

Transformer based semantic segmentation ⁶ Apr 2020 Yonk shi

A presentation on: Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective with Transformers <u>https://arxiv.org/pdf/2012.15840.pdf</u>

Background: What is semantic segmentation?

Background

Most current semantic segmentation approaches are based on Fully Convolutional Network (FCN). For example:

Source: http://cvlab.postech.ac.kr/research/deconvnet/

Limitations with FCN based approaches

- Unable to capture very long range relationships.
- Maximum scale limited by receptive field

Problems with FCN:1. Long range relationship

Problems with FCN:2. Maximum scale limited by receptive field

SEgmentation TRansformer (SETR) in a nutshell:

- Uses standard Transformer module
- No downsampling* of images, maintaining dense pixel info through all layers
- Slice image into small patches, flatten into 1-d vector for transformer encoder
- Several flavors of decoders

A sequence to sequence to approach to semantic segmentation - SEgmentation TRansformer (SETR)

Decoders

(c)

Results (qualitative)

Figure 2. **Qualitative results on ADE20K:** SETR (right column) vs. dilated FCN baseline (left column) in each pair. Best viewed in color and zoom in.

Figure 3. **Qualitative results on Pascal Context:** SETR (right column) vs. dilated FCN baseline (left column) in each pair. Best viewed in color and zoom in.

Results

Method	Backbone	mIoU	Pixel Acc.
FCN (16, 160k, SS) [39]	ResNet-101	39.91	79.52
FCN (16, 160k, MS) [39]	ResNet-101	41.40	80.65
EncNet [54]	ResNet-101	44.65	81.69
PSPNet [59]	ResNet-269	44.94	81.69
DMNet [18]	ResNet-101	45.50	-
CCNet [25]	ResNet-101	45.22	1-11
Strip pooling [23]	ResNet-101	45.60	82.09
APCNet [19]	ResNet-101	45.38	-
OCNet [53]	ResNet-101	45.45	-
SETR-Naïve (16, 160k, SS)	T-Large	48.06	82.40
SETR-Naïve (16, 160k, MS)	T-Large	48.80	82.92
SETR-PUP (16, 160k, SS)	T-Large	48.58	82.90
SETR-PUP (16, 160k, MS)	T-Large	50.09	83.58
SETR-MLA (16, 160k, SS)	T-Large	48.64	82.64
SETR-MLA (16, 160k, MS)	T-Large	50.28	83.46
Table 4. State-of-the-art c	omparison on	the ADE20	K dataset.

Performances of different model variants are reported. SS: Singlescale inference. MS: Multi-scale inference.

Method	Backbone	mIoU	
FCN (16, 80k, SS) [39]	ResNet-101	44.47	
FCN (16, 80k, MS) [39]	ResNet-101	45.74	
PSPNet [59]	ResNet-101	47.80	
DANet [17]	ResNet-101	52.60	
EMANet [31]	ResNet-101	53.10	
SVCNet [15]	ResNet-101	53.20	
Strip pooling [23]	ResNet-101	54.50	
GFFNet [30]	ResNet-101	54.20	
APCNet [19]	ResNet-101	54.70	
SETR-Naïve (16, 80k, SS)	T-Large	52.89	
SETR-Naïve (16, 80k, MS)	T-Large	53.61	
SETR-PUP (16, 80k, SS)	T-Large	54.40	
SETR-PUP (16, 80k, MS)	T-Large	55.27	
SETR-MLA (16, 80k, SS)	T-Large	54.87	
SETR-MLA (16, 80k, MS)	T-Large	55.83	

 Table 5. State-of-the-art comparison on the Pascal Context dataset.
 Performances of different model variants are reported.

 SS: Single-scale inference.
 MS: Multi-scale inference.

Results (qualitative)

Figure 4. **Qualitative results on Cityscapes:** SETR (right column) vs. dilated FCN baseline (left column) in each pair. Best viewed in color and zoom in.

Results

Method	Backbone	mIoU 73.93	
FCN (40k, SS) [39]	ResNet-101		
FCN (40k, MS) [39]	ResNet-101	75.14	
FCN (80k, SS) [39]	ResNet-101	75.52	
FCN (80k, MS) [39]	ResNet-101	76.61	
PSPNet [59]	ResNet-101	78.50	
DeepLab-v3 [10] (MS)	ResNet-101	79.30	
NonLocal [48]	ResNet-101	79.10	
CCNet [25]	ResNet-101	80.20	
GCNet [4]	ResNet-101	78.10	
Axial-DeepLab-XL [47] (MS)	Axial-ResNet-XL	81.10	
Axial-DeepLab-L [47] (MS)	Axial-ResNet-L	81.50	
SETR-PUP (40k, SS)	T-Large	78.39	
SETR-PUP (40k, MS)	T-Large	81.57	
SETR-PUP (80k, SS)	T-Large	79.34	
SETR-PUP (80k, MS)	T-Large	82.15	

Table 6. State-of-the-art comparison on the Cityscapes validation set. Performances of different training schedules (*e.g.*, 40k and 80k) are reported. SS: Single-scale inference. MS: Multiscale inference.

Caveats & discussion

- This approach has an order of magnitude more parameters than FCN based approaches
- Randomly initialized SETR performs very poorly (hinting at many local minimas?)
- Decoder is depend on image size less flexible

Model	1-layer	s Hidder	i size P	tti nead	1.0				
T-Base	12	76	8	12	_				
T-Large	24	102	24	16					
Table 1. Configuration of Transformer backbone variants.									
Method	Pre	Backbone	#Params	40k	80k				
FCN [39]	1K	R-101	68.59	73.93	75.52				
Semantic FPN [39] 1K	R-101	47.51	-	75.80				
Hybrid-Base	R	T-Base	112.59	74.48	77.36				
Hybrid-Base	21K	T-Base	112.59	76.76	76.57				
Hybrid-DeiT	21K	T-Base	112.59	77.42	78.28				
SETR-Naïve	21K	T-Large	305.67	77.37	77.90				
SETR-MLA	21K	T-Large	310.57	76.65	77.24				
SETR-PUP	21K	T-Large	318.31	78.39	79.34				
SETR-PUP	R	T-Large	318.31	42.27	-				
SETR-Naïve-Base	21K	T-Base	87.69	75.54	76.25				
SETR-MLA-Base	21K	T-Base	92.59	75.60	76.87				
SETR-PUP-Base	21K	T-Base	97.64	76.71	78.02				
SETR-Naïve-DeiT	1K	T-Base	87.69	77.85	78.66				
SETR-MLA-DeiT	1K	T-Base	92.59	78.04	78.98				
SETR-PUP-DeiT	1K	T-Base	97.64	78.79	79.45				

Madel There IIIdden size Atthend

