Has fast runtime

- Promotes Similar Color
- Promotes Size Homogeneity
- Promotes Compactness

PALC

- PALC-RCF (Proposed)
- PALC-SRF (Proposed)
- ERS [17]
- FH [15]

- LSC [22]
- SCALP [24]
- SLIC [16]
- SNIC [21]
Applications: Image Annotation
Applications: Image Annotation

- Deep learning based computer vision algorithms are data hungry
- Data quality often is more important than state-of-the-art algorithm
- Hence, image annotation software became a hot research topic in the computer vision community
Applications: Image Annotation

- Deep learning based computer vision algorithms are data hungry
- Data quality often is more important than state-of-the-art algorithm
- Hence, image annotation software became a hot research topic in the computer vision community
Advantages of PALC Annotation

- PALC runs **10x faster** than some of the fastest segmentation-based technologies used in annotation.
- PALC is **extremely accurate** and generates **non-homogeneous regions**. This allows to select both large and small objects with just one click.
- PALC allows to **change** the number of segments **instantly**.
- PALC has a **manual correction feature** for the regions that need further editing.
- PALC also has a **self-learning feature** (i.e. the segmentation quality improves with more and more annotated data).
Conclusion

Chapter 3
Validation

Chapter 3,4
Initialization

Chapter 4
Finds only center based clusters

Chapter 5
Dimensionality reduction

Chapter 5
Density estimation and transformation

Chapter 6
Clustering pixels in the images

Chapter 7
Applications
Future Work

1. **Clustering**: combine various components in Chapter 3-6 towards designing an algorithm with the following features:
 - Probabilistic outcome
 - Scale easily to millions of datapoints
 - Not sensitive to curse of dimensionality
 - Not sensitive to initialization
 - Not sensitive to outliers
 - Automatically adjust the number of clusters
 - Have easy interpretable and tunable parameters

Developed the code and already tested. Works like a charm 😊
Future Work cont.

Video Annotation: combine various components in Chapter 6-7 towards designing a pixel accurate video annotation software.

Thank you for your attention.