

TensorMask: A Foundation for Dense Object Segmentation

Xinlei Chen, Ross Girschick, Kaiming He, Piotr Dollar $$_{\tt presented\ by\ Yonk\ Shi}$$

Recap: Object detection and Instance Segmentation

Object detection and instance segmentation are closely related tasks. Predominantly two approaches in object detection & instance segmentation:

- Region Proposal based method (e.g. RCNN)
- Sliding Windows based method (e.g. SSD, RetinaNet)

Object Detection

Instance Segmentation

CAT, DOG, DUCK CAT, DOG, DUCK

Recap: Region Proposal Based Object Detection

Region Proposal methods work by cropping & warping a set of sub-regions from the image, also known as Regions of Interest (RoI) then perform object detection. E.g. RCNN:

¹Courtesy:https://medium.com/@jonathan_hui/

Recap: Region Proposal Based Object Detection

RCNN was the first, then came Fast RCNN, followed by Faster RCNN, and current state of the art Mask RCNN.

Very complicated!

Recap: Sliding Window based object detetion

No region proposal, directly extracting features from the backbone network and perform classification & box regression tasks.

E.g. Single Shot multibox Detector (SSD)

review-ssd-single-shot-detector-object-detection-851a94607d11

Recap: Sliding Window vs Region Proposal

- Sliding window methods require less engineering
- Sliding window methods are usually faster
- ▶ Region proposal based methods currently have higher accuracy

Recap: Feature Pyramid Network

- ▶ Feature Pyramid Network (FPN) is a useful backbone feature extraction network
- Information flows upwards and downwards
- Ability to extract feature at all levels of the feature

¹Courtesy: https://medium.com/@jonathan_hui/ understanding-feature-pyramid-networks-for-object-detection-fpn-45b227

TensorMask Overview

- ► Sliding window based architecture similar to SSD & RetinaNet
- Structured 4-D tensor
- Dense Pixel Labelling
- ▶ Detection & Mask representations are intrinsic to the network's features
- Instance segmentation is independent of object detection

Features are represented by a structured 4D-tensor, no channels

(V, U, H, W)

(H, W) representing the object position (V, U) representing the relative mask position

For each axis of tensor, there is a **unit of length** denoted by σ . The unit corresponds to the ratio the raw image. For example,

E.g. $\sigma_{HW} = 2$ means a single pixel in (H, W) tensor corresponds to two pixels in image. Similarly, $\sigma_{VW} = 2$ means a single pixel in (V, W) tensor maps to two pixels in image mask.

The ratio of units is denoted as

$$\alpha = \frac{\sigma_{VU}}{\sigma_{HW}}$$

(α must be a positive integer)

Two representations of Tensor

There are two ways to represent the tensor. Both are utilized by TensorMask.

- Natural Representation
- Aligned Representation

Natural Representation

For a 4D tensor of shape (V, U, H, W), a single element at coordinate (v, u, h, w) represents the mask value at $(y + \alpha v, x + \alpha u)$. Where $(v, u, h, w) \in [-\frac{V}{2}, \frac{V}{2}) \times [-\frac{U}{2}, \frac{U}{2}) \times [0, H) \times [0, W)$

Natural Representation

- A 2-d mask (V, U) at a point (x, y) represents a mask for neighbouring pixels of size (V, U) centered at that point.
- Representation for the output layer

Aligned Representation

Similar to the natural representation, the 4D tensor in aligned representation is denoted as $(\hat{V}, \hat{U}, \hat{H}, \hat{W})$, for a coordinate $(\hat{v}, \hat{u}, \hat{y}, \hat{x})$ it represents the mask at $(\hat{y} - \alpha \hat{v}, \hat{x} - \alpha \hat{u})$

Aligned Representation

- Preserving the pixel-to-pixel alignment
- ▶ A vector of size (UV) represents all the masks that affect this pixel
- Can be used in intermediate layers
- ► Computationally simpler, easier to apply convolution filters

Transformations between Aligned and Natural representation

Natural and Aligned representations have identical shape, and it's easily to transform from one representation to the other.

- ► align2nat: $\mathcal{F}(v, u, y, x) = \hat{\mathcal{F}}(u, v, y + \alpha v, x + \alpha u)$
- ▶ nat2align: $\hat{\mathcal{F}}(\hat{v}, \hat{u}, \hat{y}, \hat{x}) = \mathcal{F}(\hat{u}, \hat{v}, \hat{y} + \alpha \hat{v}, \hat{x} + \alpha \hat{u})$

Like many popular modern networks, TensorMask also contains a pyramid structure. It has a Bipyramid structure defined by:

$$(2^{k}V, 2^{k}U, \frac{1}{2^{k}}H, \frac{1}{2^{k}}W)$$

where $k \ge 0$ indexes scale (layer)

- (H, W) decreases by layer, geometrically
- (V, U) increases by layer, inversely proportional to (H, W)
 *λ is a general scaling factor for tensor, when using bipyramid, λ = 2^k

Tensor bipyramid created with two operations *up_align2nat*

The TensorMask's bipyramid structure utilize feature pyramid from FPN, simplifying the contrustion process.

TensorMask Architecture

- FPN backbone
- Output is in natural representation
- ▶ intermediate layers can use any representation.
- Three heads:
 - Object classification
 - Bounding box regression
 - Instance segmentation

Training - Loss

- Bounding box regressor L1-loss
- **Classification** Focal loss
- ► **Mask** Per pixel binary cross entropy
 - Individual loss for each window, averaged across all pixels in that window
 - Negative windows (no classification) do not contribute to the mask loss

Training - Label assignment

Since there are far more bounding boxes than ground truth, a mechanism is needed to assign the appropriate label to the corresponding bounding box:

- **Containment** The window fully contains mask *m* and reasonably tight
- Centrality Bounding box must be centered within a unit (σ_{VU} of window center
- ▶ Uniqueness Only one mask *m* can the above two conditions

- Simple Heads
- Upscaling Head
- Interpolation Head
- ► Tensor Bipyramid
- Multiple Window
 Sizes

Experiments - Simple heads

head	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
natural	28.5	52.2	28.6	14.4	30.2	40.1
aligned	28.9	52.5	29.3	14.6	30.8	40.7

Table 1. Simple heads: natural vs. aligned (Fig. 6a vs. 6b) with $V \times U=15 \times 15$ perform comparably if upscaling is not used.

Both natural and aligned representations perform similarly

Experiments - Upscaling Heads

head	λ	AP	AP_{50}	AP_{75}	Δ aligned - natural				
natural	15	28.0	51.7	27.8	100	+0.7	115		
aligned	1.5	28.9	52.4	29.3	+0.9		+1.5		
natural	2	24.7	48.4	22.7	. 4.1	.20	16.4		
aligned	5	³ 28.8 52.3 2	29.1	+4.1	+3.9	+0.4			
natural	5	19.2	42.1	15.6	10.2	10.7	+ 13.0		
aligned		28.4	51.8	28.6	T 9.2	Ŧ9./	+15.0		

(a) **Upscaling heads**: natural vs. aligned heads (Fig. 6c vs. 6d). The $V \times U = 15 \times 15$ output is upscaled by $\lambda \times : \text{ conv} + \tau = \text{shape uses } \frac{1}{\lambda^2} V U$ output channels as input. The aligned representation has a large gain over its natural counterpart when λ is large.

Aligned representation gives significant improve (+48%) when scaling factor $\lambda=5$

Experiments - Upscaling: Bilinear vs Nearest Neighbour

head	λ	AP	AP_{50}	AP_{75}	Δ bilinear - nearest			
nearest	1.5	28.6	52.1	29.0	+0.3	+0.3	+0.3	
bilinear	1.5	28.9	52.4	29.3				
nearest	3	27.8	51.0	28.0	+1.0	+1.3	+1.1	
bilinear		28.8	52.3	29.1				
nearest	5	25.3	47.6	25.0	131	142	136	
bilinear		28.4	51.8	28.6	+5.1	T4.2	+5.0	

Bilinear upscaling appears to perform much better than nearest neighbour.

Experiments - Tensor Bipyramid

head	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
feature pyramid, best	28.9	52.5	29.3	14.6	30.8	40.7
tensor bipyramid	34.0	55.2	35.8	15.3	36.3	48.4
Δ	+5.1	+2.7	+6.5	+0.7	+5.5	+7.7

Big jump in performance when the FPN + Bipyramid is used, upscaling is key to make tensor bipyramid possible.

Experiments - Window Sizes

$V \times U$	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
15×15	34.0	55.2	35.8	15.3	36.3	48.4
$15{\times}15, 11{\times}11$	35.2	56.4	37.0	17.4	37.4	49.7
Δ	+1.2	+1.2	+1.2	+2.1	+1.1	+1.3

Analogous to Anchors boxes in RCNN methods, TensorMask can have multiple window sizes. Having multiple window slightly boosts performance. (Though potentially big impact on speed)

Experiments - COCO Average Precision

TensorMask achieves comparable results to MaskRCNN without much optimization.

method	backbone	aug	epochs	AP	AP_{50}	AP_{75}	AP_S	AP_M	AP_L
Mask R-CNN [13]	R-50-FPN		24	34.9	57.2	36.9	15.4	36.6	50.8
Mask R-CNN, ours	R-50-FPN		24	34.9	56.8	36.8	15.1	36.7	50.6
Mask R-CNN, ours	R-50-FPN	 ✓ 	72	36.8	59.2	39.3	17.1	38.7	52.1
TensorMask	R-50-FPN	√	72	35.4	57.2	37.3	16.3	36.8	49.3
Mask R-CNN, ours	R-101-FPN	~	72	38.3	61.2	40.8	18.2	40.6	54.1
TensorMask	R-101-FPN	 ✓ 	72	37.1	59.3	39.4	17.4	39.1	51.6

However, the speed is much slower. 0.38s/im (TensorMask) vs 0.09s/im (Mask-RCNN)

Pros and Cons of TensorMask

- Simpler structure than RCNN based methods
- Dense pixel labelling/representation
- (V, U) acts as an implicit anchor box as well as mask
- Classless mask windows
- Masks are independent from boxes
- ▶ Slower than Mask RCNN (But lots of room for improvement!)
- More rigid structure, pyramid shape must be $\frac{1}{2^k}$
- Rigid number of bounding boxes, and possibly much much larger

Implementation

An official implementation of TensorMask is scheduled to be released within a few weeks along with Detectron2 https://github.com/facebookresearch/detectron2

Extra: Focal Loss

$$FL(p_t) = -\alpha(1-p_t)^{\gamma}\log(p_t)$$

where α and γ are hyperparameters and p_t is the prediction likelihood.

Thanks!

