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Chapter 1

Executive summary

Deliverable D13 presents second year developments within workpackage WP3 “Self-experience of Grasping
and Multimodal Grounding”. According to the Technical Annex of the project, D13 presents activities
connected to Tasks 3.1, 3.2, and 3.3. The objectives of these tasks are defined as

• [Task 3.1] - Control Architecture. Initially, a hierarchical control architecture will be defined
and developed such that it allows relating the concepts of the grasping ontology defined in WP2
to the immediate control. After the architecture has been defined, this task will continue with
the definition and development of the general control architecture components, mainly a Cartesian
controller and high-level supervisory and visual controllers.

• [Task 3.2] - Multimodal Grounding. The task aims for the definition and development of a
grounding mechanism connecting action primitives and attributes with uncertain sensor informa-
tion, including modelling of the uncertainties involved. Initially, the modelling of uncertainties of
the three sensor types (visual, tactile, proprioceptive) is studied considering the context of the at-
tributes of the grasping ontology. Later, the task will continue by studying the temporal grounding
problem as a state estimation problem with uncertain information, as the concepts and therefore
the symbol set are defined by the grasping ontology.

• [Task 3.3] - Robust action primitives. The task aims for the definition and evaluation of
adaptive and robust control approaches for individual action primitives. The main focus will be on
studying the possible grasp primitives for different hand kinematics (parallel jaw, three-fingered, five
fingered) and to identify robust parameterisable primitives through evaluation. Parameterisation
of the primitives allows self-experience to be used for improving the performance during future
attempts.

The work in this deliverable relates to the following second year milestone:

• [Milestone 5] - Implementation of high-level controllers including a global uncertainty model, inte-
gration and evaluation in the simulator and experimental platforms, grounding grasping primitives.

The progress in WP3 is presented briefly below, and in more detail in the appendix containing attached
scientific publications.

• Attachment A presents the control architecture developed in Task 3.1. The architecture addresses
embodiment independent sensor-based control of manipulation. Manipulation skills are represented
using an abstract representation which allows transferring knowledge over different embodiments.
The hardware independence is demonstrated by using two different GRASP demonstration plat-
forms with different sensory capabilities to perform the same task using same instructions. Current
on-going work includes the implementation of the architecture on other GRASP platforms. Inte-
gration of the control architecture with the simulator is described in D17.

• Attachment B presents a sensor-based adaptive grasping primitive developed in Task 3.3. The
primitive is used to perform power grasps on previously located unknown objects. Only few as-
sumptions are made about the objects, related to the their size and bounding box. The primitive
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takes as input the starting position, orientation and preshape of the robot hand. Using this input,
a sensor-based controller adapts to the unknown shape of the object and corrects the uncertainty in
the object pose. The primitive is tested successfully over a wide variety of objects, including those
from the GRASP object set, and with different types of errors in input. A preliminary version of
the report was attached to the first year deliverable (D5).

• Attachment C presents that machine learning can be used to link tactile sensor measurements to the
abstract concept of “stable grasp”, in other words, to connect sensor measurements to the abstract
concepts used by the control architecture, as defined in Task 3.2. The detection of grasp stability
is an example of a difficult case of temporal grounding of primitives, as the grasp stability is not in
general a directly observable variable. Using machine learning for connecting sensory image with
abstract concepts allows the use of the embodiment independent control architecture developed in
Task 3.1. The paper also proposes to use simulation for the generation of training data for the
learning process. A future goal is to use the sensor simulation developed in WP6 and integrate that
with the approach.

• Attachment D explores the idea of stability detection from haptics further (Task 3.2). The report
concentrates on two issues: First, which features are useful for the task, and second, what kind of
a machine learning method is preferable for the instantaneous recognition, that is, performing the
recognition using measurements from a single time instant. Also, more extensive experiments on
several platforms of the project are reported.

In addition to the results presented above, there is on-going work on the following topics:

• Development of more adaptive grasping primitives to cover the entire grasping and manipulation
process (Task 3.3). The primitives are then used along with the simulator developed in WP6, with
the goal to orchestrate the sequence of primitives by comparing measured and predicted contact
events. The work is inspired by the neurobiological framework proposed by Flanagan et al. (Current
Opinion in Neurobiology, 2006).

• Estimation of inertial properties of grasped objects by force sensor data for anchoring physical
attributes (Task 3.2). This allows transferring these physical properties of an object under manip-
ulation to the world model in the simulation engine.
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Attached papers

A Janne Laaksonen, Javier Felip, Antonio Morales and Ville Kyrki. Embodiment independent manip-
ulation through action abstraction. To be published in IEEE International Conference on Robotics
and Automation, ICRA 2010.

B Javier Felip and Antonio Morales. Robust sensor-based grasp primitive for a three-finger robot
hand. In IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2009.

C Yasemin Bekiroglu, Janne Laaksonen, Jimmy Jorgensen, Ville Kyrki and Danica Kragic. Learning
grasp stability based on haptic data. Submitted to Robotics: Science and Systems, RSS 2010.

D Janne Laaksonen, Ville Kyrki and Danica Kragic. Evaluation of Feature Representation and Ma-
chine Learning Methods in Grasp Stability Learning. Submitted to IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS 2010.
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Embodiment Independent Manipulation Through Action Abstr action

Janne Laaksonen, Javier Felip, Antonio Morales and Ville Kyrki

Abstract— The adoption of robots for service tasks in natural
environments calls for the use of sensors to allow manipulation
of objects under imperfect environment knowledge and the
use of knowledge transfer from humans. This paper addresses
these challenges by proposing a new abstraction architecture for
embodiment independent sensor-based control of manipulation.
The aim is to address three specific challenges: hardware
independent control of manipulation, use of sensors to alleviate
problems of complexity and uncertainty of the environment,
and ease of transferring knowledge over different embodiments
through a hierarchical abstract representation of manipulation
skills. The proposed abstraction architecture is demonstrated
for hardware independence and failure detection on two differ-
ent manipulator platforms.

I. INTRODUCTION

One of the important changes necessary for adopting
robots for service tasks in natural environments is that
the robots need to robustly operate in spite of incomplete
knowledge of their environment. This necessitates the use of
sensors for perception. In addition to perceptual capabilities,
robots should also be able to learn from human demonstra-
tion. For this learning, embodiment independent representa-
tions are necessary as humans and current robotic platforms
differ in both perceptual and manipulative skills. A major
challenge in this is that the sensors and the embodiments are
tightly coupled in sensor-based manipulation. This coupling
needs to be decreased to generalize the knowledge. One
possible answer to the challenge is to abstract the knowledge
and use this abstraction as the basis for the knowledge
transfer.

Service robots must be able to cope with several different
use cases and tasks, for example setting up a table or
placing groceries into a refrigerator. The challenges these
tasks present to a robot are twofold. On one hand, the
environment poses challenges including a) complexity of the
world, such as different number of objects to be handled, b)
uncertainty in world knowledge, for example the knowledge
of the objects’ physical characteristics, and c) dynamic nature
of the environment, that is, there are typically other actors in
the environment which need to be taken into account. On the
other hand, the knowledge transfer from a human to the robot

The research leading to these results has received funding from the Euro-
pean Community’s Seventh Framework Programme under grant agreement
n◦ 215821, and by Fundació Caixa-Castelló (P1-1A2006-11).V. Kyrki was
supported by Academy of Finland grant 114646.

J. Laaksonen and V. Kyrki are with Department of InformationTechnol-
ogy, Lappeenranta University of Technology, P.O. Box 20, 53851 Lappeen-
ranta, Finland,jalaakso@lut.fi, kyrki@lut.fi

J. Felip and A. Morales are with Robotic Intelligence Laboratory at the
Department of Computer Science and Engineering, Universitat Jaume I,
12006 Castellón, Spain{jfelip,morales}@uji.es

needs to be solved for a particular robot embodiment. The
above description demonstrates that there is simultaneously
a need for highly embodiment specific information to cope
with the uncertain environment and a need to have the
embodiment independence to be able to effectively transfer
the knowledge between humans and robot embodiments.

In this paper, we propose a new approach, an abstrac-
tion architecture, that aims to solve the issue of how the
abstract embodiment independent information is used with
the embodiment dependent information to cope with the
demands of service robotics. The proposed approach uses a
hierarchical approach for the decomposition of manipulation
skills, which are focused on grasping in this paper, with the
ability to use multiple sensors and sensor types. Individual
manipulation skills are represented as finite state automata
or finite state machine (FSM), with attributes which are
used to adapt each skill to a particular use. Using the
hierarchical approach ensures that the ability to functionin
a maximum number of different use cases (for example,
different objects, different environment, different hardware)
is possible, as the different levels in the hierarchy can be
adapted according to the use case. Failure detection is also
considered using the finite state automata. The structure of
the architecture is shown in Figure 1. The figure shows how
the abstract information is completely separated from the
embodiment specific information which facilitates the use of
multiple embodiments for abstract actions. Combining both
the hardware independence and sensor-based manipulation is
one of the highlights of the proposed architecture that has not
been demonstrated previously, as the hardware independence
can not interfere with the real-time requirement of sensor-
based manipulation.

Fig. 1. Levels of the abstraction architecture.

Next, the related work is discussed in Section II. Section
III presents the proposed approach. To demonstrate the
approach, Section IV shows results of experiments using
two different robotic platforms, and Section V concludes the
paper with a discussion of the abstraction architecture and
future work.

II. RELATED WORK

A number of robot architectures have been presented
previously, for both manipulation and for more general



use. Here, we will concentrate on architectures especially
targeting manipulation. The concept of primitive skills is
central in many of the works as is the use of discrete states
to divide a manipulation action into parts.

Milighetti et al. [1] presented an architecture which uses
primitive skills, that combine to form a skill, which in turn
form a complete task. Each primitive skill is selected by
heuristic selection out of many possible primitive skills,
based on the sensor signals. A neural network is used to
detect the change between the skills. Each primitive skill
is based on a separate controller. While the basic idea
of hierarchical decomposition is similar to ours, in their
approach there is no possibility to adapt the primitive skills
themselves.

Haidacher et al. [2] demonstrated an architecture for the
DLR Hand II. The architecture is based on different levels
of complexity, which handle different aspects of the control.
Again, the concept of hierarchical decomposition is central,
but the architecture is limited to a single hand and the
adaptiveness of the architecture has to be implemented at
the highest level as the lower levels are statically defined.

Han et al. [3] present a control architecture for multi-
fingered manipulation. As previously, the architecture is
based on different levels that handle control from planning
to actual joint control. The problem with the architecture is
the lack of adaptation as the architecture shows that only
predetermined architectural components, such as low level
controllers, are available to use. In addition, the architecture
does not consider the robotic arm, only the hand.

Hybrid discrete-continuous control architectures for ma-
nipulation, such as [4] and [5], separate the control phases
according to the state of the manipulator. This is achieved
by using discrete events to classify the manipulation config-
uration and using continuous states to control the dynamic
behavior in different configurations. This type of architecture
is suitable for both low-level control [5] and for a complete
control architecture [4]. Petersson et al. [4] demonstrate
a control architecture for a mobile manipulator based on
behaviors. The actual manipulator behavior is modelled as
a sequence of configurable primitive actions. These primi-
tive actions can be freely defined. These primitives can be
chained together using a hybrid automaton to form an action.
Although the architecture has some elements desired from a
service robotics architecture, such as hardware independence,
it lacks the sensor-based approach required to cope in uncer-
tain environments, for example there is no mention of failure
detection using the available sensors.

Another mobile manipulator architecture by Chang and
Fu [6], is also based on hybrid discrete-continuous control
architecture. However, the architecture is more limited than
in [4], only consisting of pre-determined set of states, which
control the manipulator. These states can be configured for
different manipulation tasks. Aramaki et al. [7] have also
used automata to control a humanoid robot at a low level.

For a static manipulator, Prats et al. [8] presented a
comprehensive system for controlling manipulation. The
system also uses automata to control the progress of actions,

by separating the primitive actions into the states of the
automata. One of the defining features of the architecture
is that each state of the automata can be a primitive action
or an automaton. This feature can be used to create complex
actions. However, the problem of hardware independence is
not discussed.

Most of the described architectures have one common
element, the use of automata in determining the current
state of the control. This approach is also used as part
of our proposed approach. However, none of the reviewed
architectures describe or demonstrate methods for achieving
hardware independence, which is one of the central claims
of our approach.

III. ABSTRACTION ARCHITECTURE

Before going in to the details of the proposed approach,
we define the terminology used. We use the termabstraction
architecture for the whole approach. This should not be
confused with the control architecture, which is a part of the
abstraction architecture related to the actual execution of the
actions. Figure 2 shows a general hierarchical decomposition
of planning and control. The hierarchy consists of three
levels: task, action and primitive.Taskis the highest level of
abstraction, representing a semantically meaningful tasksuch
as for example emptying a shopping bag. The task comprises
of a sequence ofactions, which represent subtasks, such
as moving an object from one location to another. Actions
consist of primitives, or primitive actions, which are the
lowest level of control in the proposed architecture. More
accurate definition for a primitive action used in the proposed
architecture is that each primitive action is implemented
using a single low-level controller, which is responsible for
the actual control of robot hardware.

Fig. 2. Planning and control levels.

The abstraction architecture presented in this paper will
focus only on the action and primitive levels shown in Figure
2, that is, the actual on-line part of control instead of task
planning which might be performed off-line. The architecture
itself has elements of both behavioral and executive levels
discussed in [9] by Kortenkamp and Simmons. It should
be noted that the behavioral control is not considered in
the Brooksian sense, instead the behavioral level considers
primitive actions which can be executed with traditional
control theory. We will show that it is possible to adapt to
different tasks and different hardware on the two lower levels



using a set of attributes that are implemented in the actions
and in the primitive actions. The focus of the abstraction
architecture is on manipulation, especially grasping, by a
robotic arm and a robotic hand. Grasping is also used as
an example throughout the description of the abstraction
architecture.

The control architecture presented in this paper is based on
a high level architecture design, which defines the internal
structure of the control architecture and the interfaces for
hardware and the communication between the controller and
outside components. The control architecture itself is not
novel, as we have adapted the same idea of using automata
for control, seen in Section II. However, the abstraction
architecture, i.e., how to combine the abstract actions with
the control architecture is novel, and described in detail
in sections III-A and III-C. The high level design of the
control architecture is depicted in Figure 3 and the actual
implementation is detailed in III-B.

Fig. 3. Control architecture design.

Main features of the control architecture design are the
inclusion of two communication interfaces and separation
of the high level controller and the primitive controllers.
The communication interfaces are for asynchronous ”slow”
communication and for real-time communication with sen-
sors and actuators. The high level controller handles the
internal state of the controller while the primitive controllers
output the control signals to the hardware actuator. The
primitive controllers can be freely defined. Final component
in the design is the control arbitrator which ensures that a
single control input from multiple primitive controllers is
communicated to the manipulator.

A. Abstract State Machine

The abstract state machine is a hardware independent de-
scription of a manipulation action. The abstract state machine
uses XML (eXtensible Markup Language) to describe all
relevant information, such as the states and transitions of
the state machine. Also information about a target object,
e.g. pose and mass, and obstacles in the manipulation en-
vironment are given through the XML. All properties and
definitions in XML are hardware independent.

TABLE I

STATE AND TRANSITION PROPERTIES.

state transition
movement success
handshape graspstable
trajectory grasplost

finger contact
finger contactlost

timeout
collision

hardwarefailure

The abstract state machine is described through definition
of states and transitions between the states. Current set of
properties for both states and transitions are listed in Table I.
The transition properties describe the condition when the
transition is triggered. While most of the transition prop-
erties are self-explanatory,successtransition denotes that
the controller has reached its target, the state propertiesare:
movementdescribing whether the motion of the manipulator
is guarded or free,hand shapedescribing the hand shape
with abstract concepts, such as closed or open, and finally,
trajectory describing a trajectory for the manipulator end-
effector, using both position and pose definitions.

In addition to the properties, the state also has attributes,
which infer the manipulator motion that is desired from each
defined state. These attributes are:

• success:The success end state of the state machine.
• failure: The failure end state of the state machine.
• move: Moving the manipulator without an object.
• transport: Moving the manipulator with an object.
• grasp: Grasp the object.
• release:Release the object.
These attributes are designed with grasping in mind, but

other forms of manipulation, such as pushing, are possible to
define using the abstract state machine. These attributes are
the key factor in selecting the primitive controllers during
the translation process, which is described in Section III-C.
An example XML definition describing a simple grasp and
lift manipulation is shown in Table II. Some of the elements
have been left out for brevity, e.g. properties of the objectand
some of the common transitions, e.g. timeout to the failure
state.

B. Embodiment Specific State Machine

The embodiment specific state machine is the functional
representation of the abstract state machine. The embodiment
specific state machine is able to control the manipulator
throughout a single action and decide whether the action
was successful or a failure.

The embodiment specific state machine follows the struc-
ture of the abstract state machine and the high level design
discussed earlier. The high level controller presented in the
high level design acts as the single most important element in
the proposed control architecture. The high level controller
consists of the actual embodiment specific state machine,
interfaces to the hardware manipulator, i.e., the robotic arm



TABLE II

L ISTING OF THEXML ABSTRACT STATE MACHINE.

<statemachine>
<state name="approach" type="move">
<movement>free</movement>
<hand_shape>open</hand_shape>

</state>
<state name="preshape_hand" type="move">
<movement>guarded</movement>
<hand_shape>pinch_grasp_preshape</hand_shape>

</state>
<state name="grasp_object" type="grasp">
<movement>guarded</movement>
<hand_shape>pinch_grasp</hand_shape>

</state>
<state name="lift_object" type="transport">
<movement>guarded</movement>
<hand_shape>pinch_grasp</hand_shape>
<trajectory>
<position>0.2 0.6 0.25</position>

</trajectory>
</state>
<state name="success_end" type="success">
</state>
<state name="fail_end" type="failure">
</state>

<transition origin="approach"
destination="preshape_hand">

<success/>
</transition>
<transition origin="preshape_hand"

destination="grasp_object">
<success/>

</transition>
<transition origin="grasp_object"

destination="lift_object">
<success/>
<grasp_stable/>

</transition>
<transition origin="lift_object"

destination="fail_end">
<grasp_lost/>

</transition>
<transition origin="lift_object"

destination="success_end">
<success/>
<grasp_stable/>

</transition>
</statemachine>

and the hand and the control arbitrator. Hardware interface
is defined to have one unified control method, Cartesian
velocity control, for all arms. However, it is possible to
define more control methods for both the arm and the hand
of the manipulator. The embodiment specific state machine is
modelled as a hybrid discrete-continuous automaton, which
was proven successful in many of the reviewed architectures
[4], [5], [8]. A hybrid discrete-continuous automaton can also
mimic human grasping [10], [11], which consists of several
sub-actions.

Each state of the automaton has its own primitive con-
trollers and transitions to other states. As the high level
design states, the primitive controllers and transitions are
freely definable. However, a common interface for prim-
itive controllers and transitions is required. For primitive
controllers the common interface is the control output from
the controller and for transitions it is the boolean indication

whether the transition to another state should be made or not.
Another common interface to both primitive controllers and
transitions is setting of attributes which means that we can
adapt both the controllers and transitions through these inter-
faces during the execution of the automaton. All transitions
and primitive controllers have also access to all the sensors
in the system. Sensor access has been implemented through
OpenRAVE [12] and the whole high level controller has been
integrated into OpenRAVE, which is an open framework for
simulating and controlling robots. OpenRAVE is also used
as the off-line interface.

While the embodiment specific state machine is designed
to closely resemble the abstract state machine to ease the
process of translation between them, it is possible to define
the embodiment specific state machine manually to suit needs
that can not be described by an abstract state machine. It is
also possible to create new states with existing primitive con-
trollers and transitions during the execution of the automaton
which enables the use of probabilistic methods such as [13].

C. Translation

The translation process is what combines the abstract state
machine and the embodiment specific state machine. The
translation takes the abstract state machine as an input, and
translates the abstract state machine into an embodiment
specific state machine. The translation process is depicted
in Figure 4.

Fig. 4. Translation process.

As can be seen from Figure 4, the translation component
needs input defining the configuration of the translation
process, i.e. the target platform and the platform specific
transitions and primitive controllers used directly in the
embodiment specific state machine. The benefit of this ar-
rangement is that the only hardware dependent blocks shown
in the figure are the primitive controllers and transitions
that are platform specific. Also the critical requirement of
real-time operation for sensor-based control is fulfilled as
the embodiment specific state machine can be run as is,
without any additional overhead from maintaining hardware
independence.

The translation process also requires a mapping compo-
nent which produces the embodiment specific state machine



from the abstract automaton. Currently the mapping itself is
done manually per platform, but once the mapping is com-
plete, the translation process from any abstract automaton
is performed automatically. This mapping is fairly simple
to implement as there are only a limited amount of input
properties and the mapping is not aware of the abstract action
in any way.

Furthermore, as we have defined a common Cartesian
control interface for the arm, we can use primitive controllers
that use the arm velocity control for all hardware platforms
without modifications. The same applies to some transition
conditions, e.g. timeout can be used in all platforms. Thus,
building the basic primitive controllers and transitions gives
the added benefit of not having to implement all controllers
and transitions for each new platform introduced to the
system.

IV. DEMONSTRATIONS

The abstraction architecture is demonstrated on two plat-
forms which differ in their kinematics, control, and sensory
capabilities. The first platform is a Melfa RV-3SB robot arm
with a Schunk PG70 parallel jaw gripper. The arm has 6 DOF
(degrees of freedom) and the gripper 1 DOF. In addition to
these, a Weiss tactile (pressure) sensor grid is attached to
each finger of the gripper. Grasping force is controlled by
the feedback from the tactile sensors. Also the stability of
the grasp is determined from the tactile sensor feedback.

The second platform consists of a Mitsubishi PA-10 arm
with 7 DOF mounted on an Active Media PowerBot mobile
robot. The manipulator is endowed with a three-fingered
Barrett Hand and a JR3 force/torque and acceleration sensor
mounted on the wrist, between the hand and the end-effector.
The hand has been improved by adding on the fingertips
arrays of Weiss tactile sensors. Each finger of the hand has
a built-in strain sensor. The JR3 is a 12 DOF sensor that
measures force, torque and acceleration in each direction of
the space. The finger-force sensors are used to stop closing
the fingers when the object is touched. This sensor is also
used to control the force that each finger applies to the object
in the final grasp. A complex control grasp primitives that
make use of sensor feedback to correct the grasp contacts
have been implemented and used for this platform[14].

An executed action is depicted in Figure 5, which shows
snapshots of the action being executed on both platforms.
The abstract action contains 7 primitive actions: approach,
preshape, grasp, lift and move, move down, release and move
away. The executions are shown in full for both platforms
in the accompanying video. The two objects used in the
demonstrations are normal household items, a detergent
bottle and a salt container. Both objects have the same
mass, 0.5 kg. These objects are shown in Figure 6. In
addition to the objects shown, the sensor-based grasping has
been demonstrated in the systems with several other similar
household objects.

Fig. 6. Grasped objects.

A. Demonstrating Sensor-based Grasping

One of the key challenges that our abstraction architec-
ture addresses is how to combine the need to have sensor
based information which is highly coupled to embodiment
and abstraction of the action. To show that our abstraction
architecture is able to cope with this problem, we demon-
strate sensor-based grasping of objects on the two platforms
described before. Using the same abstract instructions, i.e.,
the abstract state machine, we were able to complete the
same task on the two platforms, and use the embodiment
specific sensors to grasp the object.

As shown in Figure 5 and in the accompanying video, we
were able to grasp objects based only on the sensor data
from the hand and the arm, no vision was used. Using the
same abstract state machine for both platforms shows clearly
that we are able to use abstraction and then turn this abstract
information to platform specific primitives and transitions
used in the sensor-based control.

In the context of the demonstration we were able to use the
same controllers for both arms, but the abilities of the hands
are too different, in terms of kinematics and sensors, so that
both hands had their own controllers. Also the transitions
for grasp stability or instability are customized for each of
the platforms in order to use the different sensors on the
platforms.

B. Failure Detection

Failure detection is an important factor in the proposed
architecture. Failure detection can be used to arise surprise
and for learning. As the control architecture is focused
towards sensor-based control, all the available sensors can be
used for failure detection. Failure is also explicitly included
in the abstract state machine as one of the end states.

To demonstrate failure detection, the same abstract state
machine was used as before with the demonstration plat-
forms. However, the object mass was artificially increased,
but this was not reflected on the abstract state machine.
Sensor use is critical in detecting failures which can be seen
in Figure 7, which shows the result of the demonstration on
the first platform. The figure depicts the total force affecting



(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 5. Action execution on both platforms: (a) Approach; (b) Grasp; (c) Move; (d) Release; (e) Approach; (f) Grasp; (g) Move; (h) Release.

the tactile sensors and the state changes of the state machine
as vertical lines. As can be seen from the figure, the state
machine was executed normally until the lift and move
primitive failed, and the state machine moved into failure
state, halting the execution of the state machine. The failure
mode is also shown in the accompanying video for one of
the platforms. However, both platform have the capability of
failure detection, using their platform specific sensors.
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Fig. 7. Measured force during a failed action.

V. DISCUSSION AND CONCLUSIONS

This paper presented an approach for handling embodi-
ment independent knowledge and transferring that knowl-
edge to a more embodiment specific representation which can
be used to control the embodiment. Our approach specifically
addresses embodiment independence, the use of sensors as
an integral part of control, and the modelling of actions
as automata of adaptive primitive actions. The embodiment
independent knowledge is modelled as a state machine which
is then translated to suit each embodiment and its external
and internal sensors.

A noteworthy observation is that the use of primitive
attributes reduces the problem of learning motions to the
learning of primitive attributes. While learning was not
demonstrated in this paper, the abstraction would be useful
for both imitation learning from a human demonstrator as
well as learning by exploration by the robot platform itself.
The use of primitives sidesteps the problem of decomposing
a trajectory learned from a human to a set of primitives. On
the other hand, a known set of primitives must be created and
configured for a hand. However by using adaptive primitives,
we believe that a wide range of natural motions can be
mapped to a limited set of primitives since typical human

manipulation is known to consist of a limited number of
types of interaction.

Our future work includes implementing the abstraction
architecture on more platforms. The abstraction architecture
will then form the base for further research on the use of
sensors as a part of manipulation and especially as a part
of manipulation learning. The focus will be on grasping and
how to learn to grasp using the available sensors in both real
and simulated environments.
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Robust sensor-based grasp primitive for a three-finger robot hand

Javier Felip and Antonio Morales

Abstract— This paper addresses the problem of robot grasp-
ing in conditions of uncertainty. We propose a grasp controller
that deals robustly with this uncertainty using feedback from
different contact-based sensors. This controller assumes a de-
scription of grasp consisting of a primitive that only determines
the initial configuration of the hand and the control law to be
used.

We exhaustively validate the controller by carrying out a
large number of tests with different degrees of inaccuracy in
the pose of the target objects and by comparing it with results
of a naive grasp controller.

I. INTRODUCTION

Management of uncertainty is one of the biggest problem
to address when developing applications for unstructured
scenarios. In the case of robot grasping, uncertainty can
arise from several sources: lack of complete knowledge
about the physical properties and shape of the target objects,
inaccuracy in the determination of the pose of the object and
the configuration of the robot (i.e.: position of mobile robot),
mismatch between planner models and real conditions due
to sensing errors, limitation of planner models, and many
others.

Analytical solutions to the grasp planning problem has
been provided for structured scenarios [1]. However these
solutions often depend on the assumption that the contact
locations obtained as solutions are reachable by actuators
with enough precision. For common robots scenarios this is
not realistic even in the case that the shape of the object is
perfectly known. Several attempts to design analytical grasp
planning algorithms that take into account a certain degree
of inacuracy has been made [2], [3]..

A common approach to reduce uncertainty is the use of
sensor information in the planning and execution phases
of grasping. Vision has been used to obtain the shape of
unknown target objects [4], [5], or to determine the location
and pose of them [6]. In both cases, visual input is used
to plan feasible grasps. Visual feedback is also used when
the arm tries to reach the object. Murphy et al. uses visual
techniques to correct the orientation of four-finger hand while
approaching an object to allow better contact locations [7].
Namiki et al. uses a fast control schema in combination with
tactile feedback to cage an object [8]. Infrared sensors has
been also used to correct the approaching orientation of the
gripper [9]. In innovative design Hsiao et al. use IR sensors
to estimate the normal direction of closer object surfaces to
search a suitable contact location [10].

J. Felip and A. Morales are with Robotic Intelligence Laboratory at the
Department of Computer Science and Engineering, Universitat Jaume I,
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Fig. 1. PA-10 7 d.o.f with Barrett Hand and a JR3 force/torque and
acceleration sensor. The hand has Weiss Robotics pressure sensors on its
fingertips.

Once the object is contacted with the robot, gripper, tactile
and force sensors can be applied. Contact force measurement
is used to estimate the quality of the grasps [11], [12], [13] or
the shape of the object [14] with the purpose of reach better
contact locations through a sequence of grasping/regrasping
actions. Contact information can also be used to program
complex dexterous manipulation operations like finger repo-
sitioning while holding the object [11], [15]. Several works
have combined the use of several sensors to complete the
whole process of grasp planning and execution [16], [17].

Robustness in grasp execution is not only achieved by
designing sensor-based controllers but also by combining
several controllers with different optimisation goals. These
combinations has been based on hierarchical schemes based
on reflex programming [18], [13] or complementary con-
trollers [12], [10].

A. Grasp primitives

In this paper we follow a sensor-based approach that is
based on an alternative paradigm of describing grasps. Most
of the above papers assume that grasps are described as a
set of contact points on the object surface. In fact, most
of the problems arise as a consequence of the impossibility
of reaching those points. Our paper is developed under
a different assumption. Grasps are described as instances
of basic primitives [17]. A grasp primitive is a specific
controller designed to perform a particular indivisible action,
in our case a grasp. In practical terms it is defined by
a initial hand preshape, a sensor-based controller, and a
set of ending conditions. Its behaviour can be determined
by several parameters like initial position and orientation,
maximum force allowed, and others. An instance of a grasp
primitive is the set of values of this parameters. Hence, a
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grasp is an instance of a primitive that determines the initial
configuration of the robot hand and the control policy that
is going to be applied to execute the grasp.

This definition of grasp primitive presents two perspec-
tives. From a practical point of view a grasp primitive is a
single controller that performs a specific task on a particular
embodiment. From an abstract point of view, primitives are
the simplest pieces of a vocabulary to elaborate plans. Hence,
they are well suited to be the basic piece of a reasoning and
learning procedures.

The concept of grasp primitive is not new and has been
used in many other robot-related works. Actually the term
“motor primitive” is borrowed from neuroscience literature
[19], and has also been widely used in robot learning [20],
[21]. Nagatani and Yuta implemented and combined several
action primitives to perform a complex behaviour: a mobile
robot behaviour capable of opening and going through a
door [22]. Aarno et al. implement visual analysis to program
“Elementary Grasping Actions (EGA)”, a kind of grasp
primitives, for a parallel gripper [5]. Finally Finite State
Machines has been proposed to combine primitive actions
in the execution of complete manipulation tasks [23].

II. METHODOLOGY

A. System description and Assumptions

We implemented our primitive for a robotic setup consist-
ing of a Mitsubishi PA-10 with 7 d.o.f. (Degrees of freedom)
mounted on an Active Media PowerBot mobile robot. The
manipulator is endowed with a three-fingered Barrett Hand
and a JR3 force/torque and acceleration sensor mounted on
the wrist, between the hand and the end-effector (see Fig.
1). The hand has been improved by adding on the fingertips
arrays of pressure sensors designed and implemented by
Weiss Robotics.

The Barrett hand is a 4 d.o.f., three-fingered hand. Each
finger has one degree of freedom thus phalanxes are not
independent. Fingers F1 and F2 can rotate around the palm
and move next to Finger F3 (Thumb) or oppose to it, this
d.o.f. is called adduction. The reference frame of the hand
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Fig. 3. Algorithm execution diagram.

and the adduction d.o.f. are depicted in Fig. 2. Each finger
of the hand has built-in strain sensor. The JR3 is a 12 d.o.f.
sensor that measures force, torque and acceleration in each
direction of the space.

Our experimental workspace consists of a horizontal sur-
face where the targets objects are lying. The objects that
can be manipulated are those that can fit inside the hand.
The minimum dimensions are 25mm height, 70mm long, and
10mm width. Big objects that can be held by the hand should
have a maximum width of 200mm. On this paper we have
focused on box-like and clyinder-like objects within those
dimensions (see Figs. 6, 7 and 8) and have not considered
non-symetrical objects.

The input of the primitive controller is the starting position
and orientation of the hand and the maximun finger force.
In optimal conditions, the hand will be perfectly oriented in
the direction of the object, and rotated perpendicularly with
respect to the main axis of the object bounding box. These
input parameters are provided from an external module based
on visual information.

The designed controller is able to deal with errors in deter-
mining the parameters. The error estimitation is decomposed
in translation error and rotation error (see Fig. 9). The first is
defined by the cartesian distance on each frame axis between
the center of the object and its estimation. The second is
calculated from the difference between each estimated object
axis and its true orientation.

The controller tries to grasp the object aproaching from
above following an orientation close to the vertical. In order
to allow lateral approaching directions several changes in
the desing of the contorller may be necessary. Basically an
estimation of the distance to the object should be known in
advance. During the grasp execution, the robot can inadvertly
move the object but the controller is designed to take into
account most of these cases.

The algorithm starts with a cylindrical preshape. Where
two fingers (F1 and F2) are opposing completely the thumb
(F3). In some cases, the hand preshape is switched to
a spherical configuration where the fingers are arranged
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Fig. 4. Correction of alignment errors. a) The hand touches the object. The
contact is not perpendicular and a normal force (Fn) appears at a distance
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forming an equilateral triangle.

B. Algorithm

The controller tries to obtain grasp stability on the basis
of the following criteria (ordered by relevance):

• Hand-object alignment
• Parallelism of contacted faces
• Maximization of contact surface
• Finger position symmetry
• Finger force symmetry
Hand and object are aligned when all their axis are parallel

and the projection of the Z axis of the hand intersects the
object bounding box on its center. The alignment avoids
torque forces from appearing when lifting the object.

The starting position and orientation of the hand is a
critical parameter for the algorithm. This pose sets the
approach vector to the object which is along the positive Z
axis of the hand (see Fig. 2). The aim of the algorithm is to
perform a stable grasp of the object allowing a considerable
error in the starting position. Thus the success of the grasp
is less dependent from the accuracy of the estimations.

The execution of the grasp is divided into three main
phases (see Fig. 3).

1) Alignment: This phase tries to align hand and object
using force and tactile feedback. First of all the hand moves
forward until the force/torque sensor on the wrist detects
contact with the object. If this contact causes a torque force
around Y axis it means that the object and the hand are not
aligned (see Fig. 4.a). To correct this error the hand moves
back and rotates an angle of two degrees, then continues
touching the object until the torque disappears or it changes
the sign. If the torque changes the sign, the hand rotates one
degree in the opposite direction and the Y alignment ends.

At this point the hand closes. The difference in the
extension of the fingers F1 and F2, determines the rotation
around the Z axis (see Fig. 4.b) needed to align with the
object. Both fingers must have the same extension to perform
an stable grasp. This correction is not applied if the spherical
pregrasp shape is set.

12mm

a) b)

c) d)

22mm 16mm

12mm

Fig. 5. Determining parallelism of grasped faces: a) First contact. b) Grasp
width is constant, the faces grasped are parallel. c) Inner phanlanxes contact
the object.

2) Parallel face detection: In the second stage the con-
troller tries to determine if the contacted surfaces are parallel
and stable. Using the Barrett Hand inner force sensors to
stop the fingers and the hand propioception, the width of the
current grasp is measured (see Fig. 5.a and c), then the hand
opens a little and moves 5mm backwards. After that the hand
closes and the width of the grasp is measured again. If there
is a big difference between the two samples it means that the
grasped faces are not parallel (see Fig. 5.d) and the process
starts again. This phase of the algorithm repeats until the
difference is close to zero or the object is lost. If the object
is lost a reflex to recover it, is triggered. This reaction is
explained at the end of this section.

When the grasp is stable(i.e. aligned with object and
grasped surfaces parallel), the fingers move the object align-
ing it with the palm center and keeping the extension of
the fingers (see Fig. 4.c and d) in order to improve contact
surface, finger position symmetry and finger force symmetry.

3) Force adaptation: Using the fingertip integrated force
sensors of the Barrett hand, the force of each fingertip is
increased until it reaches the predefined limit. Then, the hand
lifts the object and evaluates if the grasp has been successful.

C. Security reflexes

During the execution of the primitive, the algorithm is
attentive for some important events in order to inform the
user, adapt to the environment conditions and perform a
successful grasp. The first event is the loss of the object.
This happens when all the three fingers close completely
without making any contact on the object. In this case the
hand opens and moves a little bit down then closes again
trying to recover the object contact.

Another event is the adduction of the fingers. When the
fingers make contact, if the object is cylindrical, the fingers
can adduct due to the adduction d.o.f is set free. This
natural adduction is detected by the algorithm and the hand
configuration is set to spherical.

The last event is the miss of the object by only one finger.
The reaction is to open the hand and to move laterally 5cm
(inter finger distance).



Fig. 6. Cylinder-like objects. Properties (radius x height, weight) from
left to right and top to bottom: Cylinder1(110x80, light) Cylinder2(65x215,
light) Cylinder3(105x75, heavy) Cylinder4(115x50, light)

D. Additional parameters

Other parameters as distance, size, weight and shape could
be used to improve the accuracy and execution of the grasp.
The distance could be used to avoid blind first contact with
the object; the size could be used to set the starting opening
of the fingers; the weight to determine the force to be applied
by the fingers; and the shape to set the pregrasp shape
reducing the time consumed by the pregasp shape detection
and switching.

III. VALIDATION

A test bench has been designed in order to validate the
grasping controller. This test bench consists of a set of
objects and a set of starting positions to be tried with each
object.

To have a comparison reference for our controller, we
have designed an alternative naive grasp controller without
corrections. This controller needs 4 input parameters: starting
position, distance to the object, pregrasp size and finger
force. The fingers moves to the pregrasp size and the hand
moves forward along its Z axis the distance specified. The
hand closes and lifts the object. If the object is lifted and
does not fall for 10 seconds, the execution is successful.

A. Objects and test bench

The objects selected are classified according to their shape
(cylinders in Fig. 6, boxes in Fig. 7 and others in Fig. 8),
their size (thin, normal, thick) or their weight (light, heavy).
All the objects are solid. Following the shape classification,
we have selected thin, normal and thick objects for each
shape in order to test as many different combinations of
object features as possible. The optimal conditions have been
tested in all the objects. We have selected a subset of 2
box-like objects and 2 cylinder-like objects to test rotation
and translation error conditions. This selected objects are the
biggest and the smallest from each category.

Translation error is the deviation from the center of the
object to the center of the hand and it is measured in mm.

Fig. 7. Box-like objects. Properties (base x height, weight) from left to
right and top to bottom: Box1(270x53x95, light) Box2(236x35x35, light)
Box3(127x116x92, heavy) Box4(100x87x45, light)

Rotation error is the deviation between hand and object main
axis and is measured in degrees (see Fig. 9).

This test bench evaluates robustness against translation and
rotation errors. The behaviour of each algorithm has been
also evaluated in optimal conditions which can present a
rotation error of 5 degrees and 10% of translation error.

To evaluate the effect of rotation errors the following
conditions have been taken into consideration:

• 15 degrees on X, Y, Z, XY, XZ, YZ and XYZ.
• 20 degrees on X, Y, Z

The combined rotation error is applied first in X next in
Y and later in Z. A rotation error of 15 degrees in XYZ is a
rotation of 15 degree on X, then 15 degree on Y and finally
15 degree on Z. The results of the rotation tests are shown
in Table III for the robust controller and in Table IV for
the naive controller. The cylinder-like objects are invariant
to rotation in Z axis. The Z rotation error is not applicable
to cylinder-like objects.

The amount of translation error is relative to the size of
the object because usually this two variables (size and error)
are related. To evaluate the effect of translation errors the
following conditions have been taken into consideration:

• 20% on X, Y, Z, XY, XZ, YZ and XYZ
• 40% on X, Y, Z

IV. RESULTS

The global results are presented in Table I and Table II,
the first column shows the results for the optimal case, the

Fig. 8. Other objects. Properties (base x height, weight) from left to right:
Other1(180x90x90, heavy) Other2(90x90x163, light)
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Optimal Rotation Translation Total
Box 1 5/5(100%) 24/24(100%) 13/24(54%) 42/53(79%)
Box 2 5/5(100%) 16/22(73%) 22/24(92%) 43/51(84%)

Cylinder 2 5/5(100%) 7/12(58%) 16/20(80%) 28/37(76%)
Cylinder 4 5/5(100%) 11/11(100%) 19/20(95%) 35/36(97%)

TABLE I

ROBUST ALGORITHM GLOBAL RESULTS

second and third columns present the summary of the rotation
and translation error. The last column shows the averaged
results for each object.

Details about experiments with error conditions can be
found in Table III and Table IV for rotation error and in
Table V and Table VI for translation error.

V. DISCUSSION

Summary tables I and II show clearly the better per-
formance obtained by our robust controller in comparison
with the naive one. It not only successes in a 100% of
the experiments in optimal conditions but also outperforms

Optimal Rotation Translation Total
Box 1 5/5(100%) 25/50(50%) 16/40(40%) 46/95(48%)
Box 2 5/5(100%) 26/50(52%) 40/40(100%) 71/95(75%)

Cylinder 2 5/5(100%) 23/25(92%) 35/40(88%) 63/70(90%)
Cylinder 4 5/5(100%) 24/25(96%) 14/20(70%) 43/50(86%)

TABLE II

NAIVE ALGORITHM GLOBAL RESULTS

Error Box 1 Box 2 Cylinder 2 Cylinder 4
15 X Axis 2/2(100%) 2/2(100%) 2/2(100%) 2/2(100%)
20 X Axis 2/2(100%) 2/2(100%) 2/2(100%) 2/2(100%)
15 Y Axis 3/3(100%) 2/2(100%) 1/2(50%) 3/3(100%)
20 Y Axis 3/3(100%) 2/2(100%) 1/4(25%) 2/2(100%)
15 Z Axis 3/3(100%) 2/2(100%) N/A N/A
20 Z Axis 3/3(100%) 2/2(100%) N/A N/A

15 XY Axis 2/2(100%) 1/2(50%) 2/2(100%) 2/2(100%)
15 XZ Axis 2/2(100%) 1/2(50%) N/A N/A
15 YZ Axis 2/2(100%) 1/2(50%) N/A N/A

15 XYZ Axis 2/2(100%) 1/4(25%) N/A N/A

TABLE III

RESULTS WITH ROTATION ERROR FOR THE ROBUST ALGORITHM

Error Box 1 Box 2 Cylinder 2 Cylinder 4
15 X Axis 5/5(100%) 5/5(100%) 5/5(100%) 5/5(100%)
20 X Axis 5/5(100%) 5/5(100%) 5/5(100%) 5/5(100%)
15 Y Axis 4/5(80%) 2/5(20%) 3/5(20%) 4/5(80%)
20 Y Axis 2/5(20%) 0/5(0%) 5/5(100%) 5/5(100%)
15 Z Axis 4/5(80%) 5/5(100%) N/A N/A
20 Z Axis 4/5(80%) 5/5(100%) N/A N/A

15 XY Axis 0/5(0%) 0/5(0%) 5/5(100%) 5/5(100%)
15 XZ Axis 0/5(0%) 4/5(80%) N/A N/A
15 YZ Axis 1/5(20%) 0/5(0%) N/A N/A

15 XYZ Axis 0/5(0%) 0/5(0%) N/A N/A

TABLE IV

RESULTS WITH ROTATION ERROR FOR THE NAIVE ALGORITHM

Error Box 1 Box 2 Cylinder 2 Cylinder 4
20% X Axis 2/2(100%) 2/2(100%) 2/2(100%) 2/2(100%)
40% X Axis 1/2(50%) 2/2(100%) 2/2(100%) 2/2(100%)
20% Y Axis 1/2(50%) 2/2(100%) 1/2(50%) 2/2(100%)
40% Y Axis 0/2(0%) 2/2(100%) 0/2(0%) 1/2(50%)
20% Z Axis 2/2(100%) 2/2(100%) 2/2(100%) 2/2(100%)
40% Z Axis 2/2(100%) 2/2(100%) 2/2(100%) 2/2(100%)

20% XY Axis 1/4(25%) 3/4(75%) 2/2(100%) 2/2(100%)
20% XZ Axis 2/2(100%) 1/2(50%) 2/2(100%) 2/2(100%)
20% YZ Axis 1/2(50%) 1/2(50%) 1/2(50%) 2/2(100%)

20% XYZ Axis 1/4(25%) 3/4(75%) 2/2(100%) 2/2(100%)

TABLE V

RESULTS WITH TRANSLATION ERROR FOR THE ROBUST ALGORITHM

the naive one when rotational and translational errors are
introduced.

The only exemption to this rule is the case of Cylinder 2
(object on the top-left corner on fig 6). This object is too light
and when touched while lying on a surface, it moves easily.
We observed that the successive contacts that our controller
produce causes that the object variates its position making
impossible to grasp it.

This case shows one of the drawbacks of our approach.
Our controller is touching the objects several times before
finally closing the finger to catch them. In case of light
or unstable objects this can be a problem. This difficultty
surpassed by the use of more sensitive sensors or by the
implmentation of compliant hardware or controllers. The
use of proximitiy sensors [10] would completely solve this

Error Box 1 Box 2 Cylinder 2 Cylinder 4
20% X Axis 0/4(0%) 4/4(100%) 4/4(100%) 4/4(100%)
40% X Axis 0/4(0%) 4/4(100%) 3/4(75%) 4/4(100%)
20% Y Axis 4/4(100%) 4/4(100%) 4/4(100%) 4/4(100%)
40% Y Axis 0/4(0%) 4/4(100%) 4/4(100%) 0/4(0%)
20% Z Axis 3/4(75%) 4/4(100%) 4/4(100%) 2/4(50%)
40% Z Axis 2/4(50%) 4/4(100%) 2/4(50%) 2/4(50%)

20% XY Axis 0/4(0%) 4/4(100%) 4/4(100%) 4/4(100%)
20% XZ Axis 2/4(50%) 4/4(100%) 4/4(100%) 2/4(50%)
20% YZ Axis 4/4(100%) 4/4(100%) 2/4(50%) 4/4(100%)

20% XYZ Axis 1/4(25%) 4/4(100%) 4/4(100%) 2/4(50%)

TABLE VI

RESULTS WITH TRANSLATION ERROR FOR THE NAIVE ALGORITHM



problem.
One of the advantages of our approach is the little previous

information it needs about the object. No exact model of the
object is necessary, and the only input is the maximum force
to be applied by the fingers. It is supposed that the hand is
appropriately oriented and preshaped. More information, like
estimated size or the distance, would be definitively help to
improve the controller robustness and the time necessary to
complete a grasp.

Currently all the grasp tried to approach from above. That
is, the objects are lying on a surface and the hand approaches
them vertically. This simplifies our controller since the
movements of the objects are limited. Improvements are
necessary if grasps from a side are going to be executed,
since the stability of the objects could be compromised if
they are touch. In this case an estimation of the distance to
the object would be necessary.

At the moment the average time to execute a grasp is
about 40 seconds, though this time depends on the object
and the initial position error. It could be reduced providing
more information about the location and characteristics of
the objects.

Finally, an attached video shows pose correction phases,
event adaptation and grasp force increasing. It is also shown
that the stability of the grasps performed by the robust
algorithm are better than the ones performed by the naive
controller.

VI. CONCLUSION

We have developed a robust sensor-based grasp primitive
that need little information to execute its task and that is
able the correct and adapt to variations and inaccuracies in
the expected conditions of the scenario.

We indicated three ways of improving the grasp primitive
controller implemented. The most immediate future work
is to extend the family of manipualtion primitives that
allow the execution of a complete pick-and-place task, i.e.:
approaching and preshaping, lifting, transportation and land-
ing primitives. The development of these primitives would
provide a vocabulary of basic skills that will allow planning,
and learning in future stages.
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Abstract— Sensor based grasping of objects and grasp stability
estimation is an important skill for a general purpose robot.
Grasp stability modeling and estimation has been studied for
a long time but there are very few robots today that can
demonstrate extensive grasping skills. The main contribution of
the work presented here is the use of machine learning methods
for inferring of grasp stability based on tactile measurements.
The main objective is to classify a grasp as stable or unstable
before applying further actions on it. The problem is important
and cannot be solved by vision sensing typically used as an input
to a grasping control loop. The output of the classification system
can trigger a re-grasping step if an unstable grasp is identified.

An off-line learning process is implemented and used for
reasoning about grasp stability on a three-fingered robotic hand.
We study both one-shot and time series classification methods.
To evaluate the proposed method, experiments are performed
both in simulation and on a real robot system. The results show
that the idea of exploiting the machine learning approach is
feasible and it opens a number of interesting venues for the
future research.

I. INTRODUCTION

Grasping is an essential skill for a general purpose service
robot, working in an industrial or home-like environment. The
classical work in robotic grasping assumes that the object
parameters such as pose, shape, weight and material properties
are known. If precise knowledge of these is available, grasp
planning using analytical approaches, such as form or force
closure, may be enough for successful grasp execution. How-
ever, in unstructured environments the information is usually
uncertain, which presents a great challenge for the current
state-of-the-art work in this area.

Sensors can be used to alleviate the problem of uncertainty.
To determine the shape and pose of an object, vision has been
commonly used. However, the accuracy of vision is limited
and small errors in object pose are frequent even for known
objects. It is not uncommon that even these small errors cause
failures in grasping. These failures are also difficult to prevent
at the grasp planning stage. This problem is magnified when
also the object models are acquired on-line using vision or
other similar sensors. While the tactile and finger force sensors
can be used to reduce this problem, a grasp may fail even when
all fingers have adequate contact forces and the hand pose is
not dramatically different from the planned one.

The main contribution of this paper is to show that it is
possible to infer knowledge about grasp stability using infor-
mation from tactile sensors while grasping an object before
beining further manipulated. This is very useful, because if
failures can be detected, objects can be regrasped before trying
to lift them. However, the relationship between tactile mea-
surements and grasp stability is embodiment specific and very
complex. For this reason, we propose to use machine learning

techniques for the inference. To achieve good generalization
performance, machine learning approaches typically require
large amount of training data. As a solution to the problem
of acquiring enough training data, we propose to simulate the
grasping process. However, we evaluate the feasibility of the
approach both on simulated and real data.

We first study one-shot recognition: detecting grasp stability
from a single tactile measurement. We also implement the
time-series analysis approaches based on a sequence of tactile
measurements. The results show that the idea of exploiting the
machine learning approach is feasible and it opens a number
of interesting venues for the future research. As an additional
contribution of the work presented here is the generation of
a database with examples of tactile measurements for stable
and unstable grasps on a set of objects. The data will be
publically available at http://xxx.yyy.zzz. We believe that the
tactile database will be compliment to the Columbia Grasp
Database [1].

Next, related work is reviewed in Sec. II. In Sec. III the
simulator and the constructed tactile database are described.
Section IV presents the one-shot recognition approach us-
ing support vector machine classification and results of the
approach on simulation data. Then, Sec. V introduces the
time-series recognition approach using hidden Markov models
and the related experimental results. Finally, we conclude and
present directions for future research in Sec. VI.

II. RELATED WORK

In robotic object grasping there has been a lot of effort
during the past few decades (e.g see [2] for a recent survey).
There are some recent examples which base grasp generation
on visual input and use tactile sensing for closed loop control
once in contact with the object. For example, the use of tactile
sensors has been proposed to maximize the contact surface for
removing a book from a bookshelf [3]. Application of force,
visual and tactile feedback to open a sliding door has been
also proposed [4]. In our work the main difference is that the
tactile sensors are used to assess the stability of a grasp. Thus,
rather than using the tactile data for control, we reason about
grasp stability.

Most of the grasp planning approaches tested in simulation
have the common property of using a strategy that relies
on the object shape. Modelling object shape with a number
of primitives such as boxes, cylinders, cones, spheres [5],
or superquadrics [6] reduces the space of possible grasps.
The decision about the suitable grasp is made based on
grasp quality measures given contact positions. However, these
kind of techniques do not provide a way of dealing with



uncertainties that might arise in dynamic scenarios which can
be solved using tactile feedback.

Learning aspects have been considered in the context of
grasping mostly for the purpose of understanding human
grasping strategies. In [7], it was demonstrated how a robot
system can learn grasping by human demonstration using a
grasp experience database. The human grasp was recognized
with the help of a magnetic tracking system and mapped to the
kinematics of the robot hand using a predefined lookup-table.
Current learning approaches using tactile sensors are focused
on either determining the properties of objects [8, 9] or object
recognition [10, 11].

To our knowledge, analysis of grasp stability using machine
learning techniques and tactile sensors has not been demon-
strated before.

III. SIMULATOR AND THE DATABASE

In order for a learning system to be able to generalize
to a wide variety of cases, relatively large training data is
usually required. Generating large datasets on real hardware is
time consuming and in robotic grasping generating repeatable
experiments is difficult due to the dynamics of the grasping
actions. Generating thousands of samples is thus usually
unrealistic in such a setup. However, if good simulation models
are available, simulation can be used for generation of data
for both training the learning system and the performance of
evaluation. In the following section, we describe the generation
of the database.

A. Database

The tactile database aims to include numerous stable and un-
stable grasps on different objects. Ideally, the database allows
us to investigate the two aspects of grasp stability recognition:
shape specific and general shape stability recognition.

Shape specific recognition assumes that the system has
approximate knowledge about the shape and/or pose of the
object such that the grasps are in general reasonable, although
they might still fail because of the uncertainties, as discussed
in the introduction. This approach has practical real-world
applications especially in cases where the manipulated object
is located by a vision system. The data used for learning sta-
bility in shape specific recognition should concentrate around
reasonable grasps generated by traditional grasp planning.

In general stability recognition, no knowledge of the object
except its approximate position is used by the recognition
system. Thus, the stability will be determined solely from the
tactile input and the hand configuration. The data used for
learning should contain examples of all possible situations and
such a spherical sampling of grasp hypotheses would be useful.
For general recognition, a significant amount of data over a
large variety of objects is necessary. Due to time and space
constraints, this work is focused on shape specific recognition
and the generalization capability is studied with only a few
objects. This paper uses the 3-finger Schunk Dextrous Hand
(SDH) with 3 tactile array sensors and 7 degrees of freedom

to generate grasping data. The plan is to extend the database
with other popular hands.

Fig. 1 shows examples of objects that are included in the
database. For each object, 10000 grasp attempts (including
successful and unsuccessful ones) are stored. The two objects
used in the experimental evaluation in this paper are objects
c and d which are both cylindrical shaped. We expect to add
more data of both simple and complex objects in the near
future.

A B C

D E F

Fig. 1. Objects used in simulation

B. Simulation

The simulator described in [12] is used. The simulator
can be used in combination with the Open Dynamics Engine
(ODE) physics engine and provides support for simulating
articulated hands, synchronous and asynchronous PD velocity
ramp controllers, different grasp quality measures, camera sen-
sors, range sensors and tactile sensors. The primary motivation
for using our simulator over the more widely used GraspIt!,
was the integrated support for tactile array sensors.

1) Tactile sensor model: The sensor simulation relies on the
user to provide a function that describes the deformation of
the sensor surface given a point force working perpendicular
to it. The model assumes that the deformation or response is
linear with the magnitude of the point force, which is a fair
assumption for small forces. Given the deformation function
f(x, y) where x and y are specified relative to the center
(a, b) of the contact, the total deformation of the surface of
an array of rectangular texels with size (A,B) can be found
by integrating over the surface of each texel by

gm,n(a, b) =
∫ (A+ 1

2 )m−a

(A− 1
2 )m−a

∫ (B+ 1
2 )n−b

(B− 1
2 )n−b

f(x, y)dxdy (1)

where (a, b) is the center point of the contact and (m,n) is the
texel index. This surface integration is approximated using the
rectangle method. Point force experiments on the real sensors
suggested that the deformation decreased with the inverse of



the square of the distance from the point force. We use an
isotropic function to approximate the deformation of the sensor
surface

f(x, y) = ζ + βx+
α

1 + x2 + y2
(2)

where (x, y) is specified relative to (a, b). The parameters
(α, β, ζ) were found by fitting the model to experimental data
extracted from real sensors.

Fig. 2 shows a visual comparison between the real and
the simulated sensor output where a sharp edge was pressed
against both sensors.

a b c d

Fig. 2. Measured (a and c) versus simulated (b and d) sensor values. The
tactile images were generated by pressing a sharp edge onto the sensor surface.

2) Grasp planning/selection: As described in Section III-A,
the database includes data for several grasping strategies. For
the general recognition, the approach directions for the hands
were sampled on the unit sphere with origin in the object
center of gravity.

For the shape specific recognition, the grasping strategies
vary for each shape. The hand preshapes were generated with
finger joint values in the interval ([−90;−70], [−10; 10]) and
where the 7’th joint was one of 90◦, 60◦, 0◦ as shown in
Figure 3.

90⁰ 60⁰ 0

Fig. 3. Hand configuration of the 3-finger when the 7’th joint is at 90◦, 60◦
and 0◦

The grasp strategy for each shape is as follows:
• sphere - The approach directions are sampled randomly

from the unit sphere with origin in the center of gravity
of the object. The preshape is a ball grasp where joint 7
is 60◦.

• cylinder - The object is approached either from the top
or from the side. When approaching from the top, a ball
grasp preshape is used where joint 7 is at 60 degrees and

the approach direction is pointing towards the center of
gravity. For side grasps, the approach is sampled with
an angle of 0-20 degrees with respect to the horizontal
plane, pointing towards the center of mass of the object.
The preshape in the side grasp uses an angle of 0 on joint
7, so that a parallel grasp is obtained.

• box shape - The object is approached using a vector lying
in the plane defined by the world z-axis and the longest
axis of the box and pointing toward the center of gravity.
A parallel type preshape of the hand is used.

3) Grasp stability: In a robotic system, the stability of a
grasp depends on several factors including
• Hand - orientation, joint configuration, friction, elasticity

and grasping force.
• Object - shape, mass, friction, contact locations and area,

and contact force.
In the simulated environment these parameters are known

and we are therefore able to calculate the quality of a specific
grasp. We use a widely known grasp quality measure based
on the radius, ε, of the largest enclosing ball in the unit
grasp wrench space (GWS). We construct the unit GWS as
proposed in [13] by calculating the convex hull over the set
of unit contact wrenches wi,j = [fTi,j λ(di × fi,j)T ]T , where
fi,j belongs to a representative set of forces on the extrema of
the friction cone of contact i, di is the vector from the torque
origin to contact i and λ weighs the torque quality relative to
the force quality.

Force and torque are dimensionally different and it is not
obvious how to determine λ. We therefore calculate force
space and torque space independently and use the radius of the
largest enclosing ball in each of these to give a 2 dimensional
quality value (εf , ετ ) for each grasp. Stable grasps are defined
as those for which both quality values are within a threshold
which has been set experimentally.

IV. ONE-SHOT RECOGNITION

In this section, we examine the learning of grasp stability
based on a single haptic measurement. We begin by introduc-
ing the notation used through the paper.
• D = [oi], i = 1...N denotes a data set with N observation

sequences.
• oi = [xit], t = 1...Ti is an observation sequence.
• xit = [M it

fk
ji

t

r ], k = 1, 2, 3, r = 1...7 is the observation at
time instant t in the i-th sequence.

• M it

fk
= m

Hit

fk
p,q are the moment features extracted from the

tactile readings on finger fk at time instant t in the i-th
sequence. Details are given later in this section.

• ji
t

r is a joint value at time instant t in the i-th sequence.
• Hit

fk
are the tactile readings collected from finger fk at

time instant t in the i-th sequence.
A method for learning grasp stability based on only one

haptic measurement, xtn , discards almost all of the data
available during the whole grasping sequence, xt1 , . . . , xtn .
However, if successful separation between unstable and stable
grasps can be learned from multiple examples, which we show



is possible within certain limitations, one-shot classification
can determine the stability of the grasp from any haptic
measurement x. The information gained from this one-shot
classification can then be used for example in grasp control
to determine when the robot hand has reached a stable
configuration.

Next in Sec. IV-A, we describe the features used as an input
for the support vector machine classification approach, which
is then described in Section IV-B. Experimental evaluation is
reported in Sec. IV-C.

A. Feature representation

The acquired raw haptic data, consisting of tactile readings
Hi
fk

and joint positions jr, is high dimensional, x ∈ R223. The
haptic data comprises of three tactile sensor readings, each
giving 12x6 readings and 7 joint readings from the SDH.

Example images from the sensors are shown in Figure 4.
The tactile images in the figure represent a stable grasp of a
cylinder.

(a) (b) (c)

Fig. 4. Examples of tactile images from the three tactile sensors of the SDH:
(a) First finger; (b) Second finger; (c) Third finger.

Because of the high dimensionality of the data, it is de-
sirable to reduce the dimensionality by extracting meaningful
features. While many feature extraction methods exist, taking
into account the original representation of the tactile data,
feature extraction techniques for images are strong candidates.
For this reason, the use of image moments is proposed as a
method to reduce the dimensionality of tactile images. Image
moments are defined as

mp,q =
∑
x

∑
y

xpyqf(x, y) . (3)

We compute moments up to order two, that is (p + q) =
o, o = {0, 1, 2}. These are related to the total pressure, the
location of the contact, and the shape of the contact area.
Instead of the unnormalized moments, we normalize the zeroth
order moment by calculating the average pressure m0,0/area.
First and second order moments are included in the feature
vector as such. In addition, two extra features are computed for
each tactile sensor/finger: The size of the contact area (area)
and the center of contact (m1,0

m0,0
,
m0,1
m0,0

). Thus in total there are
nine features for each sensor, which are described as a single
feature vector θt ∈ R9s where s is the number of sensors,
s = 3 in the case of the SDH.

Normalization of the features usually improves the per-
formance of machine learning approaches. For this reason,

both moment based features and the finger joint angles are
normalied to zero-mean and unit standard deviation. The
normalization parameters (mean and standard deviation) are
calculated from only the training data. The normalization is
then applied equally for both the training and test data to
normalize each invidual feature or dimension.

B. Support Vector Machine Classifier

As the problem of grasp stability is binary, support vector
machine (SVM) classification [14, 15] is suitable for the
problem. Thus, here the focus is on the 2-class SVM. SVM
is a maximum margin classifier, i.e. the classifier fits the
decision boundary so that maximum margin between the
classes is achieved. This guarantees that the generalization
ability between the classes is not lost during the training of
the SVM classifier.

Another feature of the SVM is the ability to use non-linear
classifiers instead of the original linear hyper-plane classifier.
Non-linearity is achieved using different kernels, in this study
radial basis function (RBF),

K(xi, xj) = e−γ‖xi−xj‖2 , for γ > 0, (4)

is used as the kernel for SVM. In addition to to the parameter
γ, constant C, related to the penalty applied to incorrectly
classified training samples [14], needs to be set. The param-
eters can be found by searching the parameter space to find
the optimal values. In this study, as an extension to the basic
two-class SVM, probabilistic outputs for SVM by Platt [16]
are used to analyze the results given by the SVM.

C. One-Shot Recognition Results

The purpose of the experimental evaluation is to study
the recognition performance of one-shot recognition in both
a shape specific and a more general setting. In addition,
the evaluation aims to increase the understanding of the
recognition problem, that is, what seem to be the limitations
of the one-shot recognition in general.

The data used for evaluation is from the database described
in Section III. Three data sets, each describing a single object–
grasp type combination, were used in evaluation. The used
objects are a cylinder and a bottle, objects C and D in Fig. 1.
The first data set involves side grasps on the cylinder, the
second side grasps on the bottle and the third top grasps on
the bottle. Small variations in the approach vector are used
to vary the grasps, thus the data used is similar to noisy pose
estimation. The number of samples is 6400, 4906 and 4446 for
each data set respectively. Each set contains the same number
of stable and unstable samples cases.

Results for both raw data (unprocessed tactile measure-
ments) and the moment features described in the previous
section are reported. In addition, we study both the case where
the object and grasp type are known, and the case where
more objects and grasp types have been used in learning, thus
indicating the performance over a wider variety of objects and
grasps.



The reported results are from 10-fold cross validation.
The LibSVM [17] implementation of the SVM was used.
The two parameters required by the SVM classifier, γ and
C were set to 0.07 and 1 respectively. Raw features were
normalized to [0, 1] range as this normalization gave better
classification performance for the raw features than the zero
mean normalization.

1) Stability Classifier over Single Objects and Grasp Types:
The classification results for individual data sets, i.e. per object
or per grasp type classification, are shown in Table I, which
shows the used features and data sets. The first row denotes
the object type and the second row the grasp type.

TABLE I
SVM CORRECT CLASSIFICATION RATE FOR INDIVIDUAL DATA SETS.

Cylinder Bottle Bottle
Side Grasp Side Grasp Top Grasp

Raw 0.76 0.61 0.61
Moments 0.75 0.60 0.59

It is evident that the prediction of stability works relatively
well for the cylinder but that the bottle is a more difficult
object. The reason behind the differences in classification rates
can be analyzed through the actual tactile images. The problem
can clearly be seen from Figure 5. While the cylinder grasps
show clear difference between the best and worst 5 percent
of the grasps in terms of grasp quality measures, the bottle
side grasps are overlapping. This overlap will only grow when
considering more samples, thus, classification is difficult with
this data. The same phenomenon affects the bottle top grasp
as well.

(a) (b)

(c) (d)

Fig. 5. Comparison of best and worst grasps of cylinder side grasps and
bottle side grasps: (a) Best 5 % cyl. grasps; (b) Worst 5 % cyl. grasps; (c)
Best 5 % bottle grasps; (d) Worst 5 % bottle grasps.

2) Common Stability Classifier: While the classifiers for a
single object or grasp type are useful only for that particular
object or grasp type, combining the information from several
different objects or grasp types, forms a single common
stability classifier, which can be used to predict the stability
on a wider variety of objects and grasp types.

To test this common stability classifier, the three data sets
used in the previous section, were combined into one data set,

Dc. Dc consists of 9999 samples, 3333 from each of the three
data sets. The ratio of unstable and stable samples in Dc is
the same as in the original data sets.

Test showed that combining the three data sets from the
single classifier case, the classification rate was 73 % correct
classification when using the raw features and 74 % when
using moments. Table II shows the individual classification
rates for each of the three classes using the common classifier
trained on all three data sets.

TABLE II
COMMON CLASSIFIER RATES PER DATA SET.

Cylinder Bottle Bottle
Side Grasp Side Grasp Top Grasp

Raw 0.79 0.71 0.70
Moments 0.79 0.71 0.70

The results indicate that combining the haptic data from
multiple data sets, which include different objects and grasp
types, increases the correct classification rate. This is remark-
able as it indicates that adding more objects actually improves
the classification rate rather than decreasing it, as would be
reasonable to assume. Based on more experiments, it was
found out that the improvement is only seen when the cylinder
data set is included in the training data. This suggests that
adding clear (easily classified) samples of unstable and stable
grasps can improve classification with more difficult cases
where the unstable and stable classes are overlapping in the
feature space.

While the classification results are far from perfect, it
should be noted that perfect discrimination between successful
and unsuccessful grasps is not necessary because acceptance
threshold can be set to a desired level of failure. Thus, the
system might reject more stable grasps while having very few
unstable grasps classified as stable ones. This would trigger
re-grasping with some of the stable grasps, but such behavior
would seem preferable in cases where it would avoid failures.

V. TEMPORAL RECOGNITION USING HMMS

This section studies the learning of grasp stability based on
temporal information using Hidden Markov models (HMMs)
[18]. The basic idea is to construct two HMMs, where the
first models stable grasps and the second unstable ones.
Recognition of an unknown grasp attempt as stable or unstable
can then be performed by evaluating the likelihood of both
models and choosing the one with the higher likelihood.

For the HMM, we use the classical notation λ = (π,A,B)
where π denotes the initial probability distribution, A is the
transition probability matrix

A = aij = P (St+1 = j|St = i), i = 1 . . . N, j = 1 . . . N
(5)

and B defines output (observation) probability distributions

bj(x) = fXt|St
(x|j) (6)



where Xt = x represents a feature-vector for any given state
St = j. The structure of an HMM can be ergodic (fully
connected) or left-to-right, which will affect the structure of
matrix A. In the following work, we evaluate both of these
common models. For more details about HMMs and the HMM
estimation method, we ask the reader to consult a standard text.

A. Modeling Observations

The estimation of the HMM model parameters is based on
the classical Baum-Welch procedure. The output probability
distributions are modeled using Gaussian Mixture Models
(GMMs):

fX(x) =
M∑
m=1

wm
1

2πK/2
√|Cm|e− 1

2 (x−µm)TC−1
m (x−µm) (7)

where
∑M
m=1 wm = 1, µm is the mean vector and Cm

is the covariance matrix for the m-th mixture component.
The unknown parameters θ = (wm, µm, Cm : m = 1...M)
are estimated to fit the model to the sequences of training
observations o = (x1, ...xT ).

Initial estimates of the observation densities in (Eq. 7)
affect the point of convergence of the reestimation formulas.
Depending on the structure of the HMM (ergodic vs left-
to-right), we use a different initialization method for the
parameters of the observation densities. The two initialization
procedures are denoted Init1 and Init2:
• Init1: For a ergodic HMM, observations are clustered

using k-means. Here, k is equal to the number of states in
the HMM and each cluster is modeled with a GMM using
standard expectation maximization. Initial parameters for
the GMMs are found in the standard fashion using the
k-means algorithm.

• Init2: For a left-to-right HMM, each observation se-
quence is divided temporally into equal length subse-
quences. Then, each GMM is estimated from the col-
lection of corresponding subsequences. Thus, the GMMs
(representing the states) represent the temporal evolution
of the observations. Initial parameters for the GMM
estimation are found identically to Init1.

B. Experimental Results

The purpose of the experimental evaluation on simulated
data is firstly to evaluate if the use of temporal information
improves the recognition compared to the case of observing
only a single time instant. Secondly, different common HMM
types and models are evaluated in order to guarantee that
the chosen model performs well. Similar to the one-shot
recognition, the temporal recognition was evaluated on the
three data sets described in Section IV-C. 80% of the samples
were used for training and 20% for testing.

Before studying the HMM, the suitability of a GMM as a
model for the data was evaluated by one shot recognition. We
argue that if the GMM performs relatively well in one shot
recognition compared to the SVM method presented earlier,
GMMs are suitable for modeling the measurements at single

time instants. Figure 6 shows the one shot recognition rates
using GMMs with different number of mixture components.
While being slightly inferior to SVM, it can be seen in the
figure that the recognition rates are comparable such that we
believe that the modeling of observations using GMMs is a
valid choice.

Fig. 6. One shot GMM recognition.

Next, to study if the temporal information improves the
recognition performance, two HMMs, one for stable and
another for unstable, were trained with the stopping criteria
being the convergence threshold 10−4. In order to improve
the reliability of the evaluation, both ergodic and left-to-
right HMM were evaluated independently with different struc-
ture parameters. The range of 2-6 for the number of states
and 2-5 for the number of components in a mixture were
evaluated. Finally, both spherical and diagonal covariance
matrix structures were evaluated. The reason for these multiple
experiments is that by evaluating multiple temporal models we
aim to understand if the temporal sequence plays part in the
understanding of the grasp stability, or if the final observation
is sufficient.

Tables III and IV present the recognition rates for the
ergodic and left-to-right HMMs. Ergodic and left-to-right
HMMs have comparable results, while using the diagonal
covariance matrix structure outperforms spherical distribu-
tions. The corresponding best parameter values are shown in
Tables V and VI for the diagonal covariance matrix case.
The recognition performace is comparable to one-shot clas-
sification indicating that the temporal aspect of the grasping
action has little influence on the recognition performance. This
result is somewhat surprising, it would seem probable that the
additional information would be beneficial in the recognition.
However, on the other hand the final measurements describe
the final state of the system, which is also the state where the
grasp stability is determined, which might explain the result.

To better understand the differences in performance for
different objects, the distributions of logarithms of likelihood



TABLE III
BEST RECOGNITION RATES ON 3 DATA SETS, ERGODIC HMM

Init1 Cylinder Side G. Bottle Side G. Bottle Top G.
diag cov 0.75 0.60 0.61
sph cov 0.74 0.60 0.60

TABLE IV
BEST RECOGNITION RATES ON 3 DATA SETS, LEFT-RIGHT HMM

Init2 Cylinder Side G. Bottle Side G. Bottle Top G.
diag cov 0.75 0.60 0.61
sph cov 0.74 0.58 0.59

ratios are shown for two objects for a well performing HMM
model, the ergodic HMM with diagonal covariance matrices.
Figure 7 shows the distributions for the cylinder side grasps,
for which the performance was relatively good, while in Fig. 8
the distributions are given for the bottle side grasps, for which
the stability was more difficult to recognize. Blue bars show
the difference for stable samples and red bars are for unstable
samples. It is evident in the figures that the stable and unstable
grasps differ reasonably for the cylinder while the significant
overlap of the distributions for the bottle indicates the fact
that similarly to one shot classification, there are no clear
differences in the tactile images during any part of grasping
(compare to Fig. 5 which shows only the final time instant).

C. Experimental Results on Real Data

The main purpose of the real world experiments is to
demonstrate that the grasp stability recognition is possible
in real robots. In addition, we demonstrate that the same
methods applied in simulation experiments also apply to the
real world scenario. Thus, the experiments aim to serve as a
proof-of-concept rather than assessing the exact performance
rates in different use cases, which would require extensive data
collection from each use case. Nevertheless, we believe that
showing real world experimental results is important in order
to validate the basic idea.

The grasping strategy for the experiments follows the
methodology used in simulation such that the same objects and

Fig. 7. The distribution of log-likelihood ratios for Cylinder side grasps.

TABLE V
PARAMETERS FOR THE ERGODIC HMM AND DIAGONAL COV.

Cylinder Side G. Bottle Side G. Bottle Top G.
Name St. Unst. St. Unst. St. Unst.
State 5 4 6 5 5 6

Mixture Comp 4 4 4 3 4 3

TABLE VI
PARAMETERS FOR THE LEFT-RIGHT HMM AND DIAGONAL COV.

Cylinder Side G. Bottle Side G. Bottle Top G.
Name St. Unst. St. Unst. St. Unst.
State 6 4 2 4 5 5

Mixture Comp 4 5 5 2 4 4

grasp types are used. The objects are placed such that they are
initially not well centred with respect to the hand to investigate
the capability of the learning system to cope with potential
uncertainities in the objects’ pose. A few example grasps are
shown in Fig. 9. The hand prehapes shown in Fig. 3 were
used with the 7th joint being 0◦ for side grasps and 45◦ for
top grasps. After preshaping, the hand closes the fingers with
the equal speeds and forces until reaching a static state where
the object does not move or fully closed hand configuration is
reached. The latter can occur only in the case of an unstable
grasp.

Tactile readings and corresponding joint configurations were
recorded starting from first contact until a static state is
achieved. To generate the stable/unstable label for the grasp,
the object is then lifted and rotated [−120◦, +120◦] around
the approach direction. The grasps where the object dropped
or moved in the hand were labelled as unstable. The contacts
between the object and the hand were on the tactile sensors
on distal phalanxes. Data processing, training and classifica-
tion followed the exact same methodology as used with the
simulated data.

The total number of samples for the cylinder is 140, for
bottle side grasps 100 and for bottle top grasps 50. The data
was divided into separate training and test sets such that the
number of unstable and stable samples are the same in the test

Fig. 8. The distribution of log-likelihood ratios for Bottle side grasps.



Fig. 9. A few examples from the execution of real experiments.

and train sets. The classification rates are shown in Table VII.
First, it is evident that the idea of using the tactile feedback to
evaluate the stability of a grasp is applicable also in a real
world scenario. The recognition rates are higher compared
to the simulated data. One reason is that the simulated data
includes more variance in comparison to the real data. The
goal of the experiments was however, to test the feasibility
of the approach. More extensive experiments for the general
shape stabilty evaluation is the objective of our current work.

TABLE VII
CLASSIFICATION RESULTS. RATES (STABLE ( STATE, MIXTURE COMP.),

UNSTABLE ( STATE, MIXTURE COMP.))

Cylinder Side G. Bottle Side G. Bottle Top G.
LR, diag 1 ((2,2),(3,3)) 0.97 ((2,2),(2,2)) 0.86 ((2,2),(2,2))
ER, diag 0.98((2,3),(5,4)) 0.97 ((2,2),(2,3)) 0.93 ((4,4),(3,3))
LR, spher 1 ((2,3),(3,2)) 1 ((2,4),(6,4)) 0.93 ((2,2),(2,2))
ER, spher 1 ((2,2),(3,4)) 0.97 ((2,5),(2,3)) 0.86 ((2,2),(2,2))

VI. CONCLUSION

This paper proposes the use of tactile sensing for estimating
grasp stability. The experimental results show that even using a
single tactile measurement allows relatively good recognition
of grasp stability, and that the ideas studied in simulation are
also applicable in real robot system. We do not aim for perfect
discrimination between successful and unsuccessful grasps -
this is not necessary because the acceptance threshold can be
set to a desired level of failure. Thus, for example, the system
may reject some stable grasps while having fewer unstable
grasps classified as stable ones.

An important lesson to be learned from the experiments
presented in the paper is that recognition rates improve when
introducing clearly separable or ”easy” cases of stable and
unstable grasps. This applies for both the cases where the
whole data set is clearly separable and those where the clearly
separable samples are combined with more difficult samples of
unstable and stable grasps. Thus, the wide variety of training
data, not just the number of samples, seem to be important
for good performance. Furthermore, the finding shows that
the grasp stability can be generalized over objects to some

degree, that is, introducing training data for some objects can
improve the stability detection for other objects.

A somewhat surprising finding is that the use of time series
data did not improve the results significantly. We believe
that this is partly due to using relatively simple grasps in
the database, where the objects are not moving significantly
during the grasping attempt and the contacts do not change
markedly. It is likely that in a more dynamic setting the time
series approach would outperform the one shot recognition.
However, this is out of the scope of the paper and remains
an avenue for future research. We do not claim that the
recognition approaches presented in the paper are the optimal
ones. Our data will be made available and we invite other
researchers to improve our results.
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Evaluation of Feature Representation and Machine Learning Methods
in Grasp Stability Learning

Janne Laaksonen, Ville Kyrki and Danica Kragic

Abstract— This paper addresses the problem of sensor-based
grasping under uncertainty, specifically, the on-line estimation
of grasp stability. We show that machine learning approaches
can to some extent detect grasp stability from haptic data
only. Using data from both simulations and two real robotic
hands, the paper compares different feature representations
and machine learning methods to evaluate their performance
in determining the grasp stability. A boosting classifier was
found to perform the best of the methods tested.

I. INTRODUCTION

Grasping a known object in a known environment with a
known robotic hand is a tractable problem. But immediately,
when some of the facts are unknown, the problem becomes
much more difficult to solve. The problem studied here is
how to estimate grasp stability when only haptic information
is available. Thus, there is no explicit object model, but
the system is learning from haptic images of stable and
unstable grasps. We show that it is possible to some extent to
recognize when a grasp is stable when given only the haptic
information.

A number of different sensor modalities can be used to
deal with the uncertainty from having an unknown object
during grasp. With sensors, we can determine when the
object is in contact with the hand, giving additional informa-
tion besides the kinematic configuration of the hand. Tactile
sensors are useful here, as they measure the force or pressure
inflicted on the sensor matrix, giving the area of the contact
as well as the total force.

To determine the grasp stability, the stability criteria must
be linked to the haptic data. This can be done either analyt-
ically or through learning. In this paper, we study the use of
learning for grasp stability evaluation where a system learns
the measure of stability based on a number of examples.
Through an experimental study, our aim is to assess the
suitability of different feature representations and machine
learning methods in the problem of learning grasp stability
from haptic input. The focus of the study is to evaluate
the grasp stability from a single haptic data instance using
both discriminitive and generative classifiers and different
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feature representations from data-driven dimensionality re-
duction techniques to application specific feature extraction
methods. The approach taken in this paper gives the benefit
of detecting whether the grasp is stable or unstable at any
instant during grasping. Both simulated and real data is used
to determine the differences and similarities when comparing
simulation with real platforms.

The paper is divided into six sections: Section II is a
study of related work in the area of the paper, Section III
introduces the different features for the classification, Section
IV describes the machine learning algorithms used in the
experiments and Section V contains the actual performed
experiments. Finally Section VI concludes the paper with
discussion and future work.

II. RELATED WORK

Grasp stability analysis by analytical means is a well
established field. However, to analytically determine the
grasp stability, the kinematic configuration of the hand and
the geometry of the object must be perfectly known. Previous
studies on this subject are numerous and [2] gives a detailed
review. However, the references are useful only in cases
where the environment is fully known. When this is the case,
it is possible to determine if the grasp is either force or form
closure grasp [3], which ensures the stability.

While there is currently little work directly comparable
to our work, many have studied the use of tactile and
other sensors in a grasping context. Felip and Morales [4]
developed a robust grasp primitive, which tries to find a
suitable grasp for an unknown object after a few initial grasp
attempts. However, only finger force sensors were used in the
study.

Apart from using tactile information as a feedback for
low level control [5], tactile sensors can be used to detect or
identify object properties. Jiméneza et al. [6] use the tactile
sensor feedback to determine what kind of a surface the
object has, which is then used to determine a suitable grasp
for an object. Petrovskaya et al. [7] on the other hand use
tactile information to reduce the uncertainty of the object
pose, upon an initial contact with the object. In their work, a
particle filter is used to estimate object’s pose, but the tactile
sensor used to detect contact with the object is not embedded
in the gripper performing the grasping.

Object identification has been studied by Schneider et
al.[8] and Schöpfer et al. [9] Schneider et al. show that it
is possible to identify an object using tactile sensors on a
parallel jaw gripper. The approach is very similar to object
recognition from images and the object must be grasped



several times before accurate recognition rates are achieved.
Schöpfer et al. use a tactile sensor pad instead of a gripper
or a hand which could be used to grasp the object. [9] is a
study on different temporal features which can be used to
recognize objects.

To the best of our knowledge, no studies have yet been
published on the use of tactile sensors to estimate the grasp
stability. When the grasp stability is analyzed purely from
the haptic data, it gives a great advantage compared to
the traditional grasp analysis methods. The stability can be
learned from examples providing a good ground to cope with
the uncertainty in the process generally not studied in the
case of analytic approaches.

III. FEATURE REPRESENTATIONS

A haptic data instance, H = [t j], consists of the tactile
readings, t, and of the grasp joint configuration, j. Depending
on the hand used, the dimensionality of both t and j changes.
In this study, three different platforms are used:

• Simulated Schunk Dextrous Hand (SDH), 3 fingers each
with 12x6 tactile elements , t ∈ R216, j ∈ R7

• Schunk Dextrous Hand, 3 fingers each with 13x6 tactile
elements, t ∈ R234, j ∈ R7

• Parallel Jaw Gripper, PG70, 2 fingers each with 14x6
tactile elements, t ∈ R168, j ∈ R1

The dimensionality of H ranges from R169 to R241 with
the listed platforms. The number of features in H can be
considered large and potentially redundant. Thus, an effective
method to reduce the dimensionality precedes the subsequent
processing. Rest of the section describes the methods that are
used to achieve this.

To provide an overview of the effect features have on the
classification of the grasp stability, several types of feature
representations are studied for training and classification.
The features, denoted by f, are derived from the tactile
sensor data, t. The features represent a variety of approaches
from pure data-driven dimensionality reduction to application
specific features. The features are computed from the tactile
readings only while the joint configuration is used as is as a
part of the haptic features.

A. Principal Component Analysis

Principal component analysis (PCA) is commonly used
linear technique for dimensionality reduction. Here, PCA is
computed using the covariance of the haptic data, H1,...,n and
the resulting eigenvectors and eigenvalues,

C = cov(H1,...,n) , (1)

V−1CV = D . (2)

Here, V represent the eigenvectors and D the corresponding
eigenvalues. We chose the eigenvectors with the largest
eigenvalues that combined explain 90% of the data. This
results in ∼ 60 eigenvectors.

B. Image Moments

Raw image moments are defined as

mp,q = ∑
x

∑
y

xpyq f (x,y) . (3)

The moments are computed up to order two, that is (p +
q) = o, o = {0,1,2}, These are related to the total pressure,
the mean of the contact area, and the shape of the contact
area, indicated by the variance in x- and y-axes. Moments are
computed for all tactile sensors individually, thus f ∈ R18.

Raw image moments are used in the experiments as
normalized image moments did not produce better results.
This observation might be due to the fact that, e.g. rotation
invariant moments, are not useful for grasp stability learning,
as each grasp is unique.

C. Histogram

Histogram representation on the tactile data represents
binning of the force affecting each cell of the tactile matrix.
This operation also removes all spatial information. Thus,
the histogram only considers the distribution of the affecting
force. Using 10 histogram bins, f ∈ R10.

D. Spatial Partitioning

Spatial partitioning partitions the area of the sensor matrix
and sums the affecting force in every cell of the sensor
matrix in each of these partitions. In essence, this sub-
samples the tactile image of each sensor matrix. Partitioning
can be thought as opposite to the histogram operation, as
partitioning retains the spatial information but loses some
information of the force distribution. In the experiments, a
2x2 grid is used to partition the tactile image on each sensor,
f ∈ R12.

E. Local Binary Pattern

Local binary patterns (LBPs) [10] are used commonly for
texture classification but also on face recognition. As its
name suggests, local binary pattern codes local changes in
a binary code. The local changes are found by thresholding
the pixel neighbourhood by the value of the center pixel
and checking which pixels are above the threshold. These
binary codes are then added to a histogram, which is the
final feature representing the original data. Images from all
sensors are coalesced into one image and the LBP is applied
to this image in the experiments. In the experiments, LBP
produces a histogram where f ∈ R59.

F. Row and Column Sums

Row and column sums is another form of spatial feature
representation, where the colums and rows are summed
independent of each other, thus, the resulting dimensionality
of the feature representation is the sum of the tactile sensor
dimensions, i+ j, for each sensor,

sumci = ∑
j

ti j , (4)

sumr j = ∑
i

ti j , (5)



where sumci denotes the individual sensor columns and sumr j

denotes the sensor rows.

IV. CLASSIFIERS

From a classification point of view, the problem of classi-
fying grasp stability may be modelled as a classical two-class
problem. Thus, the stability is classified as either stable or
unstable. This is possible to implement with most of the basic
classifiers without extending the theories behind them.

In the work presented here, a number of classifiers have
been selected for the experiments. All the classifiers de-
scribed represent different types of machine learning algo-
rithms that help to understand the underlaying problem in
grasp stability classification. In particular, we study both
discriminative and generative approaches for classification.

A. Support Vector Machine

As the problem of grasp stability is binary, support vector
machine (SVM) classification [11], [12] is suitable for the
problem. Thus, here the focus is on the 2-class SVM. SVM
is a maximum margin classifier, i.e. the classifier fits the
decision boundary so that maximum margin between the
classes is achieved. This guarantees that the generalization
ability between the classes is not lost during the training of
the SVM classifier.

Another feature of the SVM is the ability to use non-linear
classifiers instead of the original linear hyper-plane classifier.
Non-linearity is achieved using different kernels and in this
study radial basis function (RBF) is used as the kernel for
SVM:

K(xi,x j) = e−γ‖xi−x j‖2 , f or γ > 0, (6)

In addition to the parameter γ , constant C, related to the
penalty applied to incorrectly classified training samples
[11], needs to be set. The parameters can be found by
searching the parameter space to find the optimal values.
In this study, as an extension to the basic two-class SVM,
probabilistic outputs for SVM by Platt [13] are used to
analyze the results given by the SVM. The implementation
of the SVM is by Chang and Lin [14].

B. Gaussian Mixture Model Classifier

As the naive Bayes classifier assumes that the data is
distributed according to some modelable distribution, it is not
optimal in cases where this assumption is not true. The haptic
data is distributed according to an unknown distribution,
thus it is reasonable to use Gaussian mixture model (GMM)
statistical classifier.

While GMM methods assume a Gaussian distribution,
GMM uses multiple Gaussian distributions to model the data
which enables the methods to model multi-modal and more
complex data. The implementation used in the experiments
is by Paalanen and Kämäräinen [15].

TABLE I
TABLE OF PARAMETERS FOR FEATURES.

Features Parameter Parameter
Raw - -
PCA - -

Histogram No. bins: 10 -
LBP Uniform LBP Samples: 8,1

Moments - -
Partitioning Grid: 2x2 -
R&C sums - -

C. k-Nearest Neighbour

k-nearest neighbour [16] classifier is a very simple algo-
rithm to implement. This classifier requires no training phase,
instead during the classification phase, the test samples are
compared to all given training samples. The test sample is
classified as the class with the most neighboring, i.e. closest,
training samples. The k denotes the number neighbouring
training samples that are used in the classification phase. k-
nearest neighbour also has a proven [16] error rate that is no
worse than two times the error rate of an optimal classifier
when the amount of data approaches infinity.

D. AdaBoost

AdaBoost or adaptive boosting is a meta-algorithm for
learning which was developed by Freund and Schapire [17].
Adaboost uses multiple weak classifiers, such as linear hyper-
plane classifiers, to classify the given training data. AdaBoost
has a good generalization ability, however AdaBoost is not
effective when outliers are present in the training data.

The AdaBoost-algorithm that is used in this study is based
on a decision tree classifier with a variable branching factor.
With a branching factor of 1, the tree classifier represents
a linear hyperplane classifier. The implementation is by
Vezhnevets [18].

V. EXPERIMENTS

The goal of the experiments is to study the effect of the
presented features in conjunction with multiple different clas-
sifier methods. A number of different datasets with different
assumptions are used in the experiments to determine what
type of data is suitable for classification.

A. Experimental Setup

The parameters for features and classifiers are shown in
tables I and II. The raw data from the tactile sensors is
also used as features in addition to the features presented
in Section III. The parameters were found by a parameter
search across reasonable parameter space. Objects used in
the grasping experiments are shown in Figure 1.

The following datasets have been chosen from simulated
data, which were generated using simulated SDH hand model
in a simulation environment described in [19]:
• D1, a cylinder, grasps sampled from the side
• D2, a bottle, grasps sampled from the side
• D3, a bottle, grasps sampled from the top
• D4, a cylinder, grasps sampled from a sphere



TABLE II
TABLE OF PARAMETERS FOR CLASSIFIERS.

Classifier Parameter Parameter
SVM C: 0.4 γ: 0.03
GMM max. clusters: 19 max. error: 0.016
KNN k: 3 -

AdaBoost Branch factor: 1 -

• D5, a bottle, grasps sampled from a sphere
The datasets D1,2,3 represent cases where we know the

pose of the object with some accuracy, and can plan for
a grasp. The datasets D4,5 are simulating situation were
the position of the object is known to some extent but the
orientation is unknown, thus, the grasp is sampled from a
sphere around the object. In the simulated data, the grasp
stability computation is based on [20], but instead of one
convex hull W , two convex hulls, Wf and Wτ are used to
separate wrench space with respect to forces and torques,
and additional constraints are placed on Wf , so that

α(m ·g) ∈Wf ,α = 1.1 . (7)

This allows the grasp to remain stable even if some
additional forces are introduced in addition to the gravity.

Datasets generated with real hands are following:
• D6, a cylinder, grasps sampled from the side, SDH
• D7, a bottle, grasps sampled from the side, SDH
• D8, a bottle, grasps sampled from the top, SDH
• D9, a box, grasps sampled from the side, PG70
• D10, a shampoo bottle, grasps sampled from the side,

PG70
• D11, a shampoo bottle, grasps sampled from the top,

PG70
Datasets D6,··· ,11 represent cases where an estimate of the

object’s pose is known, for example, from a vision system.
This estimate is commonly noisy and thus we added the
noise to the hand pose. The objects in datasets D6,7,8,9 are
rigid and the objects in datasets D10 and D11 are non-rigid,
i.e. the objects are deformable. The grasp stability in these
datasets was determined by grasping an object, after which
it was lifted and rotated. If the object moved independently
of the hand, the grasp was unstable, otherwise it was stable.

The method used to evaluate the performance of the
classifiers was 10-fold cross validation. The dataset sample
size for each of the given datasets are shown in Table III with
the maximum classification rate summarized from Tables IV
and V. The sample size shown in the table is balanced, so
that each dataset has equal amount of stable and unstable
grasp samples. All other features were normalized to zero-
mean and unit variance, except the raw features which were
normalized to range [0,1]. The normalization parameters
were obtained from the training set and applied to both
training and test sets.

B. Experimental Results

Result matrix with the described datasets is given in
Table IV and Table V. The table shows the classification

TABLE III
DATASET SAMPLE SIZE.

Dataset Sample size Max. classification rate
D1 6400 0.770
D2 4906 0.614
D3 4446 0.627
D4 5302 0.804
D5 8990 0.705
D6 140 0.921
D7 100 0.921
D8 50 0.846
D9 148 0.746
D10 148 0.590
D11 100 0.640

rate of each dataset with the indicated feature and classifier
combination. Each row shows the best classifier in bold font
and worst in italic font. The best and worst classifiers were
determined on a 95 % confidence interval using the Agresti-
Coull interval which approximates the binomial confidence
interval. Multiple classifiers are deemed best if there is no
statistically significant difference in the classification perfor-
mance between them. Some results for GMM are omitted
because of the training sample size requirements, thus, results
for datasets D6,...,11 are not shown.

The results in Tables IV and V show that there is a distinc-
tive performance difference between the datasets. Simulated
datasets, D1 and D4 perform usually better than the other
simulated datasets. This performance gap is caused, at least
partially, by the hand configuration, which allows the object
to touch other areas of the hand where there are no sensors.
This removes some of the important information about the
object to be used in determining the grasp stability. Thus,
it is important to set up the grasp sequence in a way that
allows the sensored part of the hand to grasp the object.

This procedure is evident in the dataset gathered from the
real hands, especially sets D6,7,8, where the classification
performance is above 75 % in some cases. However, the
object in the datasets were rigid, which is not the case in sets
D10,11. These sets show mostly poor performance, indicating
that further samples must be used to learn the grasp stability.

The best overall classifier is AdaBoost, which performs the
best out of the four classifiers, while SVM is close second.
Worst classifier is GMM, partially due to the extensive
amount of data needed to train GMM successfully with some
of the chosen features. Low amount of data available in
datasets D6,...,11 makes it difficult to determine within the
0.95 confidence interval the best classifier, but looking at the
results, AdaBoost has the highest mean in these cases. SVM
has some anomalies, these are suspected to be caused by the
parameter and feature combinations, and could be fixed by
adjusting the parameters of SVM.

C. Feature Study

To study the effect of the features on the classification rate,
tests with a 3-nearest neighbour classifier were conducted on
each dimension of all the feature representations described
in Section III and also on the raw tactile data. The dataset
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Fig. 1. Objects used in the datasets: (a) D1; (b) D2,D3; (c) D4; (d) D5; (e) D6; (f) D7,D8; (g) D9; (h) D10, D11.

Fig. 2. Classification rates on individual features.

D1 was used in this experiment. The classification rates are
shown in Figure 2.

Classification rates of 0.5 or less in Figure 2 are a sign that
the feature used is not particularily useful in learning as it has
no correlation with the grasp stability. The figure shows that
there are quite many useful features in the set of features
that were tested. What is interesting is the raw data as it
has multiple spikes which are among the best features for
classifying the grasp stability. This indicates that individual
cells of the tactile sensors can be used to determine the grasp
stability to some extent. Also image moments, histogram
and row and column sums seem to have a number of good
features to use for classifying. However, it is important to
note that these results are from a simulated dataset.

VI. CONCLUSIONS AND FUTURE WORK

The focus of the presented work was to investigate how
different machine learning methods and feature representa-
tions affect the ability to learn and assess the grasp stability
from haptic data. Both simulated and real world data was
used in an experimental comparison. Experiments indicated
that AdaBoost was the best performing classifier, suggesting
that boosting approaches would be likely candidates for
further studies in the context of grasp stability learning.

The classification performance varied significantly be-
tween different data sets. Results of the experiments showed
that deformable objects are more difficult to learn with a

similar sample size compared to rigid objects. A temporal
approach might be useful for deformable objects, as it could
extract more information from the grasp. Data also show that
if the grasped object has contacts with the hand outside of
the tactile matrices, the grasp stability can not be learned
effectively. It needs to be noted that perfect classification
performance is not necessary, since acceptance threshold
can be set such that for example regrasping is triggered in
ambiguous cases.

Future work will concentrate on expanding the presented
study. Especially the study on deformable objects is interest-
ing as currently there are no grasping simulators that are able
to do this, but many household objects have this property.
It is also possible to combine data from multiple objects
to produce a common classifier for all the objects. Further
research on this subject would help to identify the limits
of the presented learning approach on completely unknown
objects.
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