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Background: long-tailed recognition

Long-tailed recognition - a few classes have many samples (head
classes) and many classes have few (tail classes)

Head class

Tail class

Number of images

Class index

Problem: head classes dominate the training procedure, which
leads to biased predictions and misleading accuracy

Zhou, Boyan, et al. "BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition." arXiv preprint arXiv:1912.02413 (2019).




Background: class-balancing strategies

Strategy 1: re-sampling to balance the data distribution

- Under-sampling for the majority classes, hurts generalization ability
- Over-sampling for the minority classes

- Duplicating or synthesizing examples, eg. SMOTE
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Le, Tuong, et al. "A hybrid approach using oversampling technique and cost-sensitive learning for bankruptcy prediction." Complexity 2019 (2019)
Chawla, Nitesh V., et al. "SMOTE: synthetic minority over-sampling technique." Journal of Artificial Intelligence Research 16 (2002): 321-357.
Ma, Huigin, et al. "Integrating growth and environmental parameters to discriminate powdery mildew and aphid of winter wheat using bi-temporal

Landsat-8 imagery." Remote Sensing 11.7 (2019): 846.



Background: class-balancing strategies

Strategy 2: re-weighting the loss

- Vanilla scheme: weighting classes proportionally to the inverse of their class frequency

- Class balanced (CB) loss: effective number of samples
- As the number of samples increase, the additional benefit of a

c newly added data point will diminish
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Cui, Yin, et al. "Class-balanced loss based on effective number of samples." Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition. 2019.




Background: class-balancing strategies

Strategy 3: two-stage fine-tuning

- (Stage 1) train the network without data balancing
- (Stage 2) utilize re-balancing to fine-tune the whole network

- Related literatures:
- Cao, Kaidi, et al. "Learning imbalanced datasets with label-distribution-aware
margin loss." Advances in Neural Information Processing Systems. 2019.
- Cui, Yin, et al. "Large scale fine-grained categorization and domain-specific transfer
learning." Proceedings of the IEEE conference on computer vision and pattern
recognition. 2018.



Decoupling representation and classifier

- With the aforementioned strategies, it remains unclear whether the ability
to learn with class balancing is from a better representation or a better
classifier decision boundary
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- Example: ResNet-50
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He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and

pattern recognition. 2016.




Decoupling representation and classifier

Two papers during the same period disentangle representation learning
from classifier learning

Decoupling representation and classifier for long-tailed recognition, ICLR 2020

BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual
Recognition, CVPR 2020




Sampling strategies for representation learning

The probability P; of sampling a data point from class j is given by

q
n

C
Y

where 1; is the number of training sample for class j, C is the number of training classes.

Py

(1) g =1, Instance-balanced sampling: each instance has equal probability of being selected

(2) q=0, Class-balanced sampling: a class is selected uniformly

(3) q="7% Square-root sampling g "

(4)  Progressively-balanced sampling: 5 ® = (= 7P + 775" where T is the total number of epochs, it
progressively “interpolates” between instance-balanced sampling and class-balanced sampling as
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Balanced classifier learning

- Classifier re-training (cRT)
- Similar to two-stage fine-tuning
- In the second stage, instead of training the whole network using a
smaller learning rate, cRT keeps the representations fixed,
re-initializes and optimizes the classifier only

- Nearest class mean classifier (NCM)
- Non-parametric
- First compute the mean feature representation for each class, and
then perform nearest neighbor search using cosine similarity or
Euclidean distance



Decoupling representation and classifier

- t-normalized classifier (t-normalized)
e w;
w; = :
C )
where 1 is a hyper-parameter controlling the “temperature”
of the normalization. In the paper, they empirically choose r € (0, 1) via cross validation
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Guo, Yandong, and Lei Zhang. "One-shot face recognition by promoting underrepresented classes." arXiv preprint arXiv:1707.05574
(2017).




Decoupling representation and classifier

- Learnable weight scaling (LWS)

1
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fi is alearnable parameter
Fix the representations and classifier and only learns the weights re-scaling factor

w; = fi x w;, where f; =



Experiments and discussions

Many-shot (more than 100 images), Medium-shot (20-100 images), Few-shot (less than 20 images)

- Sampling matters when training jointly. Consistent gains in performance when using better sampling
strategies in medium- and few-shot cases compared with instance-balanced sampling

- Joint or decoupled learning? Decoupled methods outperform in medium- and few-shot cases, especially
with cRT and 1-norm

- Instance-balanced sampling gives the most generalizable representations, expect for many-shot case
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Figure 1: The performance of different classifiers for each split on ImageNet-LT with ResNeXt-50.
Colored markers denote the sampling strategies used to learn the representations.




Experiments and discussions

- Is it really beneficial to decouple representation and classification?
- How does the ‘“temperature” influence the performance for the t-normalized classifier?

T-normalized classifier accuracy

= Many == Medium Few == All

Table 1: Retraining/finetuning different parts of
a ResNeXt-50 model on ImageNet-LT. B: back-
bone; C: classifier; LB: last block.

9
Re-train Many Medium Few  All oy
B+C 55.4 45.3 245 463 g
B+C(0.1xIr) 61.9 45.6 22.8 48.8 <
LB+C 61.4 45.8 245 489
C 61.5 46.2 27.0 49.5

Classifier accuracy for ImageNet-LT (artificially truncated)




Experiments and discussions

- Comparison with the state-of-the-art on long-tailed datasets

Table 2: Long-tail recognition accuracy on ImageNet-LT for different backbone architectures. 1 de-
notes results directly copied from Liu et al. (2019). * denotes results reproduced with the authors’
code. ** denotes OLTR with our representation learning stage.

Method ResNet-10 ResNeXt-50 ResNeXt-152
FSLwF+ (Gidaris & Komodakis, 2018) 28.4 - -
Focal Losst (Lin et al., 2017) 30.5 - -
Range Losst (Zhang et al., 2017) 30.7 - -
Lifted Losst (Oh Song et al., 2016) 30.8 - -
OLTRf (Liu et al., 2019) 35.6 - -
OLTR* 34.1 37.7 24.8
OLTR** 37.3 46.3 50.3
Joint 34.8 44 .4 47.8
NCM 35.5 47.3 51.3
cRT 41.8 49.5 524
T-normalized 40.6 49.4 52.8

LWS 414 49.9 533




Experiments and discussions

- Comparison with the state-of-the-art on long-tailed datasets

Table 3: Overall accuracy on iNaturalist 2018. Table 4: Results on Places-LT, starting from
Rows with { denote results directly copied an ImageNet pre-trained ResNet152. { denotes
from Cao et al. (2019). We present results results directly copied from Liu et al. (2019).
when training for 90/200 epochs. Method Miny Mediom Few Al
Method ResNet-50 ResNet-152 Lifted Losst 41.1 354 240 352
] j Focal LossT 41.1 34.8 224 346
Eg ff,ff” gi‘é ] Range Losst 411 354 232 35.1
LDAM:DRWY  68.0 ] FSLwF} 439 299 295 349
- ; OLTRY 44.7 37.0 253 359
Joint 61.7/65.8 65.0/69.0 Toint 45.7 273 82 302
NCM 58.2/63.1 61.9/67.3 6
cRT 65.2/67.6  68.5/71.2 e e o= 22 2
7-normalized ~ 65.6/69.3  68.8/72.5 = , ' ' : :
LWS 65.9/69.5 69.1/72.1 T-normalized  37.8 40.7 31.8 379

LWS 40.6 39.1 28.6 37.6




Experiments and discussions

CVPR 2020 “BBN: Bilateral-Branch Network with Cumulative Learning for Long-Tailed Visual Recognition”
- Classifier re-training (cRT)
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Figure 2. Top-1 error rates of different manners for representation learning and classifier learning on two long-tailed datasets CIFAR-100-
IR50 and CIFAR-10-IR50 [3]. “CE” (Cross-Entropy), “RW” (Re-Weighting) and “RS” (Re-Sampling) are the conducted learning manners.
As observed, when fixing the representation (comparing error rates of three blocks in the vertical direction), the error rates of classifiers
trained with RW/RS are reasonably lower than CE. While, when fixing the classifier (comparing error rates in the horizontal direction), the
representations trained with CE surprisingly get lower error rates than those with RW/RS. Experimental details can be found in Section 3.




Conclusions

- Sampling strategies matter when jointly learning representation and
classifier

- With a properly re-balanced classifier, instance sampling gives more
generalizable representations that can achieve state-of-the-art
performance



