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Chapter 1

Executive summary

Deliverable D11 presents the second year developments within WP1 - Learning to Observe Human Grasp-
ing and Consequences of Grasping. According to the Technical Annex, deliverable D11 presents the
activities in the context of Tasks 1.3 and 1.4:

• [Task 1.3] Observing humans: Definition and development of a system that detects and tracks
humans and their movements in particular. Activities in this task will focus on the important
problem of acquiring real 3D motion of the arms while the human is interacting with objects. The
tracking should be successful also in cases when the robot does not have a frontal view of the human.

• [Task 1.4] Observing human grasping: Definition and development of a computational method
that detects, tracks and represents human hands in action. The derived representation includes
aspects and features in the full 4D spatiotemporal space (3D space and time dimensions). The aim
is to extract from a sequence of stereoscopic hand observations, the information that is necessary
and sufficient for subsequent (WP2) parsing and interpretation of observed hand activities that, in
turn, support future repeats by a robotic hand. Activities within this task will address important
subproblems such as figure-ground segmentation (environmental modelling, motion/colour based
segmentation, coarse object categorisation) tracking humans/hands in 2D/3D (feature selection,
hand models, representation of prior knowledge of motion models, prediction and search strategies),
etc.

The work in this deliverable relates to the following second year Milestones:

• [Milestone 4] Analysis of action-specific visuo-spatial processing, vocabulary of human ac-
tions/interactions for perception of task relations and affordances.

• [Milestone 6] Integration and evaluation of human hand and body tracking on active robot heads,
demonstration of a grasping cycle on the experimental platforms.

The progress in WP1 is presented in the below summarized scientific publications, attached to this
deliverable.

• In Attachment A we propose a new approach for tracking multiple objects in image sequences.
The proposed approach differs from existing ones in important aspects of the representation of
the location and the shape of tracked objects and of the uncertainty associated with them. The
location and the speed of each object is modeled as a discrete time, linear dynamical system which
is tracked using Kalman filtering. Information about the spatial distribution of the pixels of each
tracked object is passed on from frame to frame by propagating a set of pixel hypotheses, uniformly
sampled from the original objects projection to the target frame using the objects current dynamics,
as estimated by the Kalman filter. The density of the propagated pixel hypotheses provides a novel
metric that is used to associate image pixels with existing object tracks by taking into account
both the shape of each object and the uncertainty associated with its track. The proposed tracking
approach has been developed to support robust hand tracking.
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• In attachment B, we present a method for matching closed, 2D shapes (2D object silhouettes)
that are represented as an ordered collection of shape contexts. Matching is performed using a
method that computes the optimal alignment of two cyclic strings in sub-cubic runtime. Thus, the
proposed method is suitable for efficient, near real-time matching of closed shapes. The method is
qualitatively and quantitatively evaluated using several datasets. An application of the method for
joint detection in human figures is also presented.

• In Attachment C, we present a novel approach to the problem of establishing the best match
between an open contour and a part of a closed contour. At the heart of the proposed scheme lies
a novel shape descriptor that also permits the quantification of local scale. Shape descriptors are
computed along open or closed contours in a spatially non-uniform manner. The resulting ordered
collections of shape descriptors constitute the global shape representation. A variant of an existing
DTW matching technique is proposed to handle the matching of shape representations. Due to the
properties of the employed shape descriptor, sampling scheme and matching procedure, the proposed
approach performs partial shape matching that is invariant to Euclidean transformations, starting
point as well as to considerable shape deformations. Additionally, the problem of matching closed-
to- closed contours is naturally treated as a special case. Extensive experiments on benchmark
datasets but also in the context of specific applications, demonstrate that the proposed scheme
outperforms existing methods for the problem of partial shape matching and performs comparably
to methods for full shape matching.

• In Attachment D, we present a robust object tracking algorithm that handles spatially extended
and temporally long object occlusions. The proposed approach is based on the concept of “object
permanence” which suggests that a totally occluded object will re-emerge near its occluder. The
proposed method does not require prior training to account for differences in the shape, size, color
or motion of the objects to be tracked. Instead, the method automatically and dynamically builds
appropriate object representations that enable robust and effective tracking and occlusion reason-
ing. The proposed approach has been evaluated on several image sequences showing either complex
object manipulation tasks or human activity in the context of surveillance applications. Experi-
mental results demonstrate that the developed tracker is capable of handling several challenging
situations, where the labels of objects are correctly identified and maintained over time, despite the
complex interactions among the tracked objects that lead to several layers of occlusions.

• In Attachment E, we present a method for making the motion of humanoid robots more realistic and
human-like in order to increase their acceptance as part of our everyday lives. A proper approach
to achieve this requirement is introduced within the scope of this paper by adopting marker-based
human motion capture. For this purpose, constraining and mapping of prerecorded motions is
applied since robots may have different degrees of freedom (DoFs) as well as a different kinematic
structure than a human. Regarding this challenge, the motion is adapted to a given robot while
preserving important human-like characteristics of the recorded motion.
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Propagation of Pixel Hypotheses

for Multiple Objects Tracking

Haris Baltzakis and Antonis A. Argyros

Institute of Computer Science, Forth
{xmpalt,argyros}@ics.forth.gr
http://www.ics.forth.gr/cvrl/

Abstract. In this paper we propose a new approach for tracking mul-
tiple objects in image sequences. The proposed approach differs from
existing ones in important aspects of the representation of the location
and the shape of tracked objects and of the uncertainty associated with
them. The location and the speed of each object is modeled as a discrete
time, linear dynamical system which is tracked using Kalman filtering.
Information about the spatial distribution of the pixels of each tracked
object is passed on from frame to frame by propagating a set of pixel
hypotheses, uniformly sampled from the original object’s projection to
the target frame using the object’s current dynamics, as estimated by the
Kalman filter. The density of the propagated pixel hypotheses provides
a novel metric that is used to associate image pixels with existing ob-
ject tracks by taking into account both the shape of each object and the
uncertainty associated with its track. The proposed tracking approach
has been developed to support face and hand tracking for human-robot
interaction. Nevertheless, it is readily applicable to a much broader class
of multiple objects tracking problems.

1 Introduction

This paper presents a novel approach for multiple object tracking in image se-
quences, intended to track skin-colored blobs that correspond to human hands
and faces. Vision-based tracking of human hands and faces constitutes an impor-
tant component in gesture recognition systems with many potential applications
in the field of human-computer and/or human-robot interaction.

Some successful approaches for hand and face tracking utilize ellipses to model
the shape of the objects on the image plane [1–5]. Typically, simple temporal
filters such as linear, constant-velocity predictors are used to predict/propagate
the locations of these ellipses from frame to frame. Matching of predicted ellipses
with the extracted blobs is done either by correlation techniques or by using
statistical properties of the tracked objects.

In contrast to blob tracking approaches, model based ones [6–11] do not track
objects on the image plane but, rather, on a hidden model-space. This is com-
monly facilitated by means of sequential Bayesian filters such as Kalman or

G. Bebis et al. (Eds.): ISVC 2009, Part II, LNCS 5876, pp. 140–149, 2009.
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Propagation of Pixel Hypotheses for Multiple Objects Tracking 141

particle filters. The state of each object is assumed to be an unobserved Markov
process which evolves according to specific dynamics and which generates mea-
surement predictions that can be evaluated by comparing them with the actual
image measurements.

Model based approaches are commonly assumed to be more suitable to track
complex and/or deformable objects whose image projections cannot be modeled
with simple shapes. Human hands, especially when observed from a short dis-
tance, fall in this category. Despite the fact that standard Bayesian filtering does
not explicitly handle observation-to-track assignments, the sophisticated tempo-
ral filtering which is inherent to model based approaches allows them to produce
better data association solutions. This is particularly important for multiple ob-
jects tracking, where it is common for tracked objects to become temporarily
occluded by other tracked or non-tracked objects.

Among model-based approaches, particle filtering [12] has been successfully
applied to object tracking, both with edge-based [12] and kinematic [7, 8] imaging
models. With respect to the data association problem, particle filtering offers a
significant advantage over other filtering methods because it allows for different,
locally-optimal data association solutions for each particle which are implicitly
evaluated through each particle’s likelihood. However, as with any other model-
based approach, particle filters rely on accurate modeling, which in most cases
leads to an increased number of unknown parameters. Since the number of re-
quired particles for effective tracking is exponential to the number of tracked
parameters, particle filter based tracking is applicable only to problems where
the observations can be explained with relatively simple models.

In this paper we propose a blob-tracking approach that differs significantly
from existing approaches in (a) the way that the position and shape uncer-
tainty are represented and (b) the way that data association is performed. More
specifically, information about the location and shape of each tracked object
is maintained by means of a set of pixel hypotheses that are propagated from
frame to frame according to linear object dynamics computed by a Kalman fil-
ter. Unlike particle filters which correspond to object pose hypotheses in the
model space, the proposed propagated pixel hypotheses correspond to single
pixel hypotheses in the observation space. Another significant difference is that,
in our approach, the distribution of the propagated pixel hypotheses provides
a representation for the uncertainty in both the position and the shape of the
tracked object. Moreover, as it will be shown in the following sections, the local
density of pixel hypotheses provides a meaningful metric to associate observed
skin-colored pixels with existing object tracks, enabling an intuitive, pixel-based
data association approach based on the joint-probabilistic paradigm.

The proposed approach has been tested in the context of a human-robot inter-
action application involving detection and tracking of human faces and hands.
Experimental results demonstrate that the proposed approach manages to suc-
cessfully track multiple interacting deformable objects, without requiring com-
plex models for the tracked objects or their motion.
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Fig. 1. Block diagram of the proposed approach

2 Problem Description and Methodology

A tracking algorithm must be able to maintain the correct labeling of the tracked
objects, even in cases of partial or full occlusions. Typically, this requirement calls
for sophisticated modeling of the objects’ motion, shapes and dynamics (i.e. how
the shape changes over time). In this paper we present a blob tracker that han-
dles occlusions, shape deformations and similarities in color appearance without
making explicit assumptions about the motion or the shape of the tracked ob-
jects. The proposed tracker uses a simple linear model for object trajectories and
the uncertainty associated with them. Moreover, it does not rely on an explicit
model for the shape of the tracked object. Instead, the shapes of the tracked ob-
jects and the associated uncertainty is represented by a set of pixel hypotheses
that are propagated over time using the same linear dynamics as the ones used
to model the object’s trajectory.

An overview of the proposed approach is illustrated in Fig. 1. The first step
in the proposed approach is to identify pixels that are likely to belong to tracked
objects. In the context of the application under consideration, we are interested
in tracking human hands and faces. Thus, the tracker implemented in this paper
tracks skin-colored blobs1. To identify pixels belonging to such objects we em-

1 The proposed tracking method can also be used to track blobs depending on prop-
erties other than skin color.
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(a) (b) (c) (d) (e)

Fig. 2. Object’s state representation. (a) Observed blob (b)-(e) Examples of possible
states. Ellipses represent iso-probability contours for the location of the object (i.e. the
first two components of xt). Dots represent the pixel hypotheses.

ploy a Bayesian approach that takes into account their color as well as whether
they belong to the foreground or not. Image pixels with high probability to
belong to hand and face regions are then grouped into connected blobs using
hysteresis thresholding and connected components labeling, as in [3]. Blobs are
then assigned to objects which are tracked over time. More specifically, for each
tracked object two following types of information is maintained:

– The location and the speed of the object’s centroid, in image coordinates.
This is encoded by means of a 4D vector x(t) = [cx(t), cy(t), ux(t), uy(t)]T,
where cx(t) and cy(t) are the image coordinates of the object’s centroid at
time t and ux(t) and uy(t) are the horizontal and vertical components of its
speed. A Kalman filter is used to maintain a Gaussian estimate x̂(t) of the
above-described state vector and its associated 4×4 covariance matrix P(t).

– The spatial distribution of the object’s pixels. This is encoded by means of
a set H = {(xi, yi) : i = 1 . . .N} of N pixel hypotheses that are sampled
uniformly from the object’s blob and propagated from frame to frame using
the dynamics estimated by the Kalman filter.

The representation described above is further explained in Fig. 2. Figure 2(a)
depicts the blob of a hypothetical object (a human hand in this example). Fig-
ures 2(b)-(e) depict four possible states of the proposed tracker.

The distribution of the propagated pixel hypotheses provides the metric used
to associate measured evidence to existing object tracks. During the data asso-
ciation step, observed blob pixels are individually processed one-by-one in order
to associate them with existing object tracks.

After skin-colored pixels have been associated with existing object tracks, the
update phase follows in two steps: (a) the state-vector (centroid’s location and
speed) is updated using the Kalman filter’s measurement-update equations and
(b) pixel hypotheses are updated by resampling them from their associated blob
pixels. The resampling step is important to avoid degenerate situations and to
allow the object hypotheses to closely follow the blobs shape and size.

Finally, track management techniques are employed to ensure that new objects
are generated for blobs with pixels that are not assigned to any of the existing
tracks and that objects which are not supported by observation are eventually
removed from further consideration.
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(a) (b) (c) (d)

Fig. 3. Blob detection. (a) Initial image, (b) foreground pixels, (c) skin-colored pixels,
(d) resulting skin-colored blobs.

3 The Proposed Tracking Method

In this section we provide a detailed description of the proposed multiple objects
tracking method.

3.1 Segmentation of Skin-Colored Foreground Blobs

The first step of the proposed approach is to detect skin-colored regions in the
input images. For this purpose, a technique similar to [3, 13] is employed. Ini-
tially, background subtraction [14] is used to extract the foreground areas of
the image. Then, for each pixel, P (s|c) is computed, which is the probability
that this pixel belongs to a skin-colored foreground region s, given its color c.
This can be computed according to the Bayes rule as P (s|c) = P (s)P (c|s)/P (c),
where P (s) and P (c) are the prior probabilities of foreground skin pixels and
foreground pixels having color c, respectively. Color c is assumed to be a 2D
variable encoding the U and V components of the YUV color space. P (c|s) is
the prior probability of observing color c in skin colored foreground regions. All
three components in the right side of the above equation can be computed based
on offline training.

After probabilities have been assigned to each image pixel, hysteresis thresh-
olding is used to extract solid skin color blobs and create a binary mask of
foreground skin-colored pixels. A connected components labeling algorithm is
then used to assign different labels to pixels that belong to different blobs. Size
filtering on the derived connected components is also performed to eliminate
small, isolated blobs that are attributed to noise.

Results of the intermediate steps of this process are illustrated in Fig. 3.
Figure 3(a) shows a single frame extracted out of a video sequence that shows
a man performing various hand gestures in an office-like environment. Fig. 3(b)
shows the result of the background subtraction algorithm and Fig. 3(c) shows
skin-colored pixels after hysteresis thresholding. Finally, the resulting blobs (i.e.
the result of the labeling algorithm) are shown in Fig. 3(d).
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(a) (b) (c) (d)

Fig. 4. Tracking hypotheses over time. (a), (b) uncertainty ellipses corresponding to
predicted hypotheses locations and speed, (c), (d) propagated pixel hypotheses.

3.2 Tracking Blob Position and Speed

The dynamics of each tracked object are modeled by means of a linear dynamical
system which is tracked using the Kalman filter [15, 16]. The state vector x(t)
at time t is given as x(t) = (cx(t), cy(t), ux(t), uy(t))T where cx(t), cy(t) are the
horizontal and vertical coordinates of the tracked object’s centroid, and ux(t),
uy(t) are the corresponding components of the tracked object’s speed.

The Kalman-filter described above is illustrated in Figures 4(a) and 4(b) which
show frames extracted from the same sequence as the one in Fig. 3. The depicted
ellipses correspond to 95% iso-probability contours for the predicted location
(smaller, red-colored ellipses) and speed (larger, purple-colored ellipses) of each
tracked object’s centroid. As can be verified, objects that move rapidly (e.g.,
object 2 in Fig. 4(a)) or objects that are not visible (e.g., object 2 in Fig. 4(b))
have larger uncertainty ellipses. On the other hand, objects that move slowly
(e.g., faces) can be predicted with more certainty.

3.3 Pixel Hypotheses Propagation

Pixel hypotheses are propagated using the predicted state estimate x̂(t|t − 1)
and the predicted error covariance P(t|t − 1) of the Kalman filter discussed in
the previous section. More specifically, each pixel hypothesis (xi, yi) in H =
{(xi, yi) : i = 1 . . .N} is propagated in time by drawing a new sample from

N

([
xi + ûx(t|t − 1)
yi + ûy(t|t − 1)

]
,Ph(t|t − 1)

)
(1)

where ûx(t|t−1) and ûy(t|t−1) are the predicted velocity components (i.e. third
and forth element of x̂(t|t− 1) and Ph(t|t− 1) is the top left 2× 2 submatrix of
P(t|t − 1).

Figures 4(c) and 4(d) depict the predicted pixel locations (i.e. pixel hypothe-
ses) that correspond to the object tracks shown in Figs. 4(a) and 4(b), respec-
tively. As can be verified, tracks with larger uncertainty ellipses correspond to less
concentrated pixel hypotheses. On the other hand, propagated pixel hypotheses
tend to have higher spatial density for object tracks that are predictable with
higher confidence.
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Three objects merged into a single blob. Predicted pixel locations for each of
the three objects (1st row), pixels finally assigned to each object (2nd row).

3.4 Associating Pixels with Objects

The purpose of the data association step is to associate observations with exist-
ing object tracks. In this paper, data association is performed on a pixel basis
rather than a blob basis; i.e. each observed skin-colored pixel is individually as-
sociated to existing tracks. This permits pixels that belong to the same blob to
be associated with different object tracks.

The metric used to provide the degree of association between a specific skin-
colored pixel with image coordinates (x, y) and a specific object track oi is as-
sumed to be equal to the local density of the propagated pixels hypotheses of
this track at the location of this specific pixel. More specifically, to estimate the
degree of association A(p, oi) between pixel p and track oi, we make use of the
following metric:

A(p, oi) = αi

CP
N(p)

CN(p)
, (2)

where N(p) = {pk, ‖p − pk‖ ≤ D} is a neighborhood of pixel p, CP
N(p) is the

number of propagated pixel hypotheses of object track oi within N(p) and CN(p)
is the total number of pixels in N(p). αi is a normalizing factor ensuring that
the sum of all data association weights of (2) remains constant for each track
over time. An 8-neighborhood (D =

√
2) has proven sufficient in all experiments.

After pixels have been associated with tracked objects, weighted means (ac-
cording to A(p, oi)) are computed for each tracked object and used for the
Kalman filter update phase. Pixel hypotheses are also resampled from the
weighted distribution of the observed pixels. The above-described data associa-
tion scheme follows the joint-probabilistic paradigm by combining all potential
association candidates in a single, statistically most plausible, update.
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Fig. 6. Tracking results for twelve segments of the office image sequence used in the
previous examples. In all cases the algorithm succeeds in tracking the three hypotheses.

A notable case that is often encountered in practice, is when all pixels of a
single blob are assigned to a single track and vice versa (i.e. no propagated pixel
hypotheses are associated with pixels of other blobs). In this case, resampling of
pixel hypotheses is performed by uniformly sampling blob pixels. This permits
pixel hypotheses to periodically re-initialize themselves and exactly-follow the
blob position and shape when no data association ambiguities exist.

Figure 5 demonstrates how the proposed tracking algorithm behaves in a case
where three objects simultaneously occlude each other, leading to difficult data
association problems. The top row depicts the predicted pixel locations for each
of the three valid tracks. The bottom row depicts the final assignment of blob
pixels to tracks, according to the density of the predicted pixel hypotheses.

4 Experimental Results

Figure 6 depicts the tracker’s output for a number of frames of the image se-
quence comprising the running example used in Figs 3, 4 and 5. As can be ob-
served, the tracker succeeds in keeping track of all the three hypotheses despite
the occlusions introduced at various fragments of the sequence.

The proposed tracker comprises an important building block of a vision-based,
hand- and face-gesture recognition system which is installed on a mobile robot.
The purpose of the system is to facilitate natural human-robot interaction while
guiding visitors in large public spaces such as museums and exhibitions. The
performance of the system has been evaluated for a three-weeks time in a large
public place. Figure 7 depicts snapshots of three different image sequences cap-
tured at the installation site. Despite the fact that the operational requirements
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Fig. 7. Tracking results from a real-world application setup

of the task at hand (i.e. unconstrained lighting conditions, unconstrained hand
and face motion, varying and cluttered background, limited computational re-
sources) were particularly challenging, the tracker operated for a three weeks
time with results that, in most cases, were proved sufficiently accurate to pro-
vide input to the hand- and face-gesture recognition system of the robot. During
these experiments the algorithm ran on a standard laptop computer, operating
at 640 × 480 images. At this resolution, the algorithm achieved a frame rate of
30 frames per second. Several video sequences obtained at the actual application
site are available on the web2.

5 Conclusions and Future Work

In this paper we have presented a novel approach for tracking multiple objects.
The proposed approach differs from existing approaches in the way used to
associate perceived blob pixels with existing object tracks. For this purpose, in-
formation about the spatial distribution of blob pixels is passed on from frame
to frame by propagating a set of pixel hypotheses, uniformly sampled from the
original blob, to the target frame using the object’s current dynamics, as esti-
mated by means of a Kalman filter. The proposed approach has been tested in
the context of face and hand tracking for human-robot interaction. Experimental
results show that the method is capable of tracking several deformable objects
that may move in complex, overlapping trajectories.
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Abstract. This paper presents a method for matching closed, 2D shapes
(2D object silhouettes) that are represented as an ordered collection of
shape contexts [1]. Matching is performed using a recent method that
computes the optimal alignment of two cyclic strings in sub-cubic run-
time. Thus, the proposed method is suitable for efficient, near real-time
matching of closed shapes. The method is qualitatively and quantita-
tively evaluated using several datasets. An application of the method for
joint detection in human figures is also presented.

1 Introduction

Shape matching is an important problem of computer vision and pattern recog-
nition which can be defined as the establishment of a similarity measure between
shapes and its use for shape comparison. A byproduct of this task might also
be a set of point correspondences between shapes. The problem has significant
theoretical interest. Shape matching that is intuitively correct for humans is a
demanding problem that remains unsolved in its full generality. Applications of
shape matching include but are not limited to object detection and recognition,
content based retrieval of images, and image registration.

A lot of research efforts have been devoted to solving the shape matching
problem. Felzenszwalb et al. [2] propose the representation of each shape as a
tree, with each level representing a different spatial scale of description. They
also propose an iterative matching scheme that can be efficiently solved using
Dynamic Programming. Ebrahim et al. [3] present a method that represents a
shape based on the occurrence of shape points on a Hilbert curve. This 1D signal
is then smoothed by keeping the largest coefficients of a wavelet transform, and
the resulting profiles are matched by comparing selected key regions. Belongie et
al. [1] approach the problem of shape matching introducing the shape context, a
local shape descriptor that samples selected edge points of a figure in log-polar
space. The resulting histograms are compared using the x2 statistic. Matches
between corresponding points are established by optimizing the sum of match-
ing costs using weighted Bipartite Matching (BM). Finally, a Thin Plate Spline
(TPS) transformation is estimated, that warps the points of the first shape to

G. Bebis et al. (Eds.): ISVC 2009, Part II, LNCS 5876, pp. 460–469, 2009.
c© Springer-Verlag Berlin Heidelberg 2009
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the second, based on the identified correspondences. This process is repeated for
a fixed number of iterations, using the resulting deformed shape of the previ-
ous step as input for the next step. A very interesting work that utilizes shape
contexts is presented in [4]. The goal of this work is to exploit the articulated
nature that many common shapes possess to improve shape matching. The au-
thors suggest that the distances and angles to be sampled should be measured
only inside the closed contour of a figure.

In this work we are interested in the particular problem of matching de-
formable object silhouettes. The proposed method is based on shape contexts
and the work of Belongie [1]. It is assumed that a 2D shape can be represented
as a single closed contour. This is very often the case when, for example, shapes
are derived from binary foreground masks resulting from a background subtrac-
tion process or from some region-based segmentation process. In this context,
shape matching can benefit from the knowledge of the ordering of silhouette
points, a constraint that is not exploited by the approach of Belongie [1]. More
specifically, in that case, two silhouettes can be matched in sub-cubic runtime
using a recently published algorithm [5] that performs cyclic string matching
employing dynamic programming. The representation power of shape contexts
combined with the capability of the matching algorithm to exploit the order
in which points appear on a certain contour, result in an effective and efficient
shape matching method.

Several experiments have been carried out to assess the effectiveness and the
performance of the proposed method on benchmark datasets. The method is
quantitatively assessed through the bull’s-eye test applied to the MPEG7 CE-
shape-1 part B dataset. More shape retrieval experiments have been carried
out on the “gestures” and “marine” datasets. Additionally, the proposed shape
matching method has been employed to detect the articulation points (joints) of
a human figure in monocular image sequences. Specifically, 25 human postures
have been annotated with human articulation points. Shape matching between
a segmented figure and the prototype postures results in point correspondences
between the human figure and its best matching prototype. Then TPS transfers
known points from the model to the observed figure.

Overall, the experimental results demonstrate that the proposed method per-
forms very satisfactory in diverse shape matching applications and that the per-
formance of shape matching can be improved when the order of points on a
contour is exploited. Additionally, its low computational complexity makes it a
good candidate in shape matching applications requiring real-time performance.

The rest of the paper is organized as follows. The proposed method is pre-
sented in Sec. 2. Experimental results are presented in Sec. 3. Finally, Sec. 4
summarizes the main conclusions from this work.

2 The Proposed Shape Matching Method

The proposed method utilizes shape contexts to describe selected points on a
given shape. A fixed number of n points are sampled equidistantly on the contour
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of each shape. For each of these points, a shape context descriptor is computed.
To compare two shapes, each descriptor of the 1st shape is compared using the x2

statistic to all the descriptors of the 2nd, giving rise to pairwise matching costs.
These costs form the input to the cyclic string matching, and correspondences
between the shapes are established. These correspondences are used to calculate
a Thin Plate Splines based alignment of the two shapes. A weighted sum of
the cyclic matching cost and the TPS transformation energy forms the final
distance measure of the two shapes. The rest of this section describes the above
algorithmic steps in more detail.

2.1 Scale Estimation and Point Order

The first step of the method is to perform a rough scale estimation of the input
shape. As in [1], the mean distance between all the point pairs is evaluated and
the shape is scaled accordingly. Denoting the ith input point as pti, the scale a
is estimated as

a =
n∑

i=1

n∑
j=i+1

2
∥∥pti − ptj

∥∥
n(n − 1)

. (1)

Then, every input point is scaled by 1/a.
The order (clockwise/counterclockwise) in which silhouette points are visited

may affect the process of shape matching. Therefore, we adopt the convention
that all shapes are represented using a counter-clockwise order of points. To
achieve this, the sign of the area of the polygon is calculated as

A =
1
2

n∑
i=1

xiyi+1 − xi+1yi , (2)

with xn+1 = x1 and yn+1 = y1. If A is negative, the order of the input points is
reversed.

2.2 Rotation Invariant Shape Contexts

For the purposes of this work, rotation invariance is a desirable property of shape
matching. As mentioned in [1], since each shape context histogram is calculated
in a log-polar space, rotation invariance can be achieved by adjusting the angular
reference frame to an appropriately selected direction. A direction one can use
for imposing rotation invariance in shape contexts, is the local tangent of the
contour. In this work this direction is estimated using cubic spline interpolation.
First, the 2D curve is fitted by a cubic spline model. Cubic splines inherently
interpolate functions of the form f : IR → IR. It is easy to extend this to
interpolate parametric curves on the plane (functions of the form γ : IR → IR2),
by concatenating two such models. The next step is to compute the derivatives
of the two cubic spline models at each point of interest. For each such pair of
derivatives, the local tangent is computed by taking the generalized arc tangent
function with two arguments. This method has the advantage that the computed
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angles are consistently aligned not only to a good estimate of the local derivative,
but also to a consistent direction. The estimated local contour orientation is then
used as the reference direction of shape contexts towards achieving descriptions
that are rotationally invariant.

2.3 Cyclic Matching

The comparison of a pair of shape contexts can be performed with a number of
different histogram comparison methods. In this work, the x2 statistic is selected
as in [1]:

χ2(h1, h2) =
1
2

K∑
k=1

[h1(k) − h2(k)]2

h1(k) + h2(k)
, (3)

where h1 and h2 are the compared histograms, each having K bins. The com-
parison of two shapes is performed by considering a 2D matrix C. The element
(i, j) of this matrix is the x2 statistic between the ith shape context of the first
shape and the jth shape context of the second shape. Any such pair is a po-
tential correspondence. Belongie et al. [1] use Bipartite Matching to establish a
set of 1-to-1 point correspondences between the shapes. However, by exploiting
the order that is naturally imposed by the contour, the search space can be
significantly reduced.

For the purpose of matching, we adopt the method presented in [5]. The
matrix C of x2 shape context comparisons forms the matching costs matrix
needed for the cyclic matching. Along with the matching pairs, a matching cost
cm is calculated as the sum of costs of all the aligning operations that were used.
Thus, cm can be used as a measure of the distance between the two shapes.

2.4 Thin Plate Spline Computation

The final step of the presented shape matching method is the computation of
the planar deformation that aligns two shapes. The alignment is performed using
Thin Plate Splines. The input to this stage is the result of the previous step,
i.e. a set of pairs of correspondences between two 2D shapes. The output is a
deformation of the plane, as well as a deformation cost. This cost can be properly
weighted along with the cost of the previous step to form the final matching cost
or distance between the shapes.

The regularized version of the TPS model is used, with a parameter λ that
acts as a smoothness factor. The model tolerates higher noise levels for higher
values of λ and vice versa. Since the scale of all shapes is roughly estimated at
the first step of the method, the value of λ can be uniformly set to compensate
for a fixed amount of noise. For all experiments, λ was fixed to 1, as in [1].

Besides the warping between the compared shapes, a total matching cost D
is computed as

D = l1 cm + l2 cb . (4)

D is a weighted sum of the cyclic matching cost cm and the TPS bending cost cb.
While cb has the potential to contribute information not already captured by cm,



464 I. Oikonomidis and A.A. Argyros

in practice it proved sufficient to ignore the cb cost, and use only the cm cost as
the distance D between shapes (i.e. l1 = 1 and l2 = 0). For all the following, this
convention is kept. It should be also noted that the TPS might be needed for the
alignment of matched shapes, regardless of whether the cb cost contributes to
the matching cost D. Such a situation arises in the joints detection application
described in Sec. 3.2.

3 Experimental Results

Several experiments have been carried out to evaluate the proposed method.
The qualitative and quantitative assessment of the proposed method was based
on well-established benchmark datasets. An application of the method for the
localization of joints in human figures is also presented. Throughout all exper-
iments n = 100 points were used to equidistantly sample each shape. For the
MPEG7 experiment (see Sec. 3.1) this results in an average subsampling rate of
13 contour pixels with a standard deviation of 828 pixels. This large deviation
is due to the long right tail of the distribution of shape lengths. Shape contexts
were defined having 12 bins in the angular and 5 bins in the radial dimension.
Their small and large radius was equal to 0.125 and 2, respectively (after scale
normalization). The TPS regularization parameter λ was set equal to 1 and the
insertion/deletion cost for the cyclic matching to 0.75 (the χ2 statistic yields
values between 0 and 1).

3.1 Benchmark Datasets

The proposed shape matching method has been evaluated on the “SQUID” [6]
and the “gestures” [7] datasets. In all the experiments related to these datasets,
each shape was used as a query shape and the proposed method was employed
to rank all the rest images of the dataset in the order of increasing cost D.
Figures 1(a) and 1(b), show matching results for the “SQUID” and the “gestures”
datasets, respectively. In each of these figures, the first column depicts the query
shape. The rest of each row shows the first twenty matching results in order of
increasing cost D. The retrieved shapes are, in most of the cases, very similar to
the query.

The quantitative assessment of the proposed method was performed by run-
ning the bull’s-eye test on the MPEG7 CE-shape-1 part B dataset [8]. This
dataset consists of 70 shape classes with 20 shapes each, resulting in a total of
1400 shapes. There are many types of shapes including faces, household objects,
other human-made objects, animals, and some more abstract shapes. Given a
query shape, the bull’s-eye score is the ratio of correct shape retrievals in the top
40 shapes as those are ranked by the matching algorithm, divided by the theo-
retic maximum of correct retrievals, which for the specific dataset is equal to 20.
The bull’s eye score of the proposed method on the MPEG7 dataset is 72.35%.
The presented method does not natively handle mirroring, so the minimum of
the costs to the original and mirrored shape is used in shape similarity compar-
isons. By post-processing the results using the graph transduction method [9]
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(a) (b)

Fig. 1. Matching results for (a) the “SQUID” and (b) the “gestures” datasets

with the parameter values suggested therein, the score is increased to 75.42%.
For comparison, the state of the art reported scores on this dataset are 88.3% for
the Hilbert curve method [3] and 87.7% for the hierarchical matching method
[2] (for more details, see Table 2 in [3]).

An extended investigation of the results of the bull’s-eye test is graphically
illustrated in Fig.2(a). This graph essentially turns the rather arbitrary choice
of the forty best results into a variable. The horizontal axis of the graph is this
recall length variable, and the vertical axis is the percentage of correct results
among the examined ones. The experimental results demonstrate that the cyclic
string matching performs better than Bipartite Matching. Additionally, graph
transduction improves both methods but does not affect the superiority of the
cyclic matching compared to Bipartite Matching.

The essential advantage of cyclic matching over Bipartite Matching is the re-
duction of the search space: while Bipartite Matching searches among all possible
permutations between two shapes, cyclic matching only considers the matchings
that obey the ordering restrictions imposed by both shape contours. This effec-
tively speeds up the matching process while yielding intuitive results. Sample1

shape retrieval results on the MPEG7 dataset are shown in Fig.2(b).

3.2 Detecting Joints in Human Figures

Due to its robustness and computational efficiency, the proposed method has
been used for the recovery of the joints of a human figure. For this purpose,
a set of synthetic human model figures were generated. Two model parameters
control the shoulder and elbow of each arm. Several points (joints and other
points of interest) are automatically generated on each model figure. Figure 3

1 The full set of results for the reported experiments is available online at
http://www.ics.forth.gr/∼argyros/research/shapematching.htm
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Fig. 3. The five configurations for the right arm. The contour of each figure is used as
the shape model; Marked points are the labeled joints.

Fig. 4. Characteristic snapshots from the joints detection experiment

shows five such model figures for various postures of the right arm. A total of 25
models were created, depicting all possible combinations of articulations of the
right (as shown in Fig.3) and the left arm.

In the reported experiments, the background subtraction method of [10] has
been employed to detect foreground figures. Connected components of the re-
sulting foreground mask image are then considered. If there exist more than one
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connected components on the foreground image, only the one with the largest
area is maintained for further processing. Its silhouette is then extracted and a
fixed number n of roughly equidistant points are selected on it. This list of points
constitutes the actual input to the proposed matching method. Each figure is
compared to all model figures. The model with the lowest cost D is picked as
corresponding to the input. The TPS transformation between the model and the
input is subsequently used to warp the labeled points of interest on the input
image.

Figure 4 shows characteristic snapshots from an extensive experiment where
a human moves in a room in front of a camera while taking several different pos-
tures. The input image sequence contains approximately 1200 frames acquired
at 20 fps. Having identified the joints, a skeleton model of each figure is ob-
tained. Interestingly, the method performs well even under considerable scale
and perspective distortions introduced because of the human motion that result
in considerable differences between the actual foreground silhouettes and the
considered prototypes.

The results presented in Fig.4 have been obtained without any exploitation of
temporal continuity. This may improve results based on the fact that the estima-
tion of the human configuration in the previous frame is a good starting point for
the approximation in the current frame. To exploit this idea, at each moment in
time, a synthetic figure like the ones shown in Fig.3 is custom rendered using the
joint angles of the estimated skeleton. Thus, the result of the previous frame is
used as a single model figure for estimating the human body configuration in the
current frame. In case that the estimated distance between the synthetic model
and the observed figure exceeds a specified threshold, the system is initialized by
comparing the observed figure with the 25 prototype figures, as in the previous
experiment. The exploitation of temporal continuity improves significantly the
performance of the method.

4 Discussion

This paper proposed a rotation, translation and scale invariant method for
matching 2D shapes that can be represented as single, closed contours. Affine
transformations can be tolerated since the shape contexts are robust (but not
strictly invariant) descriptors under this type of distortion. The performance of
the method deteriorates gradually as the amount of noise increases. In this con-
text, noise refers to either shape deformations due to errors in the observation
process (e.g. foreground/background segmentation errors, sampling artifacts etc)
or natural shape deformations (e.g articulations, perspective distortions, etc).

The time complexity of the method is O(n2 log(n)) for n input points, an
improvement over the respective performance of [1], which is O(n3). In the ap-
plication of Sec. 3.2, the employed unoptimized implementation performs 25
shape comparisons per second, including all computations except background
subtraction. By exploiting temporal continuity, most of the time the method
needs to compare the current shape with a single prototype, leading to real time
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performance. Overall, the experimental results demonstrate qualitatively and
quantitatively that the proposed method is competent in matching deformable
shapes and that the exploitation of the order of contour points besides improving
matching performance, also improves shape matching quality.
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Abstract

We present a novel approach to the problem of establishing the best match be-

tween an open contour and a part of a closed contour. At the heart of the proposed

scheme lies a novel shape descriptor that also permits the quantification of local

scale. Shape descriptors are computed along open or closed contours in a spatially

non-uniform manner. The resulting ordered collections of shape descriptors con-

stitute the global shape representation. A variant of an existing DTW matching

technique is proposed to handle the matching of shape representations. Due to the

properties of the employed shape descriptor, sampling scheme and matching pro-

cedure, the proposed approach performs partial shape matching that is invariant to

Euclidean transformations, starting point as well as to considerable shape defor-

mations. Additionally, the problem of matching closed-to-closed contours is nat-

urally treated as a special case. Extensive experiments on benchmark datasets but

also in the context of specific applications, demonstrate that the proposed scheme

outperforms existing methods for the problem of partial shape matching and per-
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forms comparably to methods for full shape matching.

Key words: Partial shape matching, 2D shape descriptors, Dynamic

Programming

1. Introduction

Shape matching is a fundamental problem in computer vision and pattern

recognition. It amounts to developing computational methods for comparing shapes

that agree as much as possible with the human notion of shape similarity. The

problem has significant theoretical interest and a wide range of applications, in-

cluding, but not limited to object detection and recognition, content based retrieval

of images and image registration.

To perform shape matching, most of the existing methods [12, 5, 8, 9, 3, 20, 7,

2] define shape representations and descriptors which are then compared through

appropriately selected methods and metrics. The quality of the shape matching

process depends on whether its final outcome agrees with human judgment. In this

paper, we are interested in the particular case of 2D shapes that can be represented

as binary images depicting foreground objects over their background.

Shape matching is a very challenging problem. Shapes to be matched are typ-

ically the result of some kind of segmentation process which, being imperfect,

may introduce a considerable amount of noise that needs to be tolerated. In most

of the cases, arbitrary differences in scale and orientation should not affect the

matching process. Due to viewpoint dependencies and shape articulations and

deformations, different 2D image projections of the shape of the same 3D object

2



(a) (b)

Figure 1: The four prototype silhouette parts in (a), need to be matched with the
yellow, closed contour in (b). In (b), it is shown which of the four prototypes
matched with parts of the closed contour and at which positions the best matches
were achieved, based on the proposed partial shape matching method.

may differ considerably. Further complications are caused by occlusions which

force shape matching to be based on partial evidence. In this particular case, the

best matching of an open contour with part of a closed contour needs to be estab-

lished [6, 11]. Last but not least, in realistic settings, all of the above complicating

factors do not appear in isolation, but contribute collectively to increasing the

complexity of the matching problem.

In the context of this work, we are interested in addressing the 2D shape

matching problem by simultaneously considering all the above complicating fac-

tors. Consider, for example, Fig. 1(a) which shows four prototype silhouettes2

(the green open contours) corresponding to parts of the outline of a human hand.

2The terms “silhouette” and “contour” are used interchangeably in this paper to denote the 2D
outline of the shape of an object.
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Given another, possibly scaled, rotated and deformed silhouette (the yellow closed

contour in Fig. 1(b)) which might be the result of some segmentation process, we

are interested in determining the best match between a part of it and the proto-

types of Fig. 1(a). It can be verified that all the aforementioned difficulties may

contribute to complicating this 2D partial shape matching problem. As stated

in [11], none of the currently available, state of the art shape matching techniques

provides solutions to all of these problems.

Towards the solution of this challenging problem, our contribution is threefold.

First, we propose a novel descriptor as a means of local, 2D shape representation.

The proposed descriptor is, by construction, scale and rotation invariant. More-

over, it tolerates substantial shape articulations and deformations. Second, we

introduce a method for non-uniform sampling of a given 2D contour that decides

where shape descriptors should be computed. The rationale behind this spatially

non-uniform contour sampling method is to provide scale-dependent representa-

tions of a silhouette. Being scale dependent, the contour sampling method auto-

matically produces the same number of shape descriptors3 in scaled and rotated

versions of the same contour. Third, we propose a variant of an existing dynamic-

programming based matching technique [16] that accomplishes global 2D shape

matching based on the computed shape descriptors. The key novelty in this variant

is its ability to handle partial matching. Thus, matching of a source, open contour

to the best matching part of another target, closed contour can be established. On

3Up to quantization errors.
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top of a distance measure between shapes, the proposed method provides, as a

byproduct, an alignment of the silhouette part to the complete silhouette (shown

in Fig. 1(b)). Although primarily developed for matching open to closed contours,

the proposed scheme treats the matching of two closed contours as a special case.

Experimental results have been obtained for contour matching (open to closed

and closed to closed) in benchmark data sets but also in datasets that have been

compiled in the context of this study. The results demonstrate that the proposed

approach outperforms existing methods and is capable of dealing with the shape

matching problem in challenging situations.

1.1. Related work

Before proceeding with a detailed description of our approach to partial shape

matching, we briefly review existing approaches to the problem.

Shape matching is a problem that has been the focus of a lot of research. Lon-

caric in [13] adopts three different classifications proposed by Pavlidis in [14].

Shape matching methods can be either boundary or global, depending on whether

they exploit only the silhouette or also the interior of the shapes. A second clas-

sification is based on whether the shape matching method computes a similarity

measure between the compared shapes (numeric methods) or an alignment of the

shapes (non-numeric methods). Shape matching methods can also be informa-

tion preserving or not, depending on whether the used representations permit the

recovery of the original shape.

A number of shape matching techniques are based on some kind of shape

5



skeletonization. Torres and Falcäo [7, 18] compute image skeletons at multiple

scales and use them to detect salient points on the contour of the shape. Sebas-

tian et al [17] present a technique that is based on the notion of shock graphs.

Each shape can be considered as the resulting disturbance of a set of singularities

(shocks) inside a fluid. Shapes that possess the same shock graph topology are

considered equivalent. This is verified through a polynomial time, global opti-

mization algorithm that performs graph comparison/matching.

Instead on relying on shape skeletal points, some other global methods are

based on the representation and the properties of all interior points of a certain

shape. Gorelick et al [10] propose the characterization of each interior point of

the shape by the average distance that a random walker will travel before reaching

it, assuming that it started at a point of the shape’s silhouette. Ebrahim et al [8]

present a method that transforms the raster of each shape to a one-dimensional

signal according to the occurrence of shape points on a Hilbert curve. This signal

is then smoothed by keeping the largest coefficients of a wavelet transform.

The category of methods most relevant to the proposed one are those that

represent and match shapes based on their contour points. The general strategy

is to extract information concerning the points of the shape’s silhouette and then

match the extracted descriptions. In [4], Basri et al propose a method to estimate

shape similarity based on both part articulation and local deformation cost. Backes

et al [3] use as descriptor the distribution of the distances between points on the

boundary of the shape. They propose two different distributions as descriptors

and use them for shape classification with the aid of Linear Discriminant Analysis

6



(LDA). Adamek and O’Connnor [1] propose a multiscale representation of shape

silhouettes that is matched with the use of dynamic programming. Initially, they

apply different levels of smoothing on the shape contours. They further process

this result by applying a transformation that detects concave and convex parts of

the contour. They then proceed to match such shape descriptions with the use of an

appropriate comparison distance, and dynamic programming. Arica and Vural [2]

propose a simple geometric transformation for the purpose of shape description.

They compute the bearing angle of three consecutive contour points for variable

offsets between these points. The values obtained for each point of the contour

and for various offset sizes are considered as random variable measurements, the

moments of which form the proposed descriptor. The matching of the descriptions

is performed using dynamic programming.

Several methods try to align silhouettes by exploring a space of geometric

transformations. For example, Wu et al [20] employ genetic algorithms to search

over the space of affine transformations. They describe representation and re-

sampling schemas suitable for the specific application, and propose variations to

improve the time and accuracy of shape matching. Felzenszwalb et al [9] repre-

sent each silhouette as a tree, with each level representing a different description

level. The root of the tree represents a properly selected cut on the curve while

the left and right children represent cuts on the occurring sub-curves. They pro-

pose an iterative matching scheme that can be efficiently solved using dynamic

programming. They proceed with the formulation of an algorithm that can locate

query shapes in real-world color images. A very interesting shape descriptor is the

7



so called shape context, introduced by Belongie et al in [5]. The main idea is that

the local distribution of points for the purpose of local description is well captured

using a log-polar histogram. In its original form, selected points from the contour

of an image were used as centers, and the distribution of the other contour points

around each center was used as a descriptor vector. Shape contexts capture the

fact that local features play a more important role than more distant ones for the

purpose of local matching. Effectively, the employed logarithmic function weighs

more the proximate features, and less the more distant ones.

An interesting variant is presented in [12] where the goal is to improve shape

matching by exploiting the articulated nature of many common shapes. The au-

thors suggest that the distances and angles between contour points should be mea-

sured only inside the closed contour of a figure. This means that articulations

are handled quite well by this type of description. The key idea is that the inner

distance, in contrast to the classic Euclidean distance, is invariant to articulation.

Cui et al [6] propose a method to efficiently match whole-to-part and part-

to-part shapes. They choose the integral of absolute curvature as shape descrip-

tor, and use the normalized cross correlation for matching parts of the occurring

curves. The method is rotation, scale and translation invariant and tolerates mod-

erate amounts of noise. Latecki et al in [11] propose a method for shape match-

ing based on dynamic programming. A particularly interesting aspect of this

method is that it addresses the partial shape matching problem. More specifi-

cally, the method is able to establish the best match between an open silhouette

and a part of a closed silhouette. The method combines the strengths of Dynamic
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Time Warping [15] and the Longest Common Subsequence technique [19] in an-

other dynamic programming based technique coined Minimum Variance Match-

ing (MVM). Local tangents to silhouettes are used for the purpose of shape de-

scription.

2. Proposed approach

The proposed matching method employs only boundary points for shape de-

scription. A similarity measure between shapes is computed, together with shapes

alignment. In the following sections, we describe the proposed shape representa-

tion and the procedure used to compare and match shapes.

2.1. Shape representation

The proposed descriptor is defined on shape silhouettes, i.e., the external con-

tour of each input shape [2, 12]. At a first step, a given silhouette is uniformly

sampled and one descriptor is computed on each point sample. The descriptor

consists of the distances of the particular point from the closest silhouette points,

along equiangular directions defined in the inner part of the shape. The mean

value of these distances provides an estimate of local scale. This gives the pos-

sibility to resample the silhouette so that the smaller the scale, the denser the

resampling of the silhouette becomes. Additionally, as it will become more clear

in Sec. 2.1.2, this non-uniform sampling that automatically adapts to local scale,

makes shape description independent of global scale changes. Shape descriptors

are then recomputed at the newly estimated silhouette samples. The set of all
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A

B

Figure 2: Example descriptors computed on points of a silhouette.

these descriptors constitutes the global representation of a shape. The following

sections describe these ideas in more detail.

2.1.1. The proposed local shape descriptor

The fundamental idea behind the proposed descriptor lies on measuring the

distance of a certain silhouette point from the closest points of the same silhou-

ette, along properly defined directions. Let si be a point on a silhouette s for which

a local shape descriptor should be computed. We define k rays starting at si. The

directions θ1(si) and θk(si) of the first and the last ray, coincide with the directions

of the lines (si, si−1) and (si, si+1), respectively. Indexing with i is modulo the

number of silhouette points. We ensure that 0 ≤ θk(si)−θ1(si) < 2π by adding in-

teger multiples of 2π to the values θ1(si) and θk(si) so that the intermediate values

represent directions pointing towards the inner part of the shape. The angular sep-

aration of two consecutive directions is then defined as (θk(si)− θ1(si))/(k − 1).

Figure 2 visualizes this process for a few points on the silhouette s.

Starting at si, we extend a straight line along each of the k directions spec-
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ified so far, until it meets the silhouette s for the first time. The length l of

this line segment is then recorded. Care must be taken so that quantization er-

rors are avoided. The above described process results in a k-dimensional vector

d(si) = {li1, li2, ..., lik} of distances, as visualized in Fig. 2. In the case of closed

contours, it is guaranteed that each of the defined rays will intersect the silhouette

and, thus, the lij will be finite numbers. For open contours, it is possible that an

intersection does not exist. Such rays are marked with a special label lU (e.g., the

dashed vectors of the descriptor at point A in Fig. 2).

The values lij 6= lU in d(si), 1 ≤ j ≤ k, are further filtered for outlying

values. More specifically, the median value m of such lijs, is computed. For

β > 0, each lij > βm is flagged as an outlier, by assigning it the label l∞ (e.g.,

the dotted vector of the descriptor at point B in Fig. 2). An empirical choice of

β = 15 was made, ensuring that only very large distances are discarded. Vector

d(si) effectively constitutes the proposed descriptor for local shape appearance at

point si.

An important issue is related to how the “inner” part of a shape is defined for

an open contour. In practice, this is handled by defining open contours as parts

of some closed contour, for which the inner part is unambiguously defined. Ad-

ditionally, it is worth noting that, by construction, the employed descriptor treats

unevenly the exterior and the interior of a shape. If the entire open contour is con-

cave, then all coordinates of the corresponding descriptors have lU values which

are uninformative and useless for matching. The case of strongly concave parts

can be handled by “reverting” the descriptor so as to take into account the exterior
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part of the shape, as opposed to the interior part that is now considered. Thus,

uninformative descriptors will only result in the case of low curvature, almost

straight contours. Fortunately, this is a rather uninteresting case because, also due

to scale invariance, such structures could fit anywhere on a closed contour.

The proposed descriptor shares some similarity with the one proposed in [12].

Both of them essentially measure distances in the interior of the shapes. However,

while [12] considers all possible paths in the interior of the shape, we consider

only straight, unobstructed paths. The approach in [12] reflects a more global

choice for the description of the shape, while the one proposed here is better suited

to local shape description. Because of this fundamental difference, the descriptor

proposed in [12] cannot be used for local scale estimation that drives non-uniform

contour sampling, or for partial shape matching.

2.1.2. Local scale estimation

An estimate of the local scale S(si) of a silhouette point si can be computed

as the mean of the finite distances of a descriptor:

S(si) =
1

|Fi|
∑
j∈Fi

lij, (1)

where Fi = {lij ∈ d(si) : lij 6= l∞ ∧ lij 6= lU} and |.| denotes set cardinality. The

intuition behind the particular representation of local scale is that S(si) is indeed

proportional to the level of detail of local shape. As an example, S(A) is expected

to be much larger than S(B) in Fig. 2. This estimate of local scale is used in

Sec. 2.1.4 to guide the non-uniform sampling of a particular silhouette.
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(a) (b) (c) (d)

Figure 3: Shape preprocessing steps. An example input binary image is shown in
(a) and the smoothed contour in (b). The fixed-rate and non-uniformly subsampled
silhouettes are shown in (c) and (d), respectively.

2.1.3. Contour extraction and preprocessing

The input to the proposed method is a binary image containing a foreground

object (e.g., Fig. 3(a)). The silhouette of this object is extracted (Fig. 3(b)) and

traversed in some predefined order. Both shape description and matching require

consistency with respect to this order. Therefore, lists of contour points are re-

versed, depending on the sign of the area covered by a silhouette and the conven-

tion that this must be positive. We proceed by performing a fixed subsampling of

the silhouette by retaining one out of r pixels. In order to eliminate small amounts

of quantization noise, prior to subsampling, Gaussian smoothing of the silhouette

is performed. Figure 3(c) shows the fixed rate subsampling of a smoothed version

of the contour shown in Fig. 3(b).

Let s be the sequence of smoothed silhouette points and s the sequence of

points resulting from the fixed interval subsampling of s. Shape description is
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performed on an image raster, so s is rasterized at the same resolution as the input

image. The descriptor presented in Sec. 2.1.1 is computed at all points of s. A

byproduct of this process is the local scale estimates S(si) for all points of s.

To be able to perform a scale-dependent subsampling of the contour (see

Sec. 2.1.4) we need to have an estimate of local scale for all points in s. We

achieve this by interpolating scale values already computed for points in s. Inter-

polation has been selected for reasons of computational efficiency. Alternatively,

we could have computed descriptors and scale estimates for all points in s. Exper-

iments have demonstrated that the increased accuracy thus obtained, is not worth

the associated extra computational overhead.

2.1.4. Scale adjusted sampling and shape representation

Given the local scale estimates S(si) for each point si in s, we can sample s

in a local, scale-dependent way. More specifically, a local sampling offset o is

chosen proportional to the local scale, or, equivalently, inversely proportional to

local detail. The resampling process is iterative. We start at an arbitrary point on

s, adding it as the first point of the final contour sampling ŝ. We then compute the

offset o(si) = aS(si), which is the distance (in pixels) on s to the next point to

be appended to ŝ. The constant a is empirically estimated and controls the total

number of samples per silhouette. We iterate this process until the whole contour

is sampled (see Fig. 3(d)).

Once contour resampling has been performed, the descriptors defined in Sec. 2.1.1

are computed again on the points of ŝ. For each new descriptor, the computed dis-
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tances are normalized by the mean of the finite distances, i.e., the local scale S(ŝi),

as defined in Eq.(1). The resulting k-dimensional vector d(ŝi) is the description

for the point ŝi and the concatenation of such vectors for all i, 0 ≤ i ≤ Nŝ,

constitutes the global representation of a contour.

2.2. Shape matching

The goal of the matching step is to estimate the similarity of two given con-

tours based on the descriptors already computed on them. This is achieved by es-

tablishing correspondences between contour points. We treat contours as strings

of descriptors computed as described in Sec. 2.1. Closed contours correspond to

cyclic strings. Correspondences between symbols are established through string

alignment with a method that is based on Dynamic Time Warping (DTW) [15].

More specifically, we consider a source silhouette s represented as an ordered

set of Ns descriptors d(si) that is to be matched with a target silhouette t repre-

sented as an ordered set of Nt descriptors d(tj). s might be an open or closed

contour, while t is always a closed one. According to the established terminol-

ogy, matching s with t amounts to identifying a set of elementary operations (i.e.,

symbol replacements, insertions and deletions) that are required to transform s to

t. Each such elementary operation is associated with a cost that depends on the

pair of symbols to which it is applied. The set of operations that results in the

minimum sum of individual costs represents the best possible alignment between

the two strings. Additionally, the minimum value of this objective function can be

used as an estimate of the dissimilarity of the compared strings.
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Intuitively, the replacement of a descriptor d(si) of s with the descriptor d(tj)

of t is associated with a replacement cost R(si, tj)
4 that reflects the cost of match-

ing d(si) with d(tj). Insertion can be interpreted as the expansion of a point in s

so that it corresponds to more than one points in t and is associated with a cost

E(si, tj). Symmetrically, deletion can be interpreted as the contraction of sev-

eral points in s that need to be aligned with a single point on t and is associated

with a cost C(si, tj). Essential to the definition of the replacement, insertion and

deletion costs is the definition of a distance measure D(x, y) between two shape

descriptors x and y.

2.2.1. Comparing shape descriptors

Let d(sx) = {lx1, lx2, ..., lxk}, d(ty) = {ly1, ly2, ..., lyk} be two shape descrip-

tors at points sx and ty, respectively. The goal is to establish a distance measure

D(sx, ty) between the descriptors d(sx) and d(ty). D(sx, ty) is defined based on

the pairwise comparison of the descriptors’ coordinates, according to:

D(sx, ty) =
1

k

k∑
i=1

∆(lxi, lyi), (2)

where ∆(., .) is a function that compares its arguments and returns a value in the

range [0..1]. As it has been described in Sec. 2.1.1, each of the k dimensions of

the descriptors may contain arithmetic, but also categorical values (the labels l∞

and lU ). Thus, the definition of ∆(p, q) entails a number of cases depending on

4Formally, this should have been written as R(d(si), d(tj)). We choose to drop the descriptor
indicator d(.) for the sake of notational brevity.
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the type of dimensions p and q compared in Eq. (2):

∆(p, q) =



|p−q|
max{|p|,|q|} if p, q /∈ {l∞, lU}

1 if (p = l∞ ∧ q /∈ {l∞, lU})∨

(q = l∞ ∧ p /∈ {l∞, lU})

0 otherwise.

(3)

The first branch of Eq.( 3) states that if p and q are finite distances, ∆(p, q) will

vary in the range [0..1] depending on their relative difference. The second branch

states that there is a total mismatch between finite distances and outlying ones.

Finally, the third branch states that in all other cases (distances are either outlying

or undefined due to open contours), ∆(lxi, lyi) = 0, thus signifying a perfect

match.

2.2.2. Defining DTW costs

We proceed with defining the replacement, insertion and deletion costs used

for shape matching. All DTW costs are defined based on D(si, tj). Because of

the non-uniform sampling, a point that represents a large portion of the contour

must be weighted more compared to another point which represents a smaller

part. To achieve this, the offset o(xi) (see Sec. 2.1.4) divided by the total length

Nx of a contour x is used as a weighting factor, i.e., w(xi) = o(xi)/Nx. For the

closed contour case, the deletion cost is defined as C(si, tj) = w(si)D(si, tj), and

the insertion cost is defined as E(si, tj) = w(tj)D(si, tj). The replacement cost

R(si, tj) is then defined as R(si, tj) = max{C(si, tj), E(si, tj)}.
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The definition of costs for the open contour case has an extra complication.

The open contour has a known length, but we do not know where on the closed

contour the open contour will be matched. This means that we cannot account

correctly for the closed contour scale. We proceed with weighting the costs only

with the known length of the closed contour. Thus, both insertion and deletion

costs are set in this case to the value E(si, tj) = C(si, tj) = w(tj)D(si, tj). The

replacement cost is set to half this value.

2.2.3. Matching algorithm

As detailed in Sec. 1.1, the efficient computation of elastic matching through

dynamic programming techniques has been frequently applied to shape match-

ing. Techniques based on Dynamic Time Warping (DTW) match points on one

silhouette to points on another by finding the shortest path through a graph, the

nodes of which encode the similarity of respective point pairs. Assuming that

both silhouettes consist of n points, the fastest available algorithm [16] for solv-

ing this problem has a complexity of O(n2 log n). Essentially, the technique pre-

sented in [16] provides a mechanism to avoid the exhaustive consideration of the

alignments of two cyclic strings for every possible initial match. We employ this

algorithm to match closed to closed contours. More precisely, we implemented

and employed a generalization of [16] that makes it suitable for matching strings

of unequal length. The matching costs were defined as described in Sec. 2.2.2.

Matching open contours against parts of closed contours is similarly treated,

but requires additional attention. Assume an open contour s that needs to be
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matched with part of a closed contour t. We capitalize on the observation that

this can be computed as the best match between s and any substring of length less

than Nt from t � t, i.e. the concatenation of t with itself. The duplication of the

target string ensures that the source string s can be matched with the target string

without having to wrap around at string ends. Then, the problem is transformed

into one of searching for minimum cost paths in a directed acyclic graph and em-

ploy dynamic programming techniques that prune the search space by exploiting

previously computed paths. Care is taken so as to enforce the constraint that the

source, open string s cannot match a substring of t� t that has length greater than

Nt; This would mean that s wraps around the cyclic string t.

3. Experimental results

The proposed approach for 2D shape matching has been validated by sev-

eral experiments. The experiments can be grouped into two categories, one that

assesses the performance of the proposed method in matching open to closed con-

tours and another one that concerns the matching of closed contours.

3.1. Matching open to closed contours

The experiments for matching open with closed contours have been performed

based on the MPEG7 Core Experiment CE-Shape-1 dataset [11] as well as in

the context of its application to human upper body detection and hand posture

recognition.
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3.1.1. Experiments on the MPEG7 dataset

The full MPEG7 dataset consists of 70 different classes of objects, each con-

taining 20 class representatives, resulting in 1400 different shapes. In the exper-

iment reported in [11], 5 shapes out of each shape class have been used, for a

total of 350 shapes. Then, 10 query open contours are selected and matched with

each shape in the database yielding similarity ranks. The important difference in

our experimental setup is that we did not restrict the shape database as in [11] to

350 shapes, but instead, we used the full set of 1400 shapes. We reproduced the

10 open contour queries (top 10 rows of Figs. 4, 5). To investigate a richer set

of possible types of open contour queries, we selected 8 more (bottom 8 rows of

Figs. 4 and 5), including different parts of the same silhouettes. The shapes re-

trieved using the proposed method for the total of 18 queries are shown in Fig. 4.

The first column in Figs. 4 indicates the queries superimposed on the shape used to

define it. The rest 10 columns depict retrieved shapes (with the matched part high-

lighted) in the order of decreasing similarity. For the purposes of quantitative and

comparative evaluation, we implemented the MVM method presented in [11]. We

converted each silhouette of the database to a sequence of 100 tangent values us-

ing the Discrete Curve Evolution method, as indicated in [11]. The actual queries

were obtained from these sequences by taking the cyclic subsequence that best

corresponded to the depicted contour part. Similarly to Fig. 4, the 10 best shapes

retrieved using the MVM method for the set of 18 queries are shown in Fig. 5. As

can be verified, the proposed method retrieves shapes that are perceptually more

relevant to the queries.
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Queries Our Aggregate
of [11] queries

MVM 24.0% 23.7% 23.9%
Our approach 52.5% 65.0% 58.1%

Table 1: Comparison between the MVM and the proposed method for partial
shape matching.

In order to quantitatively compare the two methods, we counted the number

of retrieved images that belong to the class of the image used to define the query

contour, in the top 40 matches. The percentage of correct retrievals is the so called

bulls-eye score. We performed this test for the defined 18 queries. Table 1 sum-

marizes the obtained results and demonstrates that the proposed method performs

substantially better compared to the MVM method.

3.1.2. Body parts matching

The proposed method was also applied to human upper body detection and

hand posture recognition. More specifically, the 10 open contours representing

parts of human postures corresponding to the upper human body (see Fig. 6) have

been manually defined and then matched with full contours resulting from back-

ground subtraction. Snapshots of the results obtained are shown in Fig. 7. Having

annotated the prototype, partial contours with human joins location information,

it becomes possible to localize them in the current frame. The skeleton of the up-

per body (appearing in red in Fig.7) can then be computed based on the locations

of these points. Interestingly, the method succeeds to compensate for the large

deformations of human body and the noise that is inevitably introduced because
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of the color-based background subtraction. Additionally, since the prototype con-

tours are parts of silhouettes, the recognition of the upper-body posture becomes

invariant to the configuration of legs. Thus, only 10 prototypes suffice to encap-

sulate the frontal variability of the upper body. Additionally, the method accounts

for inter-person variability since, as shown in Fig.7, it succeeds to match proto-

types in the silhouettes of different persons.

Similarly, 9 open contours corresponding to 9 hand postures have been man-

ually defined (see Fig.8), and then matched against performing hands. Snapshots

of the results obtained are shown in Fig. 9. By associating hand postures with se-

mantic information, we can robustly recognize them in videos, with only a single

prototype per hand posture and despite considerable rigid transformations and non

rigid deformations. The bottom-right image shows two different input prototypes

matching simultaneously with different parts of the closed contour, permitting the

interpretation of bimanual postures performed by occluding hands.

Representative videos of the results obtained in both experiments, are available

online5.

3.2. Matching closed to closed contours

Despite that the proposed solution has been developed for the problem of par-

tial shape matching, it also proves itself very competent in the problem of match-

ing closed contours. We performed an exhaustive classification test that employed

each of the 1400 images of the full MPEG7 dataset as a query object. Table 2

5http://www.ics.forth.gr/∼argyros/research/partialshapematching.html

22



Bull’s eye score Proposed [12] [8] [9]
No GT [21] 83.4% 85.4% 88.3% 87.7%
With GT [21] 89.9% 91.0% - -

Table 2: Performance of existing methods for closed shapes matching, with and
without graph transduction [21].

presents the bull’s eye score of several existing methods on this problem. It can

be verified that the proposed method has a comparable performance to methods

specifically designed for closed shape matching. Table 2 also includes the per-

formance of the proposed method and IDSC [12], after graph transduction [21].

Figure 11 presents quantitative results on the performance of the proposed

method on the bulls eye test over the MPEG7 dataset. The performance of another

state of the art method [12] is also provided for comparison. For this exhaustive

shape classification experiment, we also computed the confusion matrix which

is shown in Fig. 12. Similarity scores have been obtained before the application

of graph transduction, so that the merit of the proposed method can be assessed

without the improvement introduced by it. The block diagonal structure of this

image illustrates the accuracy of the proposed method on shape classification.

Representative qualitative results from this experiment are shown in Fig. 10.

The complete view of the results is not included in this paper due to size consid-

erations, but is available online6.

6http://www.ics.forth.gr/∼argyros/research/partialshapematching.html
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3.3. Implementation notes

The parameters for the presented experiments were kept constant for all data

sets. The initial subsampling interval was set to r = 20. The descriptor’s dimen-

sion was set to k = 16. Slightly better results were obtained using k = 32 but

with a disproportionate increase in computation time. The parameter a for the

non-uniform contour sampling was set to a = 0.3. The proposed approach does

not inherently handle mirroring. Thus, both original and mirrored shapes were

matched and then the lowest of the two scores was kept.

The whole matching process runs on commodity hardware at a frame rate of

1 to 20 fps, depending on parameters such as image resolution, sampling rates,

number of descriptor rays and number of prototypes. For comparison, a similar

computational performance was achieved in our implementation of MVM [11].

4. Summary

This article presented a novel solution to the problem of partial shape match-

ing. Partial and full shape matching are treated in a unified way that proves very

competent compared to existing methods. The key ideas and main contributions

of this work lie in the proposed shape descriptor, the scale dependent sampling,

and the cost assignment for descriptor matching. The shape descriptor is robust

under significant deformations due to articulation, efficient to compute, and cap-

tures sufficient information to enable high performance. The proposed contour

sampling method makes silhouette descriptions independent of scale. More im-

portantly, it allows uneven scaling of different parts of a silhouette (as for example
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in an affine transformation) to be treated in a consistent way. From a qualitative

point of view, the proposed cost assignment and shape matching, in most cases,

provide results that are intuitive. Finally, extensive quantitative and comparative

experiments demonstrated the effectiveness of the proposed method compared to

existing ones.
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Figure 4: Examples of partial contour matching in the MPEG7 dataset with the
proposed method.
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Figure 5: Examples of partial contour matching in the MPEG7 dataset with the
method proposed in [11].
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Figure 6: Prototypes used for upper human body detection.

Figure 7: Sample results from the application of the proposed method for human
upper body detection.
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Figure 8: Prototypes used for hand posture recognition.

Figure 9: Sample results from the application of the proposed method for hand
postures recognition.
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Figure 10: Characteristic results for the MPEG7 sequence. The first column
shows query images. The rest of each row includes retrieved shapes in the order
of decreasing similarity.

0 5 10 15 20 25 30 35 40
0.75

0.8

0.85

0.9

0.95

1

number of most similar shapes

pe
rc

en
ta

ge
 o

f c
or

re
ct

 r
es

ul
ts

MPEG7 Retrieval results for the proposed method and IDSC

 

 
proposed method
proposed method + GT
IDSC
IDSC + GT

Figure 11: Performance comparison of the proposed method and IDSC [12] in the
Bull’s Eye test on the MPEG7 dataset. The results of each method are improved
using the graph transduction technique (GT) proposed in [21] for different values
of the window (W) parameter.
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Figure 12: The confusion matrix for the exhaustive MPEG7 classification exper-
iment.
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Abstract

We present a robust object tracking algorithm that handles spatially extended and

temporally long object occlusions. The proposed approach is based on the con-

cept of “object permanence” which suggests that a totally occluded object will

re-emerge near its occluder. The proposed method does not require prior training

to account for differences in the shape, size, color or motion of the objects to be

tracked. Instead, the method automatically and dynamically builds appropriate

object representations that enable robust and effective tracking and occlusion rea-

soning. The proposed approach has been evaluated on several image sequences

showing either complex object manipulation tasks or human activity in the context

of surveillance applications. Experimental results demonstrate that the developed

tracker is capable of handling several challenging situations, where the labels of

objects are correctly identified and maintained over time, despite the complex in-

teractions among the tracked objects that lead to several layers of occlusions.
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1. Introduction

Visual tracking of multiple objects is an important problem with instances ap-

pearing in several application domains. Despite the huge amount of excellent

research in the field, the effective and robust solution to the problem remains

challenging in many realistic scenarios and settings. Part of the difficulty of the

problem stems from the fact that even simple object interactions may result in

full occlusions that last for quite long time periods. An object may totally dis-

appear behind another object and reappear after considerable time, close to it, at

a different location. As an example, consider the situation illustrated in Fig. 1

where a person grasps his keys to place them somewhere else. Once the keys

are firmly grasped, they totally disappear behind the hand. When the transfer is

complete, the same keys reappear. Reasoning about the activities in this scene

requires the capability to associate the same label to the object seen before and af-

ter manipulation. Clearly, the problem may become much more complicated, for

example in scenarios involving bimanual interaction with several objects that may

(or may not) differ in shape, size, appearance, etc. Similar kinds of problems can

be encountered in other applications, involving, for example, tracking individual

persons in crowded scenes. In this work, we present our approach to solving this

kind of tracking problems.

A lot of approaches have already been proposed for object tracking in the

presence of occlusions. Huang and Essa [6], provide a very informative overview

of existing approaches. According to their categorization, several of the exist-
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(a) (b) (c) (d)

Figure 1: The need for handling long-term occlusions in the context of tracking. From left to
right, a human hand moves towards the keys, grasps and transfers them to a different position.
We are interested in a tracking framework which, without a priori information about the tracked
objects, will be able to infer that the object disappearing in the second frame, is the same to the
one reappearing in the fourth frame.

ing methods handle occlusions implicitly. In the work of Khan and Shah [10]

for people tracking, a person is segmented into classes of similar color using the

Expectation Maximization (EM) algorithm. Then, the maximization of the a pos-

teriori probability of these classes drives frame-to-frame tracking. McKenna [13]

and Marques [12] employ appearance models of tracked regions to identify people

after the occurrence of occlusions but their approach provides limited support of

complex object interactions. In [7], Isard introduces a Bayesian filter for tracking

a potentially varying number of objects. A particle filter is used to perform joint

inference on both the number of objects present and their configurations. Oc-

clusion handling is achieved by incorporating the number of interacting persons

into the observation model and inferring it using a Bayes network. Jepson et al.

[8] proposes a framework for learning appearance models to be used for motion-

based tracking of natural objects. The appearance model involves a mixture of

stable image structure, learned over long time courses, along with two-frame mo-

tion information and an outlier process. This model is used in a motion-based

tracking algorithm to provide robustness in the presence of outliers, such as those
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caused by occlusions.

Several other methods have been proposed that treat explicitly the problem

of tracking in the presence of occlusions. Rehg [15] describe a framework for

local tracking of self-occluding motion, in which one part of an object obstructs

the visibility of another. His approach uses a kinematic model to predict occlu-

sions and windowed templates to track partially occluded objects. Brostow [3]

present a method to decompose video sequences into layers that represent the

relative depths of complex scenes. Activity in a scene is used to extract tempo-

ral occlusion events, which are, in turn, used to classify objects on the basis of

whether they are occluded by or occlude other objects. Jojic [9] proposes a tech-

nique for automatically learning probabilistic 2D appearance maps and masks of

moving occluders. The model explains each input image as a layered composition

of “flexible sprites”. A variational expectation maximization algorithm is em-

ployed to learn a mixture of sprites from a video sequence. Tao [18] decomposes

video frames into coherent 2D motion layers and introduces a complete dynamic

motion layer representation in which spatial and temporal constraints on shape,

motion and appearance are estimated using the EM algorithm. His method has

been applied in an airborne vehicle tracking system and examples of tracking ve-

hicles in complex interactions are demonstrated. Zhou [22] introduces the concept

of background occluding layers and explicitly infer depth ordering of foreground

layers. A MAP estimation framework is proposed to simultaneously update the

motion layer parameters, the ordering parameters, and the background occlud-

ing layers. Wu [19] proposes a dynamic Bayesian network which accommodates
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an extra hidden process for occlusion. The statistical inference of such a hidden

process reveals the occlusion relations among different targets. Yu [20] proposes

a framework for treating the general multiple target tracking problem, which is

formulated in terms of finding the best spatial and temporal association of obser-

vations that maximizes the consistency of both motion and appearance of object

trajectories. Leibe [11] considers multi-object tracking as a search for the glob-

ally optimal set of space-time trajectories which provides the best explanation for

the current image and for all evidence collected so far, while satisfying the con-

straints that no two objects may occupy the same physical space, nor explain the

same image pixels at any point in time. In a recent work, Zhang [21] proposed a

network flow based optimization method for data association in multiple objects

tracking. The maximum-a-posteriori (MAP) data association problem is mapped

into a cost-flow network with a non-overlap constraint on trajectories. The opti-

mal data association is found by a min-cost flow algorithm in the network that is

augmented with an explicit occlusion model (EOM) to track long-term occlusions.

The majority of the above methods assume that even partial observations of

the occluded objects are possible. As such, they fail to handle total occlusions,

especially when they last for considerable amounts of time. The method proposed

in this paper is able to handle occlusions that are challenging because of both their

spatial extend and duration. The proposed method uses two types of information

regarding the scene. The first is the result of scene background subtraction which

produces a map showing “where” action takes place in the scene. The second

comes from the estimation of several (one per tracked object) Gaussian Mixture
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Models (GMMs) of color that represent “what” is the appearance of moving ob-

jects. The proposed method does not need training to account for the variability

in the number of tracked objects, their shape, appearance, or motion characteris-

tics. On the contrary, such information is automatically derived and appropriately

updated over time through the use of simple, generic models.

Much of the success of the method depends on a mechanism inspired by the

work in [1], that properly associates foreground pixels to different objects. Thus,

models of object appearance can be properly maintained and tracked. Occlusion

handling is treated through a method founded on the principle of object perma-

nence [14, 2], which refers to the ability of children to realize that an object exists

even when it cannot be seen. Recent studies [2], indicate that infants can reach

the object permanence stage at the age of five months, showing the fundamental

role of the concept in visual perception.

The proposed algorithm exploits the powerful data association mechanism that

has been proposed in Argyros et al. [1], where a method is proposed for tracking

multiple skin-colored objects in images acquired by a possibly moving camera.

The proposed method encompasses a collection of techniques that enable the de-

tection and modeling of skin-colored objects as well as their temporal association

in image sequences. Although not explicitly stated, this tracking algorithm han-

dles occlusions between objects sharing the same color model (skin color). Nev-

ertheless, the method requires prior training to the color model of the objects to be

tracked. The approach presented in this paper may handle objects of completely

different appearances for which no a priori information is assumed to be known.
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In addition to the more complete appearance models, the exploitation of the

concept of “object permanence” makes the proposed method much more com-

petent in handling long-term occlusions. Huang et al. [6] also used the concept

of “object permanence” to successfully handle long-term occlusions of a vary-

ing number of objects over extended image sequences. Their approach incor-

porates (i) a region-level association process and (ii) a object-level localization

process to track objects through long periods of occlusions. Region association

is approached as a constrained optimization problem and solved using a genetic

algorithm. Objects are localized using adaptive appearance models, spatial dis-

tributions and occlusion relationships. The approach in [6] does not explicitly

handle interacting objects of similar appearance and is, therefore, expected to fail

in tracking them. On the contrary, the proposed method succeeds in treating such

cases.

The rest of the paper is organized as follows. Section 2 presents the adopted

object representation model. Section 3 describes in detail the proposed tracker and

occlusion reasoning. In Sec. 4, we present results from the application of the pro-

posed methodology in several video sequences that demonstrate important aspects

of the performance of the proposed method. Among other things, the method is

shown to successfully handle dynamic updating of the object’s appearance mod-

els, long-term occlusions, layered object occlusions and occlusions among objects

of similar appearance. Finally, Sec. 5 provides the main conclusions of this work

as well as extensions that are under investigation.
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2. Object modeling

The proposed method is able to detect and track an arbitrary and potentially

time varying number of objects. No a priori knowledge regarding the object’s

2D or 3D shape, appearance or motion is assumed. To achieve tracking, simple,

generic object models are automatically built and maintained.

In the following, we represent an image point as p = (x, y, c) under the con-

vention that it is located at (x, y) and has color c. Each object is represented with

a parametric model that takes into account both its spatial layout and its photo-

metric appearance. More specifically, the object model o ≡ (e, g) consists of an

ellipse e that accounts for the position and spatial distribution of an object and a

Gaussian Mixture Model (GMM) g that represents its color distribution.

The ellipse e = (cx, cy, α, β, θ) represents the spatial extend of an object o that

is located at (cx, cy), has an orientation θ with respect to a local 2D image coordi-

nate frame, and the lengths of its major and minor axes are α and β, respectively.

Given a set of image points P(o) comprising the image of an object, the parame-

ters of e can be computed from the covariance matrix of the locations of pixels in

P(o).

We define the spatial distance D(p, e) of an image point p from ellipse e as

in [1]. Intuitively, the ellipse is transformed to a circle of radius equal to one and

the same affine transformation is applied to the coordinates of the point p. The

distance D(p, e) of p from e is the Euclidean distance of p from the center of

ellipse e in this normalized frame. The set I(e) of points p that are interior to the
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ellipse e can be defined based on D(p, e):

I(e) = {p|D(p, e) ≤ 1}. (1)

The appearance g of an object o is modeled as a Gaussian Mixture Model

(GMM) g = g(wk, µk,Σk), 1 ≤ k ≤ K, representing the color (UV components

of YUV color space) distribution of the object’s pixels. Each of the K triplets

(wk, µk,Σk) represents the weight, the mean and the covariance matrix of the kth

Gaussian component of the mixture. The Expectation Maximization algorithm [4]

is employed to determine the parameters of the GMM g for each object o based

on the set P(o) of points that comprise it. We also define the probability that the

pixel’s color c was drawn from a GMM g as

PA(p, g) =
K∑
k=1

wkP (c|µk,Σk). (2)

PA(p, g) is a measure of the compatibility of p’s color with g.

3. Proposed method

Figure 2 illustrates the information flow of the proposed tracking algorithm.

Each frame of the input image sequence is first background subtracted [23] to

detect foreground pixels and to form distinct blobs, i.e regions of connected fore-

ground pixels. Assuming a still camera, background subtraction gives rise to a

change mask that can be attributed to the moving objects. A set of objects that

must be correctly associated to the pixels of the detected foreground blobs is also
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Figure 2: The flow diagram of the proposed method for tracking multiple objects in the presence
of long-term occlusions.

maintained. Clearly, even in the simple case of partial occlusions, there is no one-

to-one mapping between objects and blobs. Therefore, the goal of the proposed

method is to exploit spatial and photometric object information in order to (a) as-

sociate foreground blob pixels with objects, (b) investigate occlusion relationships

between objects, (c) update the object models and (d) use all extracted informa-

tion to enable tracking. The rest of this section provides further details on these

algorithmic steps.
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3.1. Associating foreground blob pixels with objects

The aim of this part of the proposed method is to define the set P(o) of pixels

belonging to an object o. It is assumed that at a given moment in time, M fore-

ground blobs bj , 1 ≤ j ≤M have been detected and that N objects oi, 1 ≤ i ≤ N

are already being tracked. A single connected object can give rise to at most

one connected blob.2 However, due to occlusions, two or more different objects

may appear as a single connected blob. Thus, it holds that M ≤ N . As a direct

consequence, each blob may correspond to one or more objects.

To resolve the data association problem, the method takes into account both

the spatial proximity and the appearance similarity between a blob and an object.

This is performed in two steps. In the first step, an object is associated with

a certain blob. The validity of this algorithmic step stems from the reasonable

assumption that a single connected object can give rise to at most one connected

blob. In the second step, each object takes its share from the pixels of the blob

it is associated with. Figure 3, graphically illustrates four objects (o1, o2, o3 and

o4, visually represented as the associated ellipses) and three blobs (b1, b2 and b3,

shown as colored image regions).

2The implicit assumption at this point is that change detection through background subtraction
cannot give rise to multiple blobs for a single object. This is safeguarded through morphological
filtering applied to the result of background subtraction.
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Figure 3: Possible relations between objects and blobs. For illustration purposes, each object
hypothesis is shown as an ellipse and each blob as a monochrome or bi-color image region.

3.1.1. Associating objects with blobs

For an object oi = (ei, gi) and a blob bj , the degree C(bj, oi) of their associa-

tion is defined as:

C(bj, oi) =
∑

p∈(bj∩I(ei))

PA(p, gi). (3)

Intuitively, all image points in the intersection of blob bj with object’s ellipse ei

are tested for compatibility with the object’s appearance model. Each object is

associated with the blob that gives rise to the highest degree of association. More

specifically, the blob B(o) with which object o is associated is defined as:

B(o) = arg max
bj

C(bj, o). (4)

Thus, an object is associated with only one blob, whereas a blob may be associated

with many objects.
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3.1.2. Identifying object support regions

After associating objects with blobs, four interesting cases may arise: (a) a

blob might be associated with no object, (b) an object might be associated with no

blob, (c) an object might be associated with exactly one blob, and (d) a blob might

be associated to multiple objects. In the following, we investigate these cases in

more detail.

Blobs not associated to objects: Consider a blob b such that

∀oi, b ∩ I(ei) = ∅ ⇒ ∀oi, C(b, oi) = 0. (5)

Equation (5) implies that none of the existing object hypotheses explains the ex-

istence of this blob. Thus, this has to be a new object, an object that has just

appeared in the scene for the first time. In the example of Fig. 3, b1 is such a blob.

In this case, a new object is generated and its set P(o) becomes equal to b.

Objects not associated to blobs: Consider the case of an object o such that

(
∪M

j=1bj
)
∩ I(e) = ∅ ⇒ ∀bj, C(bj, o) = 0. (6)

In this case, the hypothesis for an object o is not supported by any foreground blob

pixel observations. Thus, o has disappeared and must be removed from further

consideration. In the example of Fig. 3, object o1 satisfies the criterion of Eq.(6).

Blobs in one-to-one correspondence with objects: In case that a single object o is
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associated to a single blob b, the set P(o) becomes equal to b. This is the case

with object o4 and blob b3 in Fig. 3.

Blobs associated to multiple objects: As discussed earlier, the correspondence

between blobs and objects is not necessarily one-to-one. Two objects in an occlu-

sion relationship will give rise to a single image blob. Consider, for example, the

relevant situation in Fig. 3. Objects o2 and o3 must “compete” for the pixels of

blob b2. Having already associated an object o with the blob B(o) (see Eq.(4)), we

search for the set P(o) of pixels to be associated with object o only within blob

B(o). Equivalently, each pixel p of such a blob is associated with the object o∗

defined as:

o∗ = arg max
o

PA(p, g)

D(p, e)
. (7)

Intuitively, Eq.(7) assigns blob pixels p to the object o∗ that minimizes spatial

distance and maximizes appearance compatibility.

The approach described so far assigns image points to objects with distinct

appearance models. Still, in several tracking tasks, interacting objects of similar

appearance are frequently encountered. For such cases, an approach similar in

spirit to that of [1] has been adopted. As a first step, it is required to quantitatively

characterize the appearance similarity of two objects. Having represented an ob-

ject’s appearance with a GMM, this boils down to employing a criterion measur-

ing the similarity between two GMMs. For this purpose, a Bhattacharyya-based

distance has been employed. More specifically, the distance ∆(g, g′) between two
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mixtures of Gaussians g and g′, is given by [16]:

∆(g, g′) =
K∑
i=1

K∑
j=1

wiw
′
jB(gi, gj

′). (8)

In Eq. (8), both g and g′ are composed of K kernels, gi and g′j denote the corre-

sponding kernel parameters and wi, w′j the mixing weights. B(· , · ) denotes the

Bhattacharyya distance between two Gaussian kernels, defined as [5]:

B(g, g′) =
1

8
(µ− µ′)T (Σ + Σ′)

2

−1

(µ− µ′) +
1

2
ln
|Σ+Σ′

2
|√

|Σ||Σ′|
. (9)

Let a number of objects of the same appearance compete for the pixels of the same

blob. Having already associated an object o to the blob B(o) (see Eq.(4)), pixels

P(o) defining object o will be searched only within blob B(o). Let also P(o) be

initialized to the empty set, that is, ∀oP(o) = ∅. Then, the rules governing the

assignment of blob points to objects are the following:

• If for a pixel p ∈ B(o) of the blob associated to an object o = (e, g) it holds

that p ∈ I(e), then P(o) := P(o) ∪ {p}. Note that this way, p may be

assigned to several different objects having the same appearance models.

• If a pixel p ∈ B(o) does not belong to any of the ellipses of the competing

object models, then P(o∗) := P(o∗)∪{p} where o∗ is the object defined as:

o∗ = arg min
o
D(p, e). (10)

15



Intuitively, Eq.(10) assigns blob pixels p outside any object ellipse, to an object

that minimizes the spatial distance to it.

3.2. Object models update

Once each and every blob pixel has been assigned to some object, point sets

P(oi) have been computed for all objects oi. Then, an update of the objects

oi = (ei, gi) can be performed based on the sets P(oi). As stated earlier, ei can

be computed from the spatial distribution of points in P(oi). Additionally, each

object’s area is defined as Ai = |P(oi)|. The appearance model gi is computed

through the application of Expectation Maximization algorithm [4] over the colors

of the image points in P(oi).

The appearance model of an object is updated only for objects that are in

one-to-one correspondence with an image blob. In fact, and as it will become

more clear in Sec. 3.3, this is equivalent to updating an object’s appearance model

when it is observed in isolation, without any occlusions occurring. Having two

objects competing for the pixels of a single blob signals occlusion. In that case, the

appearance models of the corresponding objects are stopped from being updated.

We also denote with A′i the area of object oi at the last frame in which this object

appeared in isolation.

3.3. Object visibility and occlusion handling

Occlusion reasoning is based on both the spatial and the appearance compo-

nents on an object’s model. As an example, consider the situation graphically

16



(a) (b) (c)

(d) (e) (f)

Figure 4: The size of an object being occluded decreases considerably as occlusion progresses.

illustrated in Fig. 4. Figure 4(a) shows two objects (a hand and a pincer) prior to

occlusion.

At this time, each of the objects is associated with its own blob. As long as

occlusion occurs (Figs. 4(b)-(e)), the two objects compete for the points of a single

blob. The blob pixels that are compatible to the appearance of the occluder (hand)

will be assigned to it, so no significant changes in its area will be observed. The

occluded object (pincer), will appear to shrink, since fewer and fewer image points

will be assigned to it (Figs. 4(b), (c)). Thus, for the occluded object a significant

decrease of its area will be observed as soon as occlusion starts. Therefore, the

occlusion ratio Ri of an object oi is defined as:

Ri =
Ai

A′i
. (11)

The occlusion ratio Ri is measured for objects oi sharing the points of a blob
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with other objects. A small Ri indicates that its currently observed size is small

compared to the area of the same object before occlusion started. Thus, Ri can be

used to quantitatively characterize a certain occlusion. In fact, in case that

Ri ≤ T, (12)

object oi is declared as disappeared because of a full occlusion (e.g., Fig. 4(c)).

Occlusion reasoning does not only require understanding whether an object is

occluded or not but also requires the identification of the occluder. In case that

only two objects compete for the points of a blob, the situation is straightforward.

In case that more than two objects compete for the pixels of the same blob, the

definition of the occluder needs more attention. The occluder should be an object

that lies in the close proximity of the occluded object oB and has recently occupied

a portion of the occluded object’s image. Formally, for each possible occluder oi,

the number of pixels p in P(oi)∩ I(eB) is calculated. The object oi that produces

the largest such number of pixels is defined as the object occluding oB.

Objects reported as fully occluded according to the definition of Eq.(12) are

treated as suggested by the object permanence principle. This means that, until

the object appears again (i.e., Ri > T ), it is assumed to be behind its occluder

and to move with it. The object is excluded from the association of objects to

blobs (Sec. 3.1.1). Instead, it inherits the associations of its occluder. In the pixel

assignment part (Sec. 3.1.2), the occluded object is assumed to share the same

ellipse with its occluder. This allows the occluded object to continuously claim
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pixels that are compatible to its color appearance model and lie in the proximity

of its occluder.

When a previously occluded object reappears (Ri > T ) in the proximity of

its occluder, the two objects are dis-associated and the image points assigned to

the occluded object are used to construct a new spatial model. As the object

emerges (see, for example, Fig. 4(e)), the spatial model grows smoothly through

frames and accurately encapsulates the object’s shape. As discussed earlier, the

appearance model of the object will be updated only when the occluded object

appears isolated (Fig. 4(f)), that is, in a one-to-one correspondence with a blob.

3.4. Layered occlusions

The term layered occlusions is used to describe situations where multiple ob-

jects participate in an occlusion relationship. The proposed method forms and

maintains dependencies between occluded objects and their occluders. For a set

of objects in a layered occlusions relation, there will always be the foremost oc-

cluder and a number of occluded ones behind it. All occluded objects declare

all other objects as potential occluders. The reappearance of one of these has the

following implications:

• The remaining occluded objects will be searched not only in the proximity

of the original occluder, but also in the proximity of the newly reappeared

object.

• The label of the reappeared object will be removed from the list of all of its

potential occluders.
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As an example, consider object X which occludes object Y . Let object Z be oc-

cluded by the constellation of X and Y . Then, if Y appears, Z has to be searched

around bothX and Y . Simultaneously, Y should stop from being searched around

X . This could lead to a fast grow of the number of alternative hypotheses that need

to be monitored and maintained. On the other hand, for all practical purposes, the

adopted convention performs well in realistic depths of layered occlusions and

number of objects involved.

3.5. Linear prediction and object model propagation

In the process described so far, data association is based on the relations of

an object’s spatial distribution (represented as the ellipse e in the object’s model

o = (e, g)) with the detected blobs. However, instead of using the ellipses as those

were computed in the previous frame, we may use a prediction about the position

of an object’s ellipse based on its recent motion. Assuming that the immediate

past is a good prediction for the immediate future, a simple linear scheme is used

to predict the object’s ellipse position in the current frame. Blob and blob pixel

associations with objects (described in Sec. 3.1.1 and 3.1.2, respectively) is then

based on these predicted ellipse positions.

4. Experimental results

The proposed method has been tested and evaluated in a series of image se-

quences demonstrating challenging tracking scenarios. Results from several rep-

resentative input video sequences are presented in this paper. Videos demonstrat-
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(a)

(b)

(c)

(d)

Figure 5: Characteristic snapshots from the tracking experiments with the sequences tested in [6].
Rows (a), (b), (c) and (d) correspond to datasets “lego 1”, “lego 2”, “lego 3” and “shellgame”,
respectively.

ing tracking results are available online.3 In all experiments, input sequences are

composed of images of VGA resolution (480×640).

The first set of experiments has been carried out to assess the performance

of the proposed method in the image sequences4 employed in [6]. The four se-

quences (“lego 1”, “lego 2”, “lego 3” and “shellgame”) consist of 309, 398, 412

3Supplementary video material showing tracking results can be retrieved at the following web
address: http://www.ics.forth.gr/∼argyros/research/occlusions.html

4Available at http://www.cc.gatech.edu/cpl/projects/occlusion/
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and 460 frames, respectively. No background model for these sequences is avail-

able. Sequences “lego 1” and “lego 2” are pre-segmented, i.e., foreground colors

appear on a black background. For the rest two sequences, a background model

is built based on frames in which no foreground object appears. Each row of im-

ages in Fig. 5, provides characteristic frames from object tracking in each of these

sequences. Individual objects are identified through the use of different colors for

their contours and through arithmetic labels located on object centroids. Thus,

an object is successfully tracked if it maintains the same color and label in all of

its occurrences. Overall, the proposed method managed to successfully track all

objects in all of these videos.

To evaluate the proposed method in even more challenging situations, several

other videos have been recorded and used for testing. In all reported experiments,

input sequences consisted of standard VGA resolution images (640 × 480) ac-

quired at 20 Hz. Background subtraction has been performed with Zivkovic’s

improvements [23] of the Stauffer and Grimson’s method [17]. The U, V compo-

nents of the YUV color space has been used for building the GMMs g of object

appearances. For each GMM, the EM algorithm had to estimate the parameters

of K = 10 components. The threshold T on the occlusion ratio (Eq.(12)) sig-

naling full object occlusion was set to 35%. The selection of this threshold value

is related to the robust handling of the re-emergence and the subsequent tracking

of previously occluded objects. Setting the threshold value T close to 0%, would

mean that a minor color misclassification would suffice to falsely signal the reap-

pearance of an occluded object. Additionally, the detection of very small visible
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parts of partially occluded objects necessitates their subsequent tracking. This can

be error-prone if these parts are very small.

The first such image sequence (“objects” sequence) consists of 1280 frames

and shows a person manipulating several objects on a tabletop. Characteristic

snapshots demonstrating tracking results are shown in Fig. 6. The sequence sce-

nario is as follows. Initially, a hand brings into the scene a basket containing

several objects. Then, he empties the basket, interacts with the objects, fills the

basket again and finally empties it once more. At the beginning of the experi-

ment, the system has no a priori knowledge about the type, size, color, shape or

motion of the objects to be observed. At the end of the experiment the proposed

method has been able to track individual objects and has built a model of their

color appearance.

More specifically, Fig. 6(a) shows the empty desktop on which the experiment

is performed and of which a background model has been built. In Fig. 6(b), the

human hand has already brought into the scene a box containing a few objects.

Having no a priori knowledge about the scene other than a background model of

it, the system identifies the constellation of the hand, the blue box and the rest

of the objects as a single multicolor object, for which it builds a single object

model. As soon as the hand leaves the box on the table (Fig. 6(c)), the originally

connected set of pixels becomes disconnected. The original object hypothesis (red

contour) is assigned to the blue box because this is more similar to the previous

box/hand constellation. Another object (hand, green contour) is automatically

generated. For the next frames, the hand color appearance model is updated.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 6: Characteristic snapshots from the tracking experiment on the “objects” image sequence.

The same happens also to the appearance model of the blue box, in which the

components corresponding to the previously joined hand, now vanish. The hand

interacts with the box again (Fig. 6(d)). Now, the color models built assist the

method in correctly assigning the pixels of the single connected blob to the two

object hypotheses (hand, box). In Fig. 6(e), the hand has taken the pincer off

the blue box and moves it to another position on the table. For the moment, the
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method interprets this as a change in the appearance of the hand and, at that stage,

the pincer appears as part of the hand object. This is because the pincer has never

been observed in isolation but only as part of another object (box). As soon as

the hand leaves the pincer on the table, the pincer is understood as an individual

object (Fig. 6(f), blue contour). The identity of the pincer object is not lost even

when the hand passes several times over it, grasps it and moves it to another place

on the table (Figs. 6(g)-(j)). In a similar manner, the hand empties the basket.

As shown in Fig. 6(k), the hand, the box and the pincer maintain their original

identity, while the two other objects have acquired their own object identities. In

Fig. 6(l), the hand has grasped the object with the purple contour and has used it

to completely occlude the one with the cyan contour. The full occlusion has been

signaled and both object hypotheses are maintained and tracked together with the

observed region of the occluder. Both objects are transfered to a new position,

the hand removes the occluding object (Fig. 6(m)) and the correct identity for the

occluded object is still maintained. The purple object is again brought on top of

the cyan one, fully occluding it once more. This time, the big box is also brought

on top of the purple object creating a layered occlusion (Fig. 6(o)). When the hand

brings the purple object again in sight dragging it under the big box, the purple

object still maintains its original identity (Fig. 6(p)). The same happens to the

cyan object (Fig. 6(q)). The manipulation of objects continues; the hand brings all

objects again into the blue basket and starts moving the latter around (Fig. 6(r)).

The experiment ends with the hand emptying the basket once more (Figs. 6(s),

(t)). Correct object identities are still maintained.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7: Characteristic snapshots from the tracking experiment on the “lemons” image sequence.

Another experiment was performed on the “lemons” sequence (350 frames in

total, presented in Fig. 7), demonstrating that the method succeeds in handling

occlusions when tracking objects of similar appearance. In a scene setting that is

similar to the previous one, two hands appear in front of a camera (Fig. 7(a)) and

are assigned two different object identities. The hand appearing at the left (green

contour) holds two lemons. As soon as lemons appear in isolation (Figs. 7(b),

(c)) they get their own object labels. Then, each hand grasps a lemon (Fig. 7(d)),

fully occludes it (Fig. 7(e)) and then reveals it (Fig. 7(f)). Lemon identities have

been maintained. The two hands grasp the two lemons totally occluding them

and then cross (Fig. 7(g)). Hands reveal what they carry (Fig. 7(h), (i)), showing

that despite the complex interaction of two objects of similar color appearance

(arms) with two other objects of similar color appearance (lemons) and the simul-
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taneous presence of two full occlusions, the identities of the lemons are correctly

tracked. The experiment ends after the hands leave the objects they hold on table

(Figs. 7(j)-(l)).

In all the experiments reported so far, a person manipulates certain objects in

front of a visually simple background. Although that background model building

and maintenance is not the main focus of this paper, it is interesting to verify

the performance of the proposed approach in cases where background modeling

and foreground detection is performed in more realistic conditions. Towards this

goal, two image sequences have been recorded in a room that is monitored by

several cameras. The proposed tracking approach has been employed to monitor

the activity of humans interacting in this room.

Figure 8 shows characteristic snapshots of the first such sequence (“bag” se-

quence), which consists of 287 frames. Figure 8(a) shows the appearance of the

space where the experiments have been conducted; the background model has

been built for this environment appearance. Figure 8(b) shows the first person that

has been detected and tracked (red contour, person 1). This human is successfully

tracked as he approaches the camera (Fig. 8(c)) and rotates around his vertical

axis (Fig. 8(d)). In the meantime (Fig. 8(c)) a new person (green contour, person

2) enters the room holding a bag. The bag is identified as a new object as soon

as the person holding it leaves it on the floor (Fig. 8(e)). After this, both humans

move around the bag occluding it as well as occluding each other (Fig. 8(f)-(g)).

At a certain point (Fig. 8(h)), person 2 has grasped again the bag and hands it

to person 1. Despite the complex humans/object interaction, all objects maintain
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 8: Characteristic snapshots from the tracking experiment on the “bag” image sequence.

correct identities. In Fig. 8(i), person 1 holds the bag, although totally occluding

it. Both persons continue to move occluding each other (Fig. 8(j)) until the one

holding the bag leaves it again on the floor (Fig. 8(k)). Finally, both persons are

successfully tracked until they exit the room at Figs. 8(m) and 8(p), respectively.

Overall, the proposed tracking method was able to detect and track correctly all

the individual objects moving in the scene. It should be stressed that this has been

achieved without any kind of a priori known object models. The achievement of

object tracking in such complex situations is difficult even if somebody takes into

account additional context dependent knowledge such as the fact that there are
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 9: Characteristic snapshots from the tracking experiment on the “buckets” image sequence.

persons walking on a ground floor, etc. Clearly, accommodating such important

additional cues and knowledge can only improve tracking.

In another experiment (“bucket” sequence, 398 frames), an even more chal-

lenging situation is encountered. This image sequence involves two persons that

interact with two almost identical looking objects. Snapshots from this sequence

are provided in Fig. 9. In Fig. 9(a), a person enters a room holding, in each of
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his hands, a red bucket. The person leaves the two buckets on the floor (Fig. 9(b),

(c)) and starts moving around them (Fig. 9(d), (e)). Then, he stands in front of

one of the buckets occluding it, grasping it with his right hand and then passing it

to his left hand behind his back (Fig. 9(f), (g)). He then grasps the second bucket

with his right hand and then starts hiding each of the buckets from the camera

(Fig. 9(i)-(k)). At some point in time, he leaves both objects on the floor again

(Fig. 9(l)). Right after, another person appears (Fig. 9(m)). While various types

of occlusions continue to occur, each person grasps a bucket (Fig. 9(n)) and start

moving around in the room. Between frames corresponding to Figs. 9(p) and 9(r),

the two persons move around each other holding the buckets, thus creating sev-

eral layered occlusions. Finally, the two persons leave the buckets again on the

floor and exit the room (Figs. 9(s), (t)). Throughout the whole sequence, object

identities are correctly assigned and propagated in time.

In the above sequences, foreground detection was adequately accurate and

tracking was not affected by errors in background subtraction. To investigate the

influence of background subtraction on tracking, we performed a number of tests

where we forced background subtraction to produce poor results. More specifi-

cally, we varied a parameter of the employed background subtraction method [23]

that affects the true positives and false negatives of the method. As a test case,

we considered the “buckets” sequence (Fig. 9). For a broad range of parame-

ter values, tracking produced identical results. In extreme cases, the amount of

false positives (or false negatives) produced by background subtraction affected

the correctness of the performance of the method.
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When background subtraction produces many false positives, several back-

ground pixels are labeled as foreground. Lenient background subtraction may

produce hypotheses for non-existent objects. Additionally, foreground blobs are

larger than the real objects. This results in the generation of wrong object hy-

potheses. Different objects appear connected in the foreground masks and object

hypotheses are built for constellations of objects rather than for individual objects.

The built appearance models might also be inaccurate because they are affected

by the colors of the background pixels falsely identified as foreground, leading to

inaccuracies and false similarities between objects.

When background subtraction produces many false negatives, several fore-

ground pixels are labeled as background. Clearly, an object will not be tracked if

it cannot account for a sufficiently large blob in the foreground mask. More often,

a single object will give rise to multiple separate blobs. This violates the basic

assumption that a single object gives rise to a single blob. As a result, multiple

object hypotheses will be generated for a single object.

Figure 10 provides evidence for the behavior of the tracker with respect to the

performance of background modeling and subtraction. Figures 10(a) and 10(d)

shows the results of the tracker for two frames of the “buckets” sequence (Fig. 9).

In this particular experiment, background subtraction gives fairly accurate results.

As a consequence, when the person enters the room (Fig. 10(a)) the person and

the buckets he holds are identified as a single connected blob and object. Later on

(Fig. 10(d)), the person leaves the two buckets on the floor, which results on their

identification as two new objects. Figures 10(b) and 10(e) shows the same frames
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(a) (b) (c)

(d) (e) (f)

Figure 10: Influence of background subtraction on the results of tracking for the case of the “buck-
ets” sequence. The three columns show indicative tracking results for the cases of accurate, lenient
and strict background subtraction.

in the case of lenient background subtraction. In Fig. 10(b), background subtrac-

tion has already contaminated the object model of Fig. 10(a) with background pix-

els. Additionally, a wrong object hypothesis (object 1) has been created. When

the person leaves the buckets on the floor (Fig. 10(e)), one of them is correctly

identified, but the second one, although clearly separated from the person’s body,

has been assigned a considerable part of the background and of the person’s foot.

Figures 10(c) and 10(f) shows the same frames in the case of strict background

subtraction. When the person first appears in the scene, several individual objects

are identified as a result of the disconnectedness of the foreground mask. When

the person leaves the buckets on the floor, the buckets are correctly identified, but

the originally detected and propagated object hypotheses still live on the region of

the person’s body.
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5. Discussion

We presented a method for tracking multiple objects in the presence of occlu-

sions with long temporal duration and large spatial extends. The proposed method

can cope successfully with multiple objects dynamically entering and exiting the

field of view of a camera and interacting in complex patterns. Towards this end,

simple models of object shape, appearance and motion are dynamically built and

used for supporting tracking and occlusion reasoning. Tracking is performed by

systematically assigning pixels of foreground blobs to simple geometrical models

of objects, taking into account object’s appearance. Occlusion reasoning is based

on the concept of “object permanence”.

Our method is based on the approach proposed in [1]. As already stated in

Sec. 1, the tracker proposed in [1] successfully tracks multiple skin color objects

in images acquired by a possibly moving camera and can handle partial occlusions

and short term full occlusions. Prior training is required to obtain the color model

of the objects to be tracked. In this paper, we use background subtraction to find

the image regions that are occupied by moving objects and thus we are able to use

color information to track objects of different colors and to explicitly reason about

occlusions. Therefore, our method assumes a steady camera for image acquisition

but can handle many more cases of object appearance and interactions than [1].

Inspired by [6], our approach reasons about occlusions by relying on the con-

cept of “object permanence”. The authors in [6] use background subtraction,

color, shape and spatial distribution to track objects in the presence of occlusions.

Despite the fact that the two approaches share some methodological aspects, some
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key features allow our method to cope with a broader spectrum of situations. First

of all, the work in [6] employs distinct region and object level tracking mecha-

nisms. The evaluation of the region level correspondences is based solely on the

shape and the displacement of the candidate regions (blobs). In our method, we

omit this level by assigning blobs (regions) to object hypotheses in a direct manner

that makes use of predicted object displacement, shape and color. By taking into

account richer information about objects, errors in blob association are avoided.

The major difference between the two methods is the treatment of objects of sim-

ilar appearance. If two similar objects share the same blob, the method in [6] is

forced to assign each pixel to a single object by using information about color and

distance. This hard decision is bound to misclassify pixels and eventually distort

the object models. The longer similar objects share the same blob the harder it

gets to obtain the correct object shape and to acquire the correct object to region

association when the region splits again. On the contrary, our method detects ob-

jects of similar appearance and uses the data association mechanism of [1]. Thus,

depending on the spatial and appearance proximity of pixels to object models,

pixels may be assigned to more than one object hypotheses.

The proposed method was successfully tested in the complete data set of [6].

Given the fact that the aforementioned data set does not contain even small interac-

tions between objects of similar appearance, we tested our method on additional

image sequences showing complex interaction between such objects (“lemons”

and “buckets” sequences). The obtained experimental results demonstrate that

the developed tracking methodology can successfully handle occlusions in chal-
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lenging situations. The tracker incorporates and maintains very simple models

of object shape, appearance and motion. This makes the tracker simple, fast and

generic in the sense that no strong assumptions are imposed on the characteristics

of the tracked objects. Our approach is expected to fail when objects to be tracked

have too complex shapes and appearance or move with irregular motion patterns.

Moreover, in our approach, successful background subtraction is an important

factor that affects tracking. This is because background subtraction determines

where in the scene action takes place and, therefore, what needs to be represented,

modeled and associated between consecutive frames. If background subtraction

has many false negatives, a single object may appear as a set of disconnected fore-

ground blobs. This violates the main assumption, that a single object can give rise

to a single blob. As a result, more than one object hypotheses will be generated for

a single object. On the other hand, if background subtraction results in too many

false positives, objects will be mixed with the background and their appearance

models may drift and fail to accurately represent them. Towards removing these

drawbacks, future research will consider the use of more elaborate spatial and

appearance models that will provide more accurate object representations. Addi-

tionally, tracking results might be improved by a soft assignment of foreground

pixels to object hypotheses as opposed to the current approach which bases this

assignment on the strict notion of blob connectedness.
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To increase acceptance of humanoids as part of our everyday lives, it is essential that motions of humanoids become 

more realistic and human-like. A proper approach to achieve this requirement will be introduced within the scope of this 
paper by adopting marker-based human motion capture. For this purpose, constraining and mapping of prerecorded mo-
tions will be applied since robots may have different degrees of freedom (DoFs) as well as a different kinematic struc-
ture than a human. Regarding this challenge, the motion must be adapted to a given robot while preserving important 
human-like characteristics of the recorded motion.  

In order to efficiently reuse captured movements on various robots, an intermediate model is needed decoupling rep-
resentation of a motion, which can be stored in a motion repository, from its execution on an actual robot. On the con-
trary, there exist numerous human motion capture systems that produce output in terms of different models stored in 
different formats. To overcome this problem, the Master Motor Map (MMM), firstly introduced in [1], presents an ap-
propriate interface based on a unified model. An overview of the proposed system is illustrated in Figure 1. In this pa-
per, we will further propose an extension of this model by adding certain anthropomorphic properties, such as mass dis-
tribution, segment length, moment of inertia, etc. Such an anthropomorphic model of the segmented body is of use in 
terms of determining forward and inverse dynamics as well as motion synthesis and retargeting. 

Over the last decades, a lot of attempts have been made to develop sufficient dynamic models for simulating and 
analyzing complex motions of the human. Various biomechanical models are thoroughly reviewed in [2].  
In order to calculate forward and inverse dynamics, knowledge of body segment properties reported in [3, 4, 5, 6], are 
required.  Since the effort is very high to create model for each subject individually, a unified whole-body model is used 
instead that can be scaled in terms of body weight and height. Linear scaling equations are therefore commonly used 
due to their expediency. 

The MMM is defined as a three-dimensional reference kinematic model enriched with proper body segment proper-
ties. The strategy with respect to the kinematic model is to define the maximum number of DoFs that might be used by 
any applied module. The kinematic model of the MMM including DoFs and the Euler angle conventions is shown in 
[1]. The linear equations published in [6] are applied to our model as they represent the most complete and practical se-
ries of predictive equations providing all frontal, sagittal, and horizontal moments of inertia. The body segment proper-
ties are adjusted with respect to the kinematics of the MMM and listed in Table 1.  

Our approach of adapting movements consists of two constrained large-scale non-linear optimizations covering dif-
ferent requirements as illustrated in Figure 1. The used objective functions should maintain desirable properties of the 
motion, such as characteristic oscillations or particular configurations, and should refuse undesirable artefacts leading to 
unnaturalness. In general, constraints are associated with anatomic, mechanical, and motor task limitations. These are 
required to be able to determine a unique configuration that fits best with the given motion data and meets predefined 
requirements corresponding to the observed environment.  To solve the mentioned optimization problems, sequential 
quadratic programming (SQP) is applied.  

Our first optimization adapts a motion, represented through three-dimensional marker trajectories that can be cap-
tured with sophisticated marker-based system such as Vicon [7], to the articulated MMM model. The applied marker set 
is shown in Figure 2. Several approaches [8, 9, 10] have been proposed in order to compute feasible joint angle trajecto-
ries applying non-linear optimization. The construction of a sufficient objective function based on minimization of the 
sum of the squared distance between precaptured and virtual markers will be shown in this paper. Within this scope, vir-
tual markers are defined as fixed points on the surface of the voluminous anthropomorphic model which have to be set 
up in advance. 

To finally execute movements on the robot ARMAR-III [11], we will show the required transformation from MMM 
to ARMAR-III including another constrained non-linear optimization, as firstly proposed in [12]. The method has been 
further enhanced by adding appropriate spacetime constraints, introduced in [13], and additional constraints covering 
dynamic requirements. Spacetime constraints are required in order to satisfy certain task-related constraints on a motion 
while minimizing the changes of the captured motion. We will adapt various pick-and-place, passing over, and pouring 
movements, captured with a Vicon human motion capture system, to our robot ARMAR-III. 
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Table 1: Adjusted body segment properties for the MMM model. Segment masses are relative to body masses; 
segment lengths are relative to body heights. Both segment center of mass and radii of gyration are relative to 
the respective segment lengths. 

Segment Segment Length/ Total Body 
Height 

Segment Weight/ Total Body 
Weight 

Center of Mass/  
Segment Length  
[x,y,z] 

Radius of Gyration/  
Segment Length  
[rxx, ryy, rzz]  

Hip 0.26 0.11 [0 4 0] [38 36,5 34] 

Spine 0.10 0.10 [4 46 0] [32 26 28,6] 

Chest 0.18 0.17 [0 46 0] [35 28,5 31,3] 

Neck 0.05 0.024 [0 20 0] [31,6 22 31,6] 

Head 0.13 0.07 [12 13 0] [31 26 30] 

Shoulder R/L 0.10 0.021 [66 0 0] [12 26 16] 

Upper Arm R/L 0.16 0.027 [0 -57,3 0] [26,8 15,7 28,4] 

Lower Arm R/L 0.13 0.016 [0 -53,3 0] [31 14 32] 

Hand R/L 0.11 0.006 [0 -36 0] [23,5 18 29] 

Thigh  R/L 0.25 0.14 [0 -33 0] [25 11,4 25] 

Shank  R/L 0.23 0.04 [0 -44 0] [25,4 10,5 26,4] 

Foot R/L 0.15 0.013 [0 -6-           39] [21 19,5 12] 

 
Figure 1: Overview of the proposed system. Figure 2: Applied marker set for capturing whole-body 

motions of a human. 
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