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Chapter 1

Executive Summary

This report presents the work of year one in WP4. WP4 is concerned with perceiving the object and
hand involved in the grasp and all contextual information relevant. With grasp context we refer to the
information relevant to the grasp, which at its core includes the grasp points on the objects but also the
relationship to the total object, the hand, the task, and the attention on the target object. The overall
objective is to perceive grasping points on unknown objects by the end of the project.

Work in year two concerned

• [Task 4.1] - Acquiring (perceiving, formalising) knowledge through hand-environment
interaction The objective of this task is to obtain many cues for observing the hand to object
relationship for grasping. The idea is to use these cues not only to obtain information for the
observation of a human handling objects but also for the robot executing the grasping.

• [Task 4.2] - Perceiving task relations and affordances The objective is to exploit the set of
features extracted in Task 4.1 to obtain a vocabulary of features relevant to the grasping of objects
and to learn the feature relations to the potential grasping behaviours and types.

The work in this deliverable relates to the following second year Milestones:

• [Milestone 4] Analysis of action-specific visuo-spatial processing, vocabulary of human ac-
tions/interactions for perception of task relations and affordances.

The advance in year two is again structured in relation to contextual knowledge of objects from known
over familiar to unknown objects.

• Known objects are detected using a new algorithm for multiple 3D object recognition in noisy,
outlier corrupted and cluttered scenes. The method is based on a sampling strategy which runs in
constant time in the number of input scene points. To the best of our knowledge, there is no other
object recognition algorithm in which the main procedure has a constant time complexity. We
use the new method to detect known objects in 3D point sets obtained by a stereo reconstruction.
Appendix [A] presents this work.

• Familiar objects can be grasped by finding a suitable object representation that allows to transfer
grasping experience from similar objects. Previous work on using a 2D shape descriptor for the
detection and learning of grasping points on familiar objects has been extended with sparse stereo
information and is presented in Appendix [B]. Through this integration, we can additionally to the
grasping point also find a suitable approach vector grounded in the 3D structure of the object.
Relating to Task 4.2, planar surfaces of any direction in the sparse 3D model serve as an affordance
cue for elementary grasping actions.

• To approach ”Unknown objects” Appendix [C] presents the 3D estimation of cylindrical objects
and top surfaces for grasping from stereo. This enables to detect these two classes of objects. It can
use laser depth data as well as stereo depth data. Actually, a combined processing delivers more
surfaces and hence more features and a more complete object description. The approach extends
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to a large set of objects that have a visible top surface. Hence, this approach is the first to clearly
tackle the task of moving towards estimating grasping points for objects not seen before. Moving
towards Task 4.2 the cylindrical as well as planar patches are the first two higher level elements to
build a grasping affordance description.

• Given objects of more complex shapes an improved convex hull-based segmentation algorithm is
used to deliver potential grasping poses. First the algorithm segments the potential core part and
all sub-parts of the object. The contribution is a method that segments a point cloud as well as
mesh data and in comparison to other segmentation methods the proposed algorithm based on
spherical mirroring shows best time performance. This segmentation algorithm can be applied to
a reasonable set of objects with different applications presented in Appendix [D].

• Results in the first year [Task 4.1] showed that local image information can be very well used to
obtain shape information about objects. Based on this, a new method for learning grasp points in
images of previously unseen objects is presented in Appendix [E]. The method resorts to semi-local
grasping point shape and a new devised descriptor, to learn a discriminative vocabulary of grasp
point models in 2D. To learn the grasping point representation, an annotated database is provided.
Newly detected grasp points can be used to bootstrap the learned models after the appropriated
validation - e.g. through human interaction or simulation - of the grasp points in order to enrich the
previous vocabulary towards an incremental-learning approach. Extensive evaluations show that
the method outperforms previous work, though future work is still necessary to use sparse stereo
(see also Appendix [B]) to obtain 3D features.

This work is complemented by an investigation to learn the importance between image features and
their geometrical distribution within an object class regarding generic object recognition, which
is presented in Appendix [F]. The method, which can be used with different image features - e.g.
appearance or shape -, exploits the feature’s distribution to obtain a robust object class model. This
will be used to move towards a comprehensive description of shapes combining the visual features,
that will be further used as context to improve the previously presented grasping point detection
mechanism.

• A series of works is concerned with the hand-object interaction.

Objects reconstructed from stereo cameras mounted on the head of the robot result in 2.5D rep-
resentation of the scene where multiple surfaces facing away from the robot are not visible to the
system. These faces cannot be validated by the robot in the set-up and assumptions need to be
made to complete the shape representation. Only a complete 3D shape of an object allows a suc-
cessful grasp planning on the object. The research presented in [Appendix G] allows a completion
of the object from a camera system moved in the scene. This can be applied to both a robot mov-
ing around the scene or a camera-in-hand moved by the robot to complete the view. The system
performs not only a robust 3D reconstruction but also is capable of estimation of extrinsic and in-
trinsic camera parameters during the exploration. A novel model validation approach allows hereby
a reconstruction of surfaces with partially homogeneous areas. The hypotheses about the surface
properties are encoded in a mechanical model of the surfaces where the corresponding smoothness
and stiffness parameters can be encoded for different parts of the surface independently. This allows
also a meaningful completion of the reconstructed data in areas, where missing texture does not
provide any additional information.

• In preparation for applications of the robotic system in hushed scenarios with very sparse texture on
the surfaces, structured light approaches were added to the processing chain of the visual system.
Scenes with low texture are boosted with additional texture projected onto them that allows a
robust reconstruction in areas with no or little texture (see Fig. 1.1).

• A novel active stereo system was develop at TUM with a specific aim on camera-in-hand application,
where a second camera was replaced by an active DLP (projector) that projects a calibrated pattern
onto the scene that is sensed by the camera mounted in a pre-calibrated location relative to the
projector (Fig. 1.2). This allows also a projection of additional information by the robot during the
interaction to simplify the human robot interaction in manipulation experiments. The projection is
light-weight and can be supplied directly from the USB port of the computer processing the stereo
information (to be submitted to CVPR International Workshop on Projector-Camera Systems).

6



GRASP 215821 PU

Figure 1.1: Additional texture projected in one frame onto the scene improves the reconstruction of the
surface details in homogeneous areas.

Figure 1.2: One of the cameras of a stereo setup is replaced by an active DLP (digital light processor) to
project calibrated texture onto the scene.

• Finally, in collaboration with WP5, the pose change during the human interaction with the robot is
tracked by the action analysis system develop within WP5 1. This system is capable of monitoring of
motion trajectories during handling of objects. This capability can also be used during manipulation
attempts by the robot to verify the stability of the grip applied to the object. The system is capable
of tracking a relative position to any given reference. The reference can be the background scene
which results in a trajectory in 3D through the space or it can be a motion relative to the gripper
in which case the stability of the grasp is verified.

1See paper in the Deliverable of WP5: Petsch and Burschka: Estimation of Spatio-Temporal Object Properties for
Manipulation Tasks from Observation of Humans; ICRA 2010, accepted.
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Sampling in Constant Time for 3D Object
Detection in Noisy and Cluttered Scenes

Chavdar Papazov and Darius Burschka

Machine Vision and Perception Group (MVP)
Department of Computer Science

Technische Universität München, Germany
email: {papazov, burschka}@in.tum.de

Abstract. In this paper we propose a sampling strategy that runs in
constant time and allows for efficient 3D object detection in noisy, out-
lier corrupted and cluttered scenes. We assume that each object is rep-
resented by a model consisting of a set of points with corresponding
surface normals. The scene should be given in form of a range image.
Our method detects multiple model instances and estimates their po-
sition and orientation in the scene. The algorithm scales well with the
number of models and its main procedure runs in constant time in the
number of scene points. Moreover the approach is conceptually simple
and easy to implement. Tests on a variety of real data — obtained by a
stereo reconstruction — show that the proposed method performs well
on noisy, outlier corrupted and cluttered scenes in which only small parts
of the objects are visible.

1 Introduction

Object detection is one of the most fundamental problems of computer vision.
Most algorithms fall into two general classes. One class consists of methods op-
erating on two-dimensional images. These methods are sensitive to changes in
viewpoint and illumination. In recent years, advances in 3D geometry acquisition
technology have led to a growing interest in object detection techniques which
work with three-dimensional data. Moreover, if a three-dimensional representa-
tion of objects and scene is available the detection procedure does not have to
deal with viewpoint and illumination issues.

Referring to [1] the object detection problem can be stated as follows. Given a
setM = {M1, . . . ,Mm} of models and a scene S are there transformed subsets
of some models which match a subset of the scene? The output of an object
detection algorithm is a set {(Mk1 , T1), . . . , (Mkn , Tn)} where Mkj ∈ M is a
detected model instance and Tj is a transform which aligns a subset of Mkj to a
subset of the scene. In this paper, we discuss a special instance of this problem
which is given by the following assumption.

Assumption 1. (i) Each model Mi is a finite set of oriented points, i.e.,
Mi = {(p,n) : p ∈ R3,n is the normal at p}.



2 Chavdar Papazov and Darius Burschka

(ii) Each model is representing a non-transparent object.
(iii) The scene S = {p1, . . . ,ps} ⊂ R3 is a range image, i.e., the points are

ordered in a rectangular two-dimensional grid such that each point pj has
(besides its coordinates in R3) unique two-dimensional integer coordinates.
Note that each point set can be converted into a range image using z-
buffering. This procedure is, of course, not bijective.

(iv) The transform Tj which aligns a subset of the model Mkj to a subset of
the scene is a rigid motion.

Even under these assumptions the problem remains hard because of several
reasons: it is a priori not known which of the models are represented in the scene
and how they are oriented, the scene points are typically corrupted by noise and
outliers, the objects are only partially visible due to scene clutter, occlusion and
scan device limitations.
Contributions and Overview In this paper, we introduce an efficient algo-
rithm for solving the object detection problem under the conditions defined in
Assumption 1. We make the following contributions:

(i) The way of representing the models using a hash table of pairs of oriented
points — first presented in [3] in the context of surface registration — is
significantly modified such that it can be used for object detection.

(ii) A new constant time random sampling strategy for fast generation of object
hypotheses is introduced.

(iii) We provide an analysis of our sampling strategy to derive the number
of iterations needed to detect model instances with a predefined success
probability.

(iv) A new measure for the quality of an object hypothesis is presented.
(v) We use a non-maximum suppression to remove false positives and to achieve

a consistent scene explanation by the given models.

The rest of the paper is organized as follows. After reviewing previous work in
Section 2, we describe our algorithm in Section 3. Section 4 presents experimental
results. Conclusions are drawn in the final Section 5 of this paper.

2 Related Work

Object detection should not be confused with object recognition/classification.
The latter methods only measure the similarity between a given input shape and
shapes stored in a model library. They do not estimate a transform which maps
the input to the recognized model [4], [5]. Moreover, the input shape is assumed
to be a subset of some of the library shapes. In our case, however, the input
contains points originating from multiple objects and scene clutter.

Two major classes of object detection methods are built by the voting ap-
proaches and the correspondence based approaches. Well-known voting methods
are the generalized Hough transform [6] and geometric hashing [1]. In the gen-
eralized Hough transform approach, the space of rigid transforms is discretized
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and votes for transforms which map a model to the scene are cast into accumu-
lator bins. The bin with the most votes indicates the desired rigid motion. This
procedure has an unfavorable space and time complexity of O(nk3), where n is
the number of scene points and k is the number of bins for each dimension of
the discretized rotation space. A further disadvantage is the fact that in the case
of multiple models one has to match sequentially each one of them against the
scene.

The geometric hashing approach [1] is similar to the generalized Hough trans-
form. The main difference is that one does not vote for transform parameters
but for pairs consisting of a model and a basis. In this way a simultaneous detec-
tion of all models is possible without the need of sequential matching. However,
geometric hashing tends to be very costly since its space complexity is O(m3)
and its worse case time complexity is O(n4), where m and n are the number of
model and scene points, respectively.

The second class of object detection methods are designed to solve the cor-
respondence problem between (a subset of) the model points and (a subset of)
the scene points. This is usually done using local geometric descriptors. Before
detection, the descriptors for the points of all models are computed and stored.
At recognition time, a scene point is selected and the descriptor for its local
neighborhood is computed. If there is a good match between the scene descrip-
tor and a model descriptor a correspondence between the underlying points is
established. This procedure is repeated until a sufficient number of correspon-
dences is computed. The aligning rigid transform is then calculated based on the
established correspondences.

There is a vast variety of descriptors which can be used in a correspondence
based object detection framework. Johnson and Hebert introduce in their work
[7] spin images and use them for object detection. The presented results are
impressive, but no tests with noisy or outlier corrupted data are performed.
Gelfand et al. [8] develop a local descriptor which performs well under artificial
noisy conditions (Gaussian noise), but still, defining robust local descriptors in
the presence of significant noise and a great amount of outliers remains a difficult
task. Other descriptors are curvedness [9], local feature histograms [10] and shape
contexts [11], just to name a few. All correspondence based algorithms rely
heavily on the assumption that the models to be detected have few distinctive
feature points, i.e., points with rare descriptors. In many cases, however, this
assumption does not hold. A cylinder, for example, has too many points with
similar descriptors. This results in many ambiguous correspondences between
a model and the scene and the detection method degenerates to a brute force
search.

In our detection technique, we use a robust descriptor in combination with a
sampling procedure that runs in constant time. Before we describe the algorithm
in detail, we briefly review the surface registration technique presented in [3]
because it is of special relevance to our work.
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2.1 Fast Surface Registration

To put it briefly, the task of rigid surface registration is to find a rigid transform
which aligns two given surfaces. Let S be a surface given as a set of oriented
points. For a pair of oriented points (u,v) = ((pu,nu), (pv,nv)) ∈ S × S, a
descriptor f : S× S→ R4 is defined by

f(u,v) =


duv

αuv

βuv

γuv

 =


‖pu − pv‖

arccos[nu · nv]
arccos[nu · (pv − pu)]
arccos[nv · (pu − pv)]

 . (1)

In order to register two surfaces S1 and S2, oriented point pairs (u,v) ∈
S1 × S1 and (ũ, ṽ) ∈ S2 × S2 are sampled uniformly and the corresponding
descriptors f(u,v) and f(ũ, ṽ) are computed and stored in a four-dimensional
hash table. The hash table is continuously filled in this way until a collision
occurs, i.e., until a descriptor of a pair from S1 × S1 and a descriptor of a pair
from S2×S2 end up in the same hash table cell. Computing the rigid transform
which best aligns the colliding pairs (in least square sense) gives a transform
hypothesis for the surfaces.

According to [3], this process is repeated until a hypothesis is good enough,
a predefined time limit expires or all combinations are tested. Non of these
stopping criteria is well-grounded: the first two are ad hoc and the last one is
computationally infeasible.

3 Method Description

Like all object detection methods cited in this paper, our method consists of
two phases. The first phase — the model preprocessing — is done offline. It is
executed only once for each model and does not depend on the scenes in which
the model instances have to be detected. The second phase is the online detection
which is executed on the scene using the model representation computed in the
offline phase. In the rest of this section, we describe both stages in detail and
discuss the computational complexity of our algorithm.

3.1 Model Preprocessing Phase

In the offline phase, a representation for each model is computed such that
efficient detection in cluttered and occluded scenes becomes possible. For a given
object model M we sample all pairs of oriented points (u,v) ∈ M ×M for
which pu and pv are approximately at a distance d from each other. For each
pair, the descriptor f(u,v) is computed as defined in (1) and stored in a four-
dimensional hash table. Note that in contrast to the technique presented in
[3] we do not consider all pairs of oriented points, but only those which fulfill
‖pu − pv‖ ∈ [d − δd, d + δd], for a given tolerance value δd. This has several
advantages. The space complexity is reduced from O(n2) to O(n), where n is
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d

d

Fig. 1. Stability of wide-pairs. An alignment based on a wide-pair (top) is more stable
than an alignment based on a narrow-pair (bottom) (see [12]). In cluttered and occluded
scenes the width d of the pair is limited by the extent of the visible portion of the
objects.

the number of oriented points in M. For large d, the pairs we consider are
wide-pairs which allow a much more stable computation of the aligning rigid
transform than narrow-pairs do (see Fig. 1). Another advantage of wide-pairs
is due to the fact that (for roughly uniformly sampled surfaces) the larger the
distance between the points of a pair the less pairs we have. Thus computing
and storing the descriptors of wide-pairs leads to less populated hash table cells
which means that we will have to test less transform hypotheses in the online
detection phase and will save computation time.

Note, however, that the pair width d can not be arbitrary large. For a typical
value for d (which allows object detection in cluttered and occluded scenes),
there are still a lot of pairs with similar descriptors, i.e., there are hash table
cells with too many entries. This problem is best illustrated by simple shapes
like, e.g., cubes. If the pair width is set to be less than the cube’s side length, all
pairs with points sampled from one side of the cube will have similar descriptors
and will fall within the same hash table cell. To avoid this overpopulation of
cells, we remove as many of the most populated cells as needed to keep only K%
of the pairs in the hash table (K < 100). This strategy, of course, leads to some
information loss about the object shape. We take this into account in the online
phase of our algorithm.

The final representation of all models M1, . . . ,Mm is computed by processing
each Mj , j = 1, . . . ,m in the way described above using the same hash table.
In order not to confuse the correspondence between pairs and models, each cell
contains a list for each model which has pairs stored in the cell. Thus new models
can be added to the hash table without recomputing it. In the next section, we
will see how this model representation allows for simultaneously object detection
without trying to match sequentially all models against the scene data.

3.2 Online Detection Phase

As already mentioned in the introduction, the scene S = {p1, . . . ,ps} ⊂ R3

has to be in form of a range image. The output of the algorithm is a list T =
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{(Mk1 , T1), . . . , (Mkn
, Tn)}, where Mkj

is a detected model instance and Tj is
the associated rigid transform which aligns a subset of Mkj

with a subset of the
scene. The overall procedure can be outlined as follows:

1. Initialization
(a) Preprocess the scene S to produce a modified scene point set S∗.
(b) T ← ∅ (an empty solution list).

2. Compute a number of iterations N needed to achieve a probability for suc-
cessful detection higher than a predefined value PS .

[repeat N times]
3. Sampling

(a) Sample a point pu uniformly from S∗.
(b) Sample pv ∈ S∗ uniformly from all points at a distance d± δd from pu.

4. Estimate normals nu and nv at pu and pv, respectively, to get an oriented
scene point pair (u,v) = ((pu,nu), (pv,nv)).

5. Compute the descriptor fuv = f(u,v) according to (1).
6. Use fuv as a key to the model hash table to retrieve the oriented model point

pairs (um,vm) similar to (u,v).
[repeat for each (um,vm)]
(a) Get the model M of (um,vm).
(b) Compute the rigid transform T that best aligns (um,vm) to (u,v).
(c) Set T ← T ∪ (M, T ) if (M, T ) is accepted by an acceptance function µ.
[end repeat]

[end repeat]
7. Filter conflicting hypotheses from T .

Step 1, Initialization For our algorithm to be fast, we need to search effi-
ciently for closest points (in steps 4 and 6c) and for points lying on a sphere
around a given point (in step 3b). These operations are greatly facilitated if a
neighborhood structure is available for the point set. Although the order of the
scene points given by the 2d range image grid defines such a structure, it is not
well suited for the above mentioned geometric operations. This is due to the
fact that points which are neighbors on the gird are not necessarily close to each
other in R3 because of perspective effects and scene depth discontinuities.

A very efficient way to establish spatial proximity between points in R3 is
to use an octree [13]. The full leaves of an octree — these are the leaves which
contain at least one point — can be seen as voxels ordered in a regular axis-
aligned 3D grid. Thus each full leaf has unique integer coordinates (i, j, k).

Let O be an octree and O(i, j, k) be a full leaf with coordinates (i, j, k) ∈ Z3.
A neighborhood N(i, j, k) for O(i, j, k) is given as

N(i, j, k) = {O(x, y, z) : |x− i| ≤ 1, |y − j| ≤ 1, |z − k| ≤ 1, (2)
O(x, y, z) is a full leaf and x, y, z ∈ Z}.
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Based on (2), we define a K-ring neighborhood NK(i, j, k) for K ≥ 1 as

NK(i, j, k) =
⋃

x,y,z∈{−K+1,...,K−1}⊂Z

N(i+ x, j + y, k + z) (3)

Points which are lying in the same or in neighboring leaves are close to each
other in the sense of the Euclidean metric in R3. In step 1a of the algorithm, we
down-sample S by constructing an octree for a given leaf size L and setting the
new scene points in S∗ to be the centers of mass of the full leaves. The center
of mass of a full leaf is defined to be the average of the points lying in this leaf.
In this way a one-to-one correspondence between the points in S∗ and the full
octree leaves is established. Two points in S∗ are neighbors if the corresponding
full leaves are neighbors according to (3).

Step 2, Number of Iterations This step involves the computation of the
number of iterations and will be explained in detail in Section 3.3.

Step 3, Sampling In the sampling stage, we make extensive use of the scene
octree. The first point, pu, is drawn uniformly from S∗. In order to draw the
second point, pv, we first retrieve the set L of all full leaves which are intersected
by the sphere with center pu and radius d, where d is the pair width used in
the offline phase (see Section 3.1). This operation can be implemented very
efficiently due to the hierarchical structure of the octree [13]. Finally, a leaf is
drawn uniformly from L and pv is set to be its center of mass.

Step 4, Normal Estimation The normals nu and nv are estimated by per-
forming a Principal Component Analysis for the points in the K-ring neigh-
borhood of pu and pv, respectively. nu and nv are set to be the eigenvectors
corresponding to the smallest eigenvalues of the covariance matrix of the points
in the K-ring neighborhood of pu and pv, respectively. The result is the oriented
scene point pair (u,v) = ((pu,nu), (pv,nv)).

Steps 5 and 6, Hypotheses Generation and Testing Step 5 involves the
computation of the descriptor fuv = f(u,v), as defined in (1). In step 6, fuv is
used as a key to the model hash table (computed in the offline phase, see Section
3.1) to retrieve all model pairs (um,vm) which are similar to (u,v). For each
(um,vm), the model M corresponding to (um,vm) is retrieved (step 6a) and
the rigid transform T which best aligns (um,vm) to (u,v) is computed (step
6b). The result of these two sub-steps is the hypothesis that the model M is in
the scene at the location defined by T . In order to save the hypothesis in the
solution list it has to be accepted by the acceptance function µ.
The Acceptance Function µ measures the quality of a hypothesis (M, T ) and
consists of a support term and a penalty term.

The support term, µS , is proportional to the number ms of transformed
model points (i.e., points from T (M)) which fall within a certain ε-band of the
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scene. More precisely, µS(M, T ) = ms/m, where m is the number of model
points. If n is the number of scene points, a näıve implementation of µS would
require O(mn) number of distance computations each one consisting of expensive
power raising and square rooting. We use a fast approximation of the näıve
method which counts the number of transformed model points which fall within
a full leaf of the scene octree. This procedure runs in O(km) time, where k is
the depth of the octree. Note that k is significantly smaller than n. Furthermore,
instead of power raising and square rooting only simple number comparisons are
performed.

The penalty term, µP , is proportional to the size of the transformed model
parts which occlude the scene. This is the only stage of the algorithm where we
make use of Assumption 1, namely that 1(ii) the models are representing non-
transparent objects and 1(iii) the scene is in form of a range image. It is clear
that in a scene viewed by a camera a correctly detected non-transparent object
can not occlude scene points reconstructed from the same viewpoint. We penalize
hypotheses which violate this condition. The penalty term is approximated very
efficiently by counting the number mp of transformed model points which are
between the projection center of the range image and a full octree leaf and thus
are “occluding” reconstructed scene points. We set µP (M, T ) = mp/m, where
m is the number of model points.

For (M, T ) to be accepted as a valid hypothesis it has to have a support higher
than a predefined S ∈ [0, 1] and a penalty lower than a predefined P ∈ [0, 1].

Step 7, Filtering Conflicting Hypotheses We say that an accepted hypoth-
esis (M, T ) explains a set P ⊂ S∗ of scene points if for each p ∈ P there is a
point from T (M) which lies in the octree leaf corresponding to p. Note that the
points from P explained by (M, T ) are not removed from S∗ because there could
be a better hypothesis, i.e., one which explains a superset of P. Two hypotheses
are conflicting if the intersection of the point sets they explain is non-empty. At
the end of step 6, many conflicting hypotheses are saved in the list T . To filter
the weak ones we construct a so called conflict graph. Its nodes are the hypothe-
ses in T and an edge is connecting two nodes if their corresponding hypotheses
are conflicting ones. To produce the final output, the solution list is filtered by
performing a non-maximum suppression on the conflict graph: a node is removed
if it has a better neighboring node.

3.3 Time Complexity

The complexity of the proposed algorithm is dominated by three major factors:
(i) the number of iterations (the loop after step 2), (ii) the number of pairs per
hash table cell (the loop in step 6) and (iii) the cost of evaluating the acceptance
function for each object hypothesis (step 6c). In the following, we discuss each
one in detail.

(i) Consider the scene S∗ consisting of n points and a model instance M therein
consisting of m points. We call SM = m/n the relative size of M. Let PM denote
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the probability of detecting M in a single iteration. The probability of at least
one detection after N iterations is given by 1− (1− PM )N . In order to achieve
a predefined success probability PS we need

N ≥ ln(1− PS)
ln(1− PM )

(4)

iterations. Let us now estimate PM . Let P (pu ∈M,pv ∈M) denote the proba-
bility that both points are sampled from M (see step 3 in Section 3.2). Thus

PM = KP (pu ∈M,pv ∈M), (5)

where K is the fraction of oriented point pairs for which the descriptors are
saved in the model hash table (see Section 3.1). Using conditional probability
and the fact that P (pu ∈M) = m/n = SM we can rewrite (5) to get

PM = KP (pu ∈M)P (pv ∈M|pu ∈M) (6)
= KSMP (pv ∈M|pu ∈M). (7)

Note that the relative model size SM does not depend on the number of input
points: more scene points means more points which belong to the model instance
so the ratio m/n remains the same.

P (pv ∈M|pu ∈M) is the probability that we sample pv from M given that
pu ∈M. Recall from Section 3.2 that pv is not independent of pu because it is
sampled uniformly from the intersection set L of the full octree leaves and the
sphere with center pu and radius d, where d is the pair width used in the offline
phase. Under the assumptions that the visible object part has an extent larger
than 2d and that the reconstruction is not too sparse L contains at least one full
octree leaf which belongs to M. Thus P (pv ∈ M|pu ∈ M) ≥ 1/|L|, where |L|
is the cardinality of L. |L| is bounded above by the number NV < ∞ of voxels
intersected by a sphere with radius d. Since the pair width d and the octree leaf
size L are fixed NV does not depend on the number of scene points.

Setting C = 1/NV yields P (pv ∈M|pu ∈M) ≥ C and using (7) gives us an
underestimate of PM :

PM ≥ KSMC = const. (8)

Substituting (8) for PM in (4) gives us a conservative estimate of N which is
independent of the number of input scene points. This not only proves that this
stage of the algorithm has a constant time complexity in the scene points but
also guarantees that the model instances will be detected with a probability
higher than PS .

(ii) The number of pairs per hash table cell (see Section 3.1) does not depend
on the input scene and thus is a constant factor in the time complexity.

(iii) The acceptance function µ runs in O(km) time, where m is the number of
model points and k is the depth of the scene octree. Since the octree leaf size
L is fixed k depends only on the extent of the scene point set and not on the
number of points. Thus the acceptance function is evaluated in constant time.
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Fig. 2. (Left) Cluttered and occluded scenes. Only one image of each stereo pair is
shown. (Right) Disparity maps for the scenes on the left calculated by a simple template
matching based stereo algorithm.

4 Experimental Results

In this Section, we test our algorithm on two scenarios with different amount
of occlusion and scene clutter (see Figure 2). The objects we are looking for
are the Amicelli box, the white rectangular box and the yellow cylinder. The
reconstructed point clouds are shown in Figures 3 and 4, whereas the detection
results are shown in Figures 5 and 6.

5 Conclusion

In this paper we introduced a new algorithm for multiple 3D object detection
in noisy, outlier corrupted and cluttered scenes. Our algorithm is based on a
sampling strategy which runs in constant time in the number of input scene
points. To the best of our knowledge, there is no other object detection method
in which the main procedure has a constant time complexity. In the experimental
part of the paper, we showed that our algorithm is able to detect objects reliably
even when they are only partially visible in the scene.
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Fig. 3. (Upper row) Three different views of the scene points reconstructed from the
disparity map shown on the top right of Figure 2. Note the noise and the outliers in the
background. (Lower row) zoom on the objects in the scene: Amicelli box, rectangular
box and cylinder (from left to right). Note that the reconstruction is sparse, noisy and
represents only small parts of the objects.
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Fig. 4. Two different views of the scene points reconstructed from the disparity map
shown on the bottom right of Figure 2. The scene contains a lot of noise and clutter
and the objects are only partially visible.

Fig. 5. Object detection results shown from three different viewpoints for the scene
depicted in Figure 3. The computation time is about 3 seconds.
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Fig. 6. Detection results shown from two different viewpoints for the scene depicted in
Figure 4. The computation time is about 3 seconds.
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Abstract. In this paper, we propose a method that generates grasping
actions for novel objects based on visual input from a stereo camera. We
are integrating two methods that are advantageous either in predicting
how to grasp an object or where to apply a grasp. The first one recon-
structs a wire frame object model through curve matching. Elementary
grasping actions can be associated to parts of this model. The second
method predicts grasping points in a 2D contour image of an object.
By integrating the information from the two approaches, we can gener-
ate a sparse set of full grasp configurations that are of a good quality.
We demonstrate our approach integrated in a vision system for complex
shaped objects as well as in cluttered scenes.

1 Introduction

Robotic grasping remains a challenging problem in the robotics community.
Given an object, the embodiment of the robot and a specific task, the amount of
potential grasps that can be applied to that object is huge. There exist numer-
ous analytical methods based on the theory of contact-level grasping [1]. Even
though these approaches work very well in simulation, they cannot simply be
applied to object models reconstructed from typically sparse, incomplete and
noisy sensor measurements.How to choose a feasible grasp from incomplete in-
formation about the object’s geometry poses an additional challenge. This paper
introduces a vision based grasping system that infers where and how to grasp
an object under these circumstances. This involves a decision about where the
hand is applied on the object and how it is orientated and configured.

Current state of the art methods usually approach this problem by concen-
trating on one of the two questions. The first group of systems, e.g. [2, 3] typically
infers grasps based on 3D features resulting in many hypotheses where to apply
the grasp. For each hypothesis, a hand orientation is determined. Heuristics are
then applied to prune the number of grasp hypotheses. A drawback of these ap-
proaches is the high dependency on the quality of the reconstructed data. The
second group of approaches, e.g. [4, 5] relies on 2D data and thus avoids the diffi-
culty of 3D reconstruction. Grasp positions are inferred from a monocular image
of an object. The difficulty here is the inference of a full grasp configuration from
2D data only. Additional 3D cues are required to infer the final grasp.



In this paper, we propose a method that aims at integrating 2D and 3D
based methods to determine both where and how to grasp a novel, previously
unseen object. The first part of the system matches contour segments in a stereo
image to reconstruct a 3D wire frame representation of the object. An edge image
containing only successfully matched contour segments serves as the input to the
second part of the system. Hypotheses about where a grasp can be applied on
the 2D contours are generated. By augmenting the 3D model with this 2D based
information, we can direct the search for planar object regions. Plane hypotheses
that are supported by contour points with a high grasping point probability will
carry a high weight. The normal of these planes then define the approach vectors
of the associated grasps. In that way both methods complement one another to
achieve a robust 3D object representation targeted at full grasp inference.

This paper is structured as follows. In the next chapter we review different
grasp inference systems that are applied in real world scenarios. In Sec. 3 we
give an overview of the whole system. Section 4 describes the contour match-
ing approach and Sec. 5 the grasp point inference system. This is followed by
Sec. 6 where the integration of these two models is described. An experimental
evaluation is given in Sec. 7 and the paper is concluded in Sec. 8.

2 Related Work

The work by [2] is related to our system in several aspects. A stereo camera
is used to extract a sparse 3D model consisting of local contour descriptors.
Elementary grasping actions (EGAs) are associated to specific constellations of
small groups of features. With the help of heuristics the huge number of resulting
grasp hypotheses is reduced. In our system however, the number of hypotheses
is kept small from the beginning by globally searching for planar regions of the
object model. [3] decompose a point cloud derived from a stereo camera into a
constellation of boxes. The simple geometry of a box and reachability constraints
due to occlusions reduce the number of potential grasps. A prediction of the grasp
quality of a specific grasp can be made with a neural network applied to every
reachable box face. In contrast to that, we drive the search for a suitable grasp
through information about 2D grasping cues. These have been shown to work
remarkably for grasping point detection in [4, 5].

In [4] an object is represented by a composition of prehensile parts. Grasping
point hypotheses for a new object are inferred by matching local features of it
against a codebook of learnt affordance cues that are stored along with relative
object position and scale. How to orientate the robotic hand to grasp these parts
is not solved. In [5] a system is proposed that infers a point at which to grasp an
object directly as a function of its image. The authors apply machine learning
techniques to train a grasping point model from labelled synthetic images of a
number of different objects. Since no information about the approach vector can
be inferred, the possible grasps are restricted to downward or outward grasps. In
this paper, we solve the problem of inferring a full grasp configuration from 2D
data by relating the 2D grasping cues to a 3D representation generated on-line.



There exist several other approaches that try to solve the problem of in-
ferring a full grasp configuration for novel objects by cue integration. In [6], a
stereo camera and a laser range scanner are applied in conjunction to obtain
a dense point cloud of a scene with several non-textured and lightly textured
objects. The authors extend their previous work to infer initial grasping point
hypotheses by analysing the shape of the point cloud within a sphere centred
around an hypothesis. This allows for the inference of approach vector and finger
spread. In our approach however, we apply a stereo camera only and are not de-
pendent on dense stereo matching. Due to the application of contour matching,
we can obtain sparse 3D models of non-textured and lightly textured objects.
[7] showed that their earlier 2D based approach is applicable when considering
arbitrarily shaped 3D objects. For this purpose, several views of the object are
analysed in terms of potential grasps. While the approach vector is fixed to be
either from the top or from the side, the fingertip positions are dependent on
the object shape and the kinematics of the manipulator. The best ranked grasp
hypothesis is then executed. In our approach, we are not restricted to specific
approach vectors whereas our grasp type is assumed to be one of the EGAs
defined in [2]. Additionally determining the fingertip positions with the method
proposed by [7] is regarded as future work. Finally, in [8] a framework is in-
troduced in which grasp hypotheses coming from different sources e.g. from [2]
are collected and modelled as grasp hypothesis densities. The grasp hypotheses
are strongly dependent on the quality of the 3D object model. The density will
therefore contain numerous potential grasps that may not be applicable at all.
The authors propose to build a grasp empirical density by sampling from the
hypotheses that are then grasped with the robot hand. In our case, we are also
inferring potential grasps that may not be applicable in practice. However, we
are not enumerating hypotheses from different sources but are integrating the
information to infer fewer and better hypotheses that are ranked according to
their support of 2D grasping cues.

3 System Overview

In our approach the process of grasp inference involves several steps: i) identifi-
cation, ii) feature extraction, iii) cue integration and iv) grasping. A flow chart
of the system is given in Fig. 1 and also shows the utilised hardware.

The first step involves figure-ground segmentation by means of fixation on
salient points in the visible scene [9]. A combination of peripheral and foveal
cameras is used that are mounted on a kinematic head. Figure 1 (b) and (c) show
the left peripheral and foveal views of the head and (d) shows the segmented
object.

In this paper, we focus on the feature extraction and cue integration. Full
3D reconstruction of objects with little or no texture from stereo vision is a
difficult problem. However, it is debatable if a complete object model is always
needed for grasping [7]. We propose a representation that is extractable from real
world sensors and rich enough to infer how and where to grasp the considered



Fig. 1. (a): System setup with 6 DoF KUKA arm, a 7 DoF SCHUNK hand and the
ARMAR 3 stereo head. (b,c): Left peripheral and foveal views. d-h: The steps of the
grasping system.

object. A general observation that has driven our choice of representation is that
many objects in a household scenario, including cups, plates, trays and boxes
have planar regions. According to [2] these regions along with their coplanar
relationships afford different EGAs. These grasps represent the simplest possible
two fingered grasps humans commonly use.

The several steps to build such an object model composed of surfaces are
shown in Fig. 1 (d-h). In the segmented foveal view (d) edges are detected
and matched across the stereo images to form a 3D wire frame model (e). The
projection of this wireframe in one of the images is used to predict where to grasp
the object (f). The 3D model is then augmented with this information to detect
planar regions that are supported by contour points with a high probability of
being graspable (g). The four hypotheses with largest support are indicated with
black lines, the others with dashed grey lines. The resulting surfaces provide
hypotheses for how to grasp the object. The best hypothesis with respect to
plane support and kinematic restrictions of the arm-hand configuration is finally
shown in (h).

4 Partial 3D Reconstruction of Objects

Dynamic Time Warping (DTW) is a dynamic programming method for aligning
two sequences. The method is described in detail in [10]. Below we give a brief
overview of the key points of the algorithm, which is an extension to [11]. The
different steps of the method are given in Fig. 2. The leftmost image shows the
left foveal view of the object. Canny is used to produce an edge image from



Fig. 2. Left: Left foveal view of object. Middle: Contours from left and right foveal
views. Right: Successfully matched contours.

which connected edge segments (contours) are extracted. Spurious contours are
filtered out by restricting their curvature energy and minimum length. The mid-
dle image pair shows the contour images from the left and right foveal views.
Matching is performed between these two views. DTW is used both for solv-
ing the correspondence problem, i.e. which contour that belongs to which, and
the matching problem, i.e. which point in the left contour corresponds to which
point in the right contour. The latter is performed by calculating dissimilari-
ties between the two contours based on the epipolar geometry, and finding the
alignment that minimises the total dissimilarity. The former is performed by
integrating the dissimilarity measure with gradient and curvature cues. This is
one extension to [11], who could solve the correspondence problem more easily.
Another difference is the extension of DTW to handle open and partial contours.

Many contours on the object surface correspond to texture. For 3D recon-
struction, as well as 2D grasping point detection as described in Sec. 5, we are
only interested in contours belonging to actual edges on the object. As seen in
the middle image in Fig. 2, many contours stemming from texture do not have a
corresponding contour in the other image and thus will be filtered in the DTW
algorithm. Furthermore, shorter contours with higher curvature are less likely to
be matched due to a too high total dissimilarity. The resulting matching is used
to generate a sparse 3D model of the object.

5 Detecting Grasping Points in Monocular Images

Given the wireframe model reconstructed with the method introduced in the
previous section, we search for planar regions that afford EGAs. As it will be
shown later, fitting of planes to this raw model will result in many hypotheses
stemming from noise and mismatches. In this section, we introduce a method
that forms heuristics for searching and weighting of hypotheses according to
their graspability . We introduce knowledge that comprises how graspable object
parts appear in 2D and how these cues are embedded in the global shape of
common household objects. Here, we are following a machine learning approach
and classify image regions as graspable or not. We briefly describe how our
feature vector is constructed and how the training of the model is done. A more
detailed description can be found in [12].
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Fig. 3. Example of deriving the shape context descriptor for the matched contours
shown in Fig. 2. (a) Sampled points of the contour with tangent direction. (b) All
vectors from one point to all the other sample points. (c) Histogram with 12 angle bins
and 5 log-radius bins. (d) Classification of the descriptors in each image patch.

Shape context (SC) [13] is a widely applied descriptor that encodes the prop-
erty of relative shape, i.e. the relation of the global object shape to a local point
on it. The descriptor is invariant to 2D rotation, scale and translation. Figure 3
shows an overview on the computation of SC. N samples are taken with a uni-
form distribution from the contour. For each point we consider the vectors that
lead to the remaining N −1 sample points. We create a log polar histogram with
K angle and radius bins to comprise this information. For the feature vector, we
subdivide the image into 10 × 10 pixel patches. A patch descriptor is composed
by accumulating the histograms of all those sample points that lie in the patch.
We calculate the accumulated histograms at three different spatial scales centred
at the current patch and concatenate them to form the final feature descriptor.

This feature vector is then classified by a grasping point model as either
graspable or not. This model is an SVM that we trained off-line on the labeled
database developed in [5]. An example of the classification results with an SVM
trained on a pencil, a martini glass, a whiteboard eraser and two cups is shown
in Fig. 3 d). Patches with a high graspability are characterised by rounded
and parallel edges which indicate similarity to handles, rims or thin elongated
structures. However, the approach direction is not easily inferred.

6 Cue Integration

To generate grasping hypotheses, we are interested in finding planar surfaces,
i.e. finding contours that lie in the same plane. The set of plane hypotheses is
defined as Π = {πi}, πi = (ni, µi), where ni is the normal and µi the centre
point on the plane. When searching for hypotheses, we start be selecting a point
p1 on one of the contours and a point p2 nearby. We assume that these points
are likely to lie in the same planar region(s) on the object. Then, there will be a
third point p3 on the remaining contours that defines such a region. By searching
over the set of potential p3, we try to find all these planes. Given p1, p2 and
p3, a plane hypothesis π̃i can be defined. Since the depth is quantised, the three
selected points may produce a non optimal plane. Therefore we use RANSAC [14]
over small contour regions defined by these points to optimise the plane. The
hypothesis is accepted or rejected depending on the amount of contour points
neighbouring p1, p2 and p3 that are close enough to π̃i. If accepted a more
exact πi is computed by performing regression on the full set of contour points



not exceeding a certain distance to π̃i. After the planes related to p1 have been
found, a new p1 is selected and the procedure is repeated.

In order to restrict the search, whenever a contour point has been assigned to
a plane it will be unavailable when choosing p1. This will, apart from reducing
the computational time, drastically reduce the number of hypotheses and remove
most duplicates. This puts requirements on how the selection of p1 is made. If
chosen badly, it is possible to miss good hypotheses if for instance p1 is not chosen
from a contour corresponding to an actual edge. To solve this problem we use the
information from the 2D grasping point detection. We start by extracting local
maxima from the classification result. Because contour points in these regions
are likely to be graspable, we choose p1 from among these. As we will show
in Sec. 7, this will result in a faster and more reliable search than randomly
choosing p1. The search for hypotheses continues until all points from regions
with local maxima have been considered. We enforce that the normals are in the
direction pointing away from the mean of all contour points.

As a final step planes are ranked according to graspability. For each plane

support(πi) =
∑

j∈{all points}

w(pj) ∗ P (pj)/(λ1 + λ2) (1)

where w(pj) = 1 − 2 1

1+e
−d(pj,πi)

, d(pj , πi) is the distance of pj to the plane πi,

P (pj) is the probability that pj is a grasping point, and λ1,2 are the two largest
eigenvalues from PCA over the inliers. This gives a support value that favours
planes with dense contours whose points have a high graspability. Estimated
planes may have a normal that does not correspond perfectly to the normal of
the real plane. This plane will still get support from points that are close and are
likely to stem from the real plane. Normalising with the sum of the eigenvalues
ensures that planes without gaps are favoured over planes formed only from e.g.
two sides. It also reduces the support for planes with points from falsely matched
contours that will lie far from the actual object. Moreover, by calculating the
eigenvalues we are able to filter out degenerate planes that have a small extension
in one direction.

The normals of the final plane hypotheses are then defining the approach
direction of the grasp and the smallest eigenvector of the related set of contour
points the wrist orientation.

7 Experiments

The goal of the proposed method is to generate good grasping hypotheses for un-
known objects in a robust and stable manner. Furthermore, as few false positives
as possible should be generated. In this section, we will show that this is achieved
for objects and scenes of varying geometrical and contextual complexity.

Figure 4 shows different objects used for the experiments. The corresponding
matched contours are shown on the row below. The upper right of the figure
contains the output of the grasping point detection. Finally, the last row shows



the five planes with best support for each object. These four objects are selected
to pose different challenges to our system: The hole puncher has a complex

geometric structure, but with easily detectable edges. Due to many close parallel
contours on the tape roll, we get some false matches. The tea canister object is
highly textured, and its lid has many parallel edges which causes problems when
finding the top plane. The magnifier box resides in a more complex scene in which
Canny produces more broken edges that complicate the matching problem.

In all cases the two best hypotheses (red and green) shown in the bottom
row are graspable, and correspond to how a human probably would have picked
up the objects under the same conditions. For the puncher, the hypotheses give
the choice of picking up from the object’s front or top. This is an example of
one of the benefits of our method: we do not need to constrain the approach
direction. In the tape roll case there are several severe mismatches (marked in
the figure). These correspond to a depth error of up to 50 cm, and are actually
part of three plane hypotheses. Here the normalisation makes sure they get low
support. Because of the parallel edges on the tea canister’s lid, several hypotheses
with good support are found on the top. The red hypothesis gets more support
though, as it has more contour points close to the plane. In the case of the
magnifier box, matching is harder, and we get much fewer and shorter edges. The
longest contour is actually the one corresponding to the image of the magnifier.
This affects the results from the support computations since the contours from
the sides are not complete. The hypothesis from the right side clearly gets largest
support. When finally choosing a grasp configuration kinematic constraints or
other preferences will guide which of them to choose.

As mentioned in the previous section, the choice of the starting point is crucial
to the performance of plane detection. We compared the method described in
Sec. 6 to other approaches like random choice or a systematic search from the
longest to the shortest contour. The assumption behind the latter method is that
longer contours are more likely to originate from an actual edge of the object
rather than from texture. We have performed an extensive evaluation of each
method on the data in Fig. 4 to estimate their robustness, and will show how
the proposed method outperforms the random and sequential method. Given
the same input, all three methods will result in different plane hypotheses for
each run due to the application of RANSAC in the plane estimation phase. The
quality of a detected plane is measured by Eq. 1.

Figure 5 shows three representative examples for each of the three methods
applied to the magnifier box. The two plane hypotheses that have the highest
support are red and green. The best results for each method are shown in the
leftmost column. Our method produced results similar to the top left example
in Fig. 5 most times. The best result for the random selection only contains two
hypotheses corresponding to real planes. The other two examples contain cases of
missed planes (e.g. the top plane in the middle figure) and wrong planes being
preferred over hypotheses corresponding to real planes. As with our method,
the sequential selection produces more stable results. However, the problem of
missed planes and ranking wrong planes higher than real ones persists.



Fig. 4. Four objects, their matched contours, grasping point probabilities and finally
the five best hypotheses for each object. The hypotheses are coloured, from best to
worst, red, green, blue, cyan, magenta. False matches are circled in black. (Best viewed
in colour)

Fig. 5. Top row: Proposed method. Middle row: Random selection. Bottom row: Se-
quential selection. Colours in the same order as in Fig. 4 (Best viewed in colour)

In cases of simple hardly textured objects in non-cluttered scenes, all three
methods have a comparable performance. However, in real world applications
we need to deal with objects of arbitrary geometry in complex scenes in which
segmentation is hard due to sensory noise, clutter and overlaps.

8 Conclusion

We have presented a method for generating grasping actions for novel objects
based on visual input from a stereo camera. Two methods have been integrated.
One generates a wire frame object model through curve matching, and associates
EGAs to it. The other predicts grasping points in a 2D contour image of the
object. The first accurately predicts how to apply a grasp and the other where
to apply it. The integration generates a sparse set of good grasp hypotheses. We
have demonstrated the approach for complex objects and cluttered scenes.



Our future work will exploit the use of the method in an integrated learning
framework. Hypotheses will be generated as proposed and used for picking up
objects. The system will then be able to view the object from different directions
in order to generate a more detailed model.
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3. Hübner, K., Kragic, D.: Selection of Robot Pre-Grasps using Box-Based Shape
Approximation. In: IEEE Int. Conf. on Intelligent Robots and Systems. (2008)
1765–1770

4. Stark, M., Lies, P., Zillich, M., Wyatt, J., Schiele, B.: Functional Object Class
Detection Based on Learned Affordance Cues. In: 6th Int. Conf. on Computer
Vision Systems. Volume 5008 of LNAI., Springer-Verlag (2008) 435–444

5. Saxena, A., Driemeyer, J., Kearns, J., Ng, A.Y.: Robotic Grasping of Novel Ob-
jects. Neural Information Processing Systems 19 (2006) 1209–1216

6. Saxena, A., Wong, L., Ng, A.Y.: Learning Grasp Strategies with Partial Shape
Information. In: AAAI Conf. on Artificial Intelligence. (2008) 1491–1494

7. Speth, J., Morales, A., Sanz, P.J.: Vision-Based Grasp Planning of 3D Objects by
Extending 2D Contour Based Algorithms. In: IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems. (2008)
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Abstract. “People have always been fascinated by the exquisite precision and flexibility of the
human hand. When hand meets object, we confront the overlapping worlds of sensorimotor and
cognitive functions” Castiello (2005). In the last few decades the grasping task has been studied
from a psychological, biological and engineering focus but is still unresolved. There exist different
solutions for certain cases, however there is still no general valid solution. This paper presents
a method for segmentation of a 2.5D point cloud into parts, assembly of parts into objects and
calculation of grasping points and poses, which works for rotation symmetrical objects as well as
arbitrary objects. The algorithm checks potential collisions between the gripper, the object to be
grasped, all surrounding objects and the table top. Thus the algorithm finds the objects, which are
graspable without collision. The experimental results show that the presented grasping system is
able to detect practical grasping points and poses to grasp a wide range of objects.

Keywords. grasping, laser range scanning, 2.5D point clouds.

1. Introduction

This paper describes the development of a vision based
grasping system for unknown objects based on 2.5D
point clouds, where the complete scene was scanned
from only one single view1. We present an algorithm
that automatically segments 2.5D point clouds, re-
assembles rotation symmetrical objects from parts and
calculates practical grasping points. The algorithm was
developed for simple objects and rotation symmetrical
objects, but we achieved also good results on more
complex object shapes.

The outline of the paper is as follows: Section 2 in-
troduces our robotic system and its components. Sec-
tion 3 describes the segmentation of 2.5D point clouds
into parts, the assembly of parts into objects and de-
tails the merging of clipped rotation symmetrical objects.
Section 4 details the calculation of grasping points for
rotation symmetrical objects and optimal hand poses for
arbitrary objects to grasp and manipulate an object with-

1This work was supported by the EU Project ”GRASP” with the
grant agreement number 215821.

out collision. Section 5 shows the achieved results and
Section 6 finally concludes the paper.

1.1. Problem Statement and Contribution
The goal of this work is to show a robust way to calcu-
late possible grasping points for rotation symmetrical
objects and grasping poses for unknown objects despite
noise, outliers and shadows (two shadows appear, from
a single view one from the camera and another one
from the laser), which can be caused by specular or
reflective surfaces. We calculate collision free hand
poses with a 3D model of the used gripper to grasp the
objects, as illustrated in Fig. 12. We have decided to
point out the general feasibility to realize stable grasps
from only one single view. That means that occluded
objects can not be analyzed or grasped and we assume
that all objects or parts of objects on the table are visible.

The problem of automatic 2.5D reconstruction to get
practical grasping points and poses consists of several
challenging parts. Objects can be broken into discon-

2All images are best viewed in color.
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Fig. 1. Detection of grasping points and hand poses. The
green points display the computed grasping points for
rotation symmetrical objects. The red points show an
alternative grasp along the top rim. The illustrated
hand poses show a possible grasp for the remaining
graspable objects.

nected parts, due to missing sensor data from shadows
or poor surface reflectance and we have only informa-
tion from one single view. Our grasping algorithm was
developed for arbitrary objects with a special focus on
rotation symmetrical objects, because these objects are
some times splitted into two parts and these objects al-
low a cylindrical grasp and along the top rim a tip grasp,
Schulz et al. (2005). To calculate correct grasping points
and poses, we need to identify complete objects and
therefore reassemble parts belonging to the same ob-
ject. Thereby we calculate grasping points for rotation
symmetrical objects (parts) and grasp poses for arbitrary
objects. To realize an unbiased evaluation of our multi
step solution procedure, we defined 18 different objects,
which are shown in Fig. 2.

1.2. Related Work
In the last few decades the problem of grasping novel ob-
jects in a fully automatic way has gained increasing im-
portance in machine vision and there are existing many
approaches for grasping quasi planar objects, Sanz et al.
(1999). Recatalà et al. (2008) created a framework for
the development of robotic applications on the synthe-
sis and execution of grasps. Li et al. (2007) presented a
data driven approach to realize a grasp synthesis. Their
algorithm uses a database of captured human grasps to
find the best grasp by matching hand shape to object
shape. Our presented algorithm includes a simple grasp-
ing method, where the 3D model of the hand is also used
to find a collision free grasp. Ekvall and Kragic (2007)
analyzed the problem of automatic grasp generation and
planning for robotic hands, where shape primitives are
used in synergy to provide a basis for a grasp evalu-
ation process when the exact pose of the object is not
available. Their algorithm calculates the approach vec-
tor based on the sensory input and in addition tactile in-
formation that finally results in a stable grasp. Miller

et al. (2004) developed the interactive grasp simulator
“GraspIt!” for different hands, hand configurations and
objects. The method evaluates the grasps formed by
these hands. Goldfeder et al. (2007) presented a grasp
planner which considers the full range of parameters of a
real hand and an arbitrary object, including physical and
material properties as well as environmental obstacles
and forces. Our grasping system includes also a collision
detection, between our gripper, an arbitrary object and
potential environmental obstacles on the table, based on
the laser range scanner information. A 3D model based
work is presented by El-Khoury et al. (2007). They con-
sider the complete 3D model of one object, which will be
segmented into single parts. After the segmentation step
each single part is fitted with a simple geometric model.
A learning step is finally needed in order to find the ob-
ject component that humans choose to grasp it. Stans-
field (2002) presented a system for grasping 3D objects
with unknown geometry using a Salisbury robotic hand,
where every object was placed on a motorized and ro-
tated table under a laser scanner to generate a set of 3D
points. These were combined to form a 3D model. In
our case we do not operate on a motorized and rotated
table, which is unrealistic for real world use. The goal is
to grasp objects, which are seen from only one view.

2. Experimental Setup

Our approach is based on scanning the objects on the ta-
ble by a rotating laser range scanner with a pan/tilt unit
and execution of subsequent path planning and grasping
motion. The robot arm is equipped with a hand prosthe-
sis from the company Otto Bock3, which we are using as
gripper, see Fig. 3. There is a defined pose between the
AMTEC4 robot arm with seven degrees of freedom and
the scanning unit. The hand prosthesis has integrated
tactile force sensors, which are used to detect a poten-
tial sliding of objects, which initializes a readjustment of
the grip force applied by the pressure of the fingers. It
has three active fingers the thumb, the index finger and
the middle finger, the last two fingers are for just cos-
metic reasons. The middle between the fingertip of the
thumb, the index and the last finger is defined as tool
center point (TCP). To calculate a collision free path, we
use a commercial path planning tool from AMROSE5.
The grasping algorithm consists of six main steps, see
Fig. 4:

• Raw Data Pre Processing: The raw data points
are preprocessed with a smoothing filter to reduce
noise and outliers.

3http://www.ottobock.de/
4http://www.amtec-robotics.com/
5http://www.amrose.dk/
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Fig. 2. 18 different objects were selected to evaluate our grasp point and grasp pose detection algorithm, from left: 1. Coffee Cup
(small), 2. Saucer, 3. Coffee Cup (big), 4. Cuboid, 5. Geometric Primitive, 6. Spray on Glue, 7. Salt Shaker (cuboid), 8.
Salt Shaker (cylinder), 9. Dextrose, 10. Melba Toast, 11. Amicelli, 12. Mozart, 13. Latella, 14. Aerosol Can, 15. Fabric
Softener, 16. C 3PO, 17. Cat, 18. LINUX Penguin.

• Range Image Segmentation: This step identifies
different parts of an object based on a 3D DeLau-
nay triangulation.

• Merging of Rotation Symmetrical Parts: Finding
high curvature points, which indicate the top rim
of an object part and fit a circle to these points.
Merging of rotation symmetrical parts by match-
ing the calculated circles. Thereby open objects
can be identified.

• Approximation of 2.5D Objects to 3D Objects:
This step is only important to detect potential col-
lisions by the path planning tool. Thereby we dif-
ferentiate between:

- Rotation Symmetrical Objects: Add additional
points by using the main axis information.

- Arbitrary Objects: The non visible range will be
closed with planes, normal to the table plane.

• Grasp Point and Pose Detection:

- Rotation Symmetrical Objects: Calculate poten-
tial grasping points with the help of the gained
features (open or closed, radius along the top rim,
main axis).

- Arbitrary Objects: Calculate potential grasping
poses with the principal axis of the top surface.

• Collision Detection: Considering all surrounding
objects and the table surface as obstacles, to eval-
uate the calculated hand pose.

Fig. 3. Overview of the system components and their
interrelations.

3. Range Image Segmentation

The range image segmentation starts by detecting the
surface of the table with a RANSAC ( Fischler et
al. (1981)) based plane fit, Stiene et al. (2002). We
define an object (part) as a set of points, with distances
between neighbors. For that we build a kd tree (Bentley
(1975)) to find neighbors and calculate the minimum
dmin, maximum dmax and average distance da between
all neighboring points, Arya et al. (1998). The seg-
mentation of the point cloud will be achieved with the
help of a 3D mesh generation, based on the triangles
calculated by a 3D DeLaunay triangulation, as published
by O’Rourke (1998). The necessary settings for the
mesh generation will be achieved with dmin, dmax and da
between all neighboring points. After mesh generation,
all segments of the mesh are extracted from the mesh
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Fig. 4. Overview of our grasp point and gripper pose detection
algorithm.

by a connectivity filter, Belmaonte et al. (2004). This
step segments the mesh into different components
(objects or parts). An additional cut refinement was not
arranged. Thereby it can come to an over or an under
segmentation, depending on the overlap of the objects,
as illustrated in Fig. 5.

Fig. 5. Results after the first segmentation step. Eleven objects
are detected, where in reality only ten are. Object no. 1
and 3 are clipped into two parts and object no. 4 and 9
are overlapped. The wrongly segmented objects are
red encircled.

As top surface we define the surface of an object
from the top view, whereby this surface can also be
opened or curved. After the object segmentation step
the algorithm finds the top surfaces of all objects us-
ing a RANSAC based plane fit and generates a 2D De-
Launay triangulation, with this 2D surface information
the top rim points and top feature edges of every object
can be detected. For the top surface detection the algo-
rithm uses a pre processing step to find out all points of
the object (all points of the generated mesh) with a nor-
mal vector in x direction bigger than in y or z direction,
n[x] > n[y]∧ n[x] > n[z], whereby the x direction is nor-
mal to the table plane. The normal vectors of all points
are calculated with the faces of the generated mesh.

3.1. Pairwise Matching
We developed a matching method, which is limited to
rotation symmetrical objects. This method finds the top
rim circle of rotation symmetrical objects. A RANSAC
based circle fit with a range tolerance of 2mm is used.

Several tests have shown that this threshold provides
good results for our currently used laser range scanner.
For an explicit description, the data points are defined as
(pxi , pyi , pzi) and (cx,cy,cz) is the circle’s center with a
radius r. The error must be smaller than a defined thresh-
old:

|‖~p−~c‖− r| ≤ 2 (1)

This operation will be repeated for every point of the
top rim. The run with the maximum number n of in-
cluded points wins.

n = |{p|‖~p−~c‖− r| ≤ 2}| (2)

If more than 80% of the rim points of both parts (ro-
tation symmetrical parts) lie on the circle, the points of
both parts are examined more closely with the fit. For
that we calculate the distances of all points of both parts
to the rotation axis, see Equ. 3, the yellow lines repre-
sent the rotation axis, see Fig. 1. If more than 80% of all
points of both parts agree, both parts are merged to one
object, see Fig. 1, object no. 1.

d = (~p−~c)×~n (3)

3.2. Approximation of 3D Objects
This step is important to detect potential collisions by
the path planning tool from AMROSE. In order to
avoid wrong paths and collisions with other objects, due
to missing model information, because in 2.5D point
clouds every object is seen from only one view, but the
path planning tool needs full information to calculate
a collision free path. During the matching step the al-
gorithm detected potential rotation symmetrical objects
and merged clipped parts. With this information, the al-
gorithm rotates only points along the axis by 360◦ de-
grees in 5◦ steps, which fulfill the necessary rotation
constraint. This means that only points will be rotated,
which have a corresponding point on the opposite side
of the rotation axis (Fig. 5, object no. 1) or build a circle
with the neighboring points along the rotation axis, as
illustrated in Fig. 5, object no. 6 and Fig. 6a, object no.
1 and 6. By this relatively simple constraint object parts
such as handles or objects close to the rotation symmet-
rical object will not be rotated. For all other arbitrary
objects, every point will be projected to the table plane
and with a 2D DeLaunay triangulation the rim points can
be detected. These points correspond with the rim points
of the visible surfaces. So the non visible surfaces can be
closed, these surfaces will be filled with points between
the corresponding rim points, as illustrated in Fig. 6a.
Filling the non visible range with vertical planes may
lead to incorrect results, especially when the back side
of the objects is far from vertical, but this step is only to
detect potential collisions by the path planning tool.
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4. Grasp Point and Pose Detection

The algorithm for grasp point detection is limited to ro-
tation symmetrical objects and the grasp poses will be
calculated for arbitrary objects. After the segmentation
step we find out if the object is open or closed, for that we
fit a sphere into the top surface. If there is no point of the
object in this sphere we consider the object is opened.
Now, the grasping points of all cylindrical objects can
be calculated. For every rotation symmetrical object we
calculate two grasping points along the rim in the mid-
dle of the object (green colored points, as illustrated in
Fig. 6a). If the path planner is not able to find a possi-
ble grasp, the algorithm calculates alternative grasping
points along the top rim of the object near the strongest
curvature, as illustrated in Fig. 6a as red points. If it is
an open object one grasping point is enough to realize a
stable grasp near the top rim. The grasping points should
be calculated in such a way that they are next to the robot
arm, which is mounted on the opposite side of the laser
range scanner. We find out the strongest curvature along
the top rim with a gauss curvature filter Porteous (1994).

Fig. 6. a The green points illustrate the grasping points for
rotation symmetrical objects. The red points illustrate
alternative grasping points, thereby one grasping point
is enough for an open object. For object no. 6 the
scanner was not able to detect the top surface and so
the algorithm find out that the object is open, which is
in reality wrong. We calculate possible grasp poses for
all other objects. b Calculated possible grasping points
and poses to grasp the objects. The illustrated objects
are very difficult to scan, due to shadows, reflections
and absorptions.

To successfully grasp an object it is not always suf-
ficient to locally find the best grasping pose. The algo-
rithm should calculate an optimal grasping pose to re-
alize a good grasp without collision as fast as possible.
In general, conventional multidimensional ”brut force”
search methods are not practical to solve this problem. Li
et al. (2007) show a practical shape matching algorithm,
where a reduced number of 38 contact points are con-
sidered. Most shape matching algorithms need an opti-
mization step through that the searched optimum can be
efficiently computed.

At the beginning the internal center and the principal
axis of the top surface are calculated with a transforma-
tion that fits a sphere inside, see Fig. 7 the blue top sur-
faces. After the transformation this sphere has an ellipti-
cal form in alignment of the top surface points, whereby
also the principal axis is founded. The algorithm trans-
forms the rotation axis of the gripper (defined by the fin-
gertip of the thumb, the index finger and the last finger)
along the principal axis of the top surface and the cen-
ter (calculated with the fingertips) of the hand ch will be
translated to the center of the top surface ctop, whereby
ch = ctop results. Thereby the hand will be rotated, so
the normal vector of the hand aligns in reverse direction
with the normal vector of the top surface. Afterwards the
hand is shifted along the normal vectors up to a possible
collision with the grasping object. Then the calculated
grasp pose will be checked for a potential collision with
the the remaining objects on the table. Thus we deter-
mined, if it is possible to grasp the object depending of
the remaining objects, as illustrated in Fig. 6a.

5. Experiments and Results

In our work, we demonstrate that our grasp point de-
tection algorithm for different objects shows promising
results. We evaluated the detected grasping points and
poses with the path planning tool from AMROSE. The
object segmentation and grasp point detection for ro-
tation symmetrical objects is performed by a PC with
3.2GHz dual core processor and takes about 20sec.
and the calculation of possible grasp poses takes about
30sec., the calculation time depends on the number of
the surrounding objects on the table. The algorithm is
implemented in C++ using the Visualization Tool Kit
(VTK)6. In testing of 5 different point clouds for every
object in different combination with other objects from
the 18 objects the algorithm shows positive results. A re-
maining problem is, that in some cases for shiny objects
interesting parts of the objects are not visible for the laser
range scanner and thus our algorithm is not able to cal-
culate the correct grasping points or pose of the object.

6Open source software, http://public.kitware.com/vtk/
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Fig. 7. Calculated possible hand poses to grasp the objects.

The quality of the point cloud is in some cases not good
enough to guarantee a successful grasp, as illustrated in
Fig. 6b. So the success of our grasping point algorithm
depends on the ambient light, object surface properties,
laser beam reflectance, absorption of the objects and vi-
brations. For object no. 2 the algorithm can not detect
possible grasping points or a possible grasping pose, be-
cause of shadows of the laser range scanner with the cof-
fee cup, as illustrated in Fig. 1. For all other objects we
achieved an average grasp rate of more than 70%.

6. Conclusion and Future Work

The presented method for automatic grasping of un-
known objects with a hand prosthesis, by incorporating
a laser range scanner shows a high reliability. Thus the
approach for object grasping is well suited for use in re-
lated applications under difficult conditions and can be
applied to a reasonable set of objects. We presented a
method for automatic reassembly of parts of 2.5D point
clouds for rotation symmetrical objects using the top rim
points. After the segmentation step we calculate grasp-
ing points of rotation symmetrical objects and grasping
poses for arbitrary objects with the help of the top sur-
faces. In the near future we plan to use a deformable
hand model to reduce the opening angle of the hand, so
we can model the closing of a gripper in the collision
detection step.
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tinet, P. 2008. Biologically-inspired 3D grasp synthesis
based on visual exploration, Autonomous Robots, Vol.
25, No. 1-2, pp. 59-70.
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Abstract. This paper introduces a novel 3D segmentation algorithm,
which works directly on point clouds to address the problem of parti-
tioning a 3D object into useful sub-parts. In the last few decades, many
different algorithms have been proposed in this growing field, but most
of them are only working on complete meshes. Experimental evalua-
tions of a number of complex objects demonstrate the robustness and
the efficiency of the proposed algorithm and the results prove that it
compares well with a number of state-of-the-art 3D object segmentation
algorithms.

Key words: point cloud segmentation, mesh segmentation, mesh de-
composition, mesh generation, pose-invariant representation of point clouds.

1 Introduction

Cutting up an object into simpler sub parts has several benefits in modeling [11],
robotics [14] or collision detection [18]. The presented work includes a new seg-
mentation algorithm, based on radial reflection. Although the examples in this
paper are related to applications in the area of computer graphics and robotics,
the majority of the algorithms developed here can be applied with only trivial
modifications to more complex shape matching problems.

1.1 Problem Statement and Contributions

Object segmentation and analysis, which can be interpreted as purely geometric
sense are challenging problems in computer vision. An ideal shape descriptor
should be able to find out the main features of an object and segment it into
useful parts, which can be used for automatic processes such as matching, reg-
istration, feature extraction [13] or comparison of shapes. The object should be
segmented into parts that correspond to relevant features and that are uniform
with respect to some properties. This time different methods for mesh segmenta-
tion exist (e.g. Plumber [19], feature point and core extraction [15], Hierarchical
Fitting Primitives (HFP) [3], spectral methods [25],...), but most of them are
only able to work on a mesh and not a point cloud. This paper presents an
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algorithm which works directly on point clouds and is invariant under rotation,
translation and scaling.

1.2 Algorithm Overview

Fig. 11 gives an overview of our segmentation algorithm. The proposed segmen-
tation algorithm is based on radial reflection. At the beginning the algorithm
calculates the internal center and the radius of the bounding sphere by comput-
ing the smallest enclosing sphere of points [12], see Fig. 1d. Then, all points are
radial reflected inside in the direction to the center. Thus all points which are
inside on the original point cloud are farthest out after this step. The algorithm
uses the reflected point cloud to calculate the convex hull [20], Fig. 1e (yellow
hull), whereby all adhering parts on the core part will be automatically cut off.
To realize a hole free segmentation of the core part all vertices of the convex hull
are transformed in the direction to the center depending on the distances of the
neighboring points [2], see Fig. 1e (red hull). Based on these vertices an inner
convex hull is calculated. These inner convex hull surrounds the rest parts of the
object. Then our algorithm automatically segments the 3D point cloud into a
set of sub-parts by recursive flood-filling [9] based on the segmented core part,
see Fig. 1f. To realize a pose invariant object segmentation our algorithm gen-
erates a 3D mesh based on the power crust algorithm [1], see Fig. 1b, and uses
multi-dimensional scaling (MDS) to get a pose-invariant model representation,
see Fig. 1c. Thereby every vertex on the pose-invariant model corresponds to a
vertex of the mesh and every point of the original point cloud corresponds to a
vertex of the mesh.

1.3 Related Work

Different methods to automatic 3D object segmentation into meaningful parts
have been published in the last few years.

3D Model Segmentation: algorithms can be categorized into two main
classes. The first class is developed for applications like reverse engineering of
CAD models [5]. The second class tries to segment natural objects into meaning-
ful parts. Most work on mesh segmentation is based on iterative clustering. [22]
segmented models into meaningful pieces using k-means clustering. Based on
this idea [16] developed a fuzzy clustering and minimal boundary cuts method
to achieve smoother boundaries between clusters. Unsupervised clustering tech-
niques like mean shift can also applied to mesh segmentation [21]. [10] published
a method using skeletons to generate a hierarchical mesh decomposition. [15]
published a mesh segmentation algorithm based on pose-invariant models and
extraction of core part and feature points. The method is able to produce con-
sistent results. An computation intensive method is used to find feature points,
to limit the complexity and number of parts of models.

1 All images are best viewed in color. The core part is in every case red colored.
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Fig. 1. Overview of our segmentation algorithm: a 3D point cloud (5360 points). b
3D mesh based on the power crust algorithm (58441 vertices). c Pose-invariant model
representation based on multi-dimensional scaling (MDS) (58441 vertices). d Center
and bounding sphere, the radial reflected point cloud (5360 points) is red colored,
the original point cloud (5360 points) is green colored. The blue points (along the
bounding sphere) correspond with the blue center of the radial reflected point cloud. e
Outer convex hull (yellow), internal convex hull (red) to realize a hole free core part. f
Segmented point cloud (2035 core points, 3275 rest points).

Mesh Generation: We decide to use the power crust algorithm for the
surface reconstruction [1] of the 3D model, because this algorithm delivers very
good results and is quite fast. It realizes a construction which takes a sample
of points from the surface of a 3D object and produces a surface mesh and an
approximate medial surface axis. The approach approximates the medial axis
transform (MAT) of the object. Then it uses an inverse transform to produce
the surface representation from the MAT.

Our Method: The basic idea is based on [15] work to extract the core
part of the object with feature points and to use multi-dimensional scaling to
realize a pose-invariant model representation. The difference to the existing core
extraction algorithm is the radial reflection of the points in the direction to
the center of the object and to calculate an internal convex hull to get a hole
free core part, which is used to cut the 3D model. Additionally our algorithm
works directly on point clouds, whereby no mesh generation is needed. The
mesh generation with the power crust algorithm [1] is only needed to use multi-
dimensional scaling (MDS) to get a pose-invariant model representation.

Pose-Invariant Mesh Representation: To realize a pose-invariant mesh
representation multi-dimensional scaling (MDS) is used. MDS is a generic name
for a family of algorithms that construct a configuration of points in a tar-
get metric space from information about inter-point distances (dissimilarities),
measured in some other metric space [8]. In our experiments, dissimilarities are
defined as geodesic distances δij between all vertices vi on the mesh M in a
symmetrical dissimilarities matrix ∆ = N ×N between N points on a Rieman-
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nian manifold S. Methods to calculate the dissimilarity matrix more effectively
are based on the fast marching method on triangulated domains [17] or para-
metric fast marching [23]. We differentiate between metric and non-metric MDS
(Shephard-Kruskal). Metric MDS preserves the intervals and the ratios between
the dissimilarities and non-metric MDS only preserves the order of the dissim-
ilarities. The goal is to minimize the embedding error, i.e. minimizing the sum
of distances between the optimal scaled data f(δij) and the euclidean distances
dij , where f is an optimal monotonic function (in order to obtain optimally
scaled similarities). Thereby a stress function Fs will be used to measure the
degree of correspondence of the distances between vertices. We use the scaled
gradient-descent algorithm (SMACOF), as published by [8]. This algorithm is
one of the most efficient at the moment and it allows real-time performance.
Each vertex in MDS space corresponds to a vertex in euclidean space. The de-
tails of the SMACOF algorithm can be found in the above paper. In order to
speed up the calculation time, the geodesic distances are calculated only on a
reduced set of landmark points. Approximately the original points of the point
cloud of the mesh vertices as landmark points has an optimal balance between
accuracy of representation and time. Fig. 2 illustrates our segmentation results
based on pose-invariant model representation.

Fig. 2. Pose-invariance: each model was segmented separately.

2 Point Cloud Segmentation

This section describes each stage of the proposed segmentation algorithm for
point clouds.

2.1 Core Extraction

The presented method is based on the principle of radial reflection. At the begin-
ning the internal center C is calculated by computing smallest enclosing sphere of
points [12]. The bounding sphere is defined by the maximum distance R between
the center C and all points pi:

R = max‖pi − C‖ (1)

Each point pi of the point cloud with n points is radial reflected inwards in
the direction to the calculated center C , as illustrated in Fig. 1d and Fig. 1e.
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p,
m = C + (R− ‖ pi − C ‖)

(pi − C)
‖ pi − C ‖

(2)

Thus all points which are farthest outside on the original point cloud are
farthest in after this step, Fig. 1d. This way, the points of the core part reside
on the outer convex hull Hout [20], whereby all adhering parts on the core part
will be automatically cut off.

Hout = ConvexHull

(
n−1⋃
i=0

p,
mi

)
(3)

Every vertex vm of the k vertices that reside on the outer convex hull Hout

will be transformed in the direction to the center, depending on the distances of
the neighboring points [2] with an offset off . For that the algorithm calculates
for each point of the original point cloud the distance to the nearest neighbor
and then the minimum dmin, maximum dmax and average da of these distances.
Then the algorithm finds out for every vertex vm on the outer convex hull all
neighboring points p,

m with the average distance da and calculates the offset off ,
depending of the z point neighbors, see Equ. 5. This step is important to realize
a hole free core part.

off =

z−1∑
i=0

| p,
mi
− vm |

z
(4)

The offset off was calculated with all z neighboring points of the transformed
point cloud of the vertex vm on the convex hull Hout. With the calculated offset
off the algorithm need no more connectivity analysis to realize a hole free core
part. All vertices on the outer convex hull Hout will be transformed with an
offset for every vertex:

v,
m = vmi − off ∗

(vmi − C)
‖ vmi

− C ‖
(5)

This k transformed vertices v,
m are used to calculate an inner convex hull

Hin, as illustrated in Fig. 1e (red convex hull):

Hin = ConvexHull

(
k−1⋃
i=0

v,
mi

)
(6)

The resulting inner convex hull Hin is used to cut the radial reflected point
cloud into a core part and a rest part, as illustrated in Fig. 1f.

2.2 Cut Refinement

If the core part is found, all other segments of the point cloud are extracted by
recursive flood-filling [9]. We define an object-part as a set of points, with dis-
tances between neighbors below a threshold dmax. We build a kd-tree [7] to find
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neighbors and use the recursive flood-filling function [9] to identify connected
point sets. dmax is the maximum distance between the neighboring points, cal-
culated by nearest neighbor search [2]. This step segments the point cloud into
different components. An additional cut refinement was not arranged, because
the main goal is to find out the core part. It is possible to improve the segmen-
tation results with the help of a substantially curvature-based filter [24], mean
shift, gaussian curvature or a feature point based approach [15]. It is also possible
to improve the segmentation results with the calculation of the normal vector
for every point, by fitting planes in a defined area da. Thus the angle α between
the regarded point i and the considered point w can be used as weighting factor
wg, as illustrated in Fig. 3.

cosα =
ni • nw

‖ni‖‖nw‖
(7)

wg = 1− | cos(α)| (8)

To belong to a fracture of the object the distance d between a fracture element
w and the considered point i must be smaller than the average distance with the
weighting factor.

d =
√

(xi − xw)2 + (yi − yw)2 + (zi − zw)2 (9)

d < da · wg (10)

Fig. 3. Cut refinement: Improvement of the segmentation result by calculating an
additional weighting factor. a, c Hand, Man: standard flood-filling. b, d Hand, Man:
flood-filling with additional weighting function.

3 Results

We have created and collected at AIM@SHAPE repository2 several challenging
examples to test our segmentation algorithm, see Fig. 4. For similar segmenta-
tions of the same models in different poses, the segmentation based on pose-
invariant models show almost best results. Our analysis shows that the position
2 http://shapes.aim-at-shape.net/index.php
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of the internal center of the models has a significant influence, as illustrated in
Fig. 4g (dino) and h (elephant). It is important that the approximated center
is inside the object. [15] presented another possible approximated method to
calculate the internal center.

Fig. 4. Segmentation results: We analyzed different groups of models: a package, b
coffee tin, c bolt, d frog, e pig, f oni, g dino, h elephant, i bunny, j mannequin.

Fig. 4 shows that the proposed algorithm is optimal to extract the core
component and the surrounding parts.

Timing Results

On a 3.2GHz machine with 2GB RAM, we need on average 2-3min for generating
a pose-invariant mesh with ∼3k points as landmarks, whereas the time expen-
sive part is the calculation of the symmetrical dissimilarities matrix ∆ = N ×N
with all geodesic distances δij . Core extraction needs less than 15sec., this in-
cludes also segmentation of the rest parts of the 3D model into sub-meshes based
on recursive flood-filling. However the calculation time depends on the number
of points of the 3D model. The algorithm is implemented in C++ using the
Visualization Tool Kit (VTK)3.

4 Conclusion

The proposed segmentation method represents a flexible and completely auto-
matic way to segment a 3D object in a hierarchical manner, whereby the al-
gorithm works directly on point clouds and shows high reliability. It is obvious
from the results presented in this work that there exist no perfect segmentation
algorithm. Each algorithm has his own benefits and drawbacks. Segmentation

3 Open source software, http://public.kitware.com/vtk.
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can neither be formalized nor measured mathematically, an empirical basis for
research should be used. This can be realized by collecting hand-segmentations
representing the ground-truth of various models, and comparing each algorithm
results to it [5]. The pose-invariance is due to the use of MDS. We cut the object
into sub-parts with an inner convex hull, which results from an outer convex
calculated by radial reflection. This segmentation algorithm can be applied to a
reasonable set of objects with different applications.
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Boosted Edge Orientation Histograms for Grasping Point Detection

Abstract

In this paper, we describe a novel algorithm for the
detection of grasping points in images of previously un-
seen objects. A basic building block of our approach
is the use of a newly devised descriptor, representing
semi-local grasping point shape by the use edge orien-
tation histograms. Combined with boosting, our method
learns discriminative grasp point models for new ob-
jects from a set of annotated real-world images. The
method has been extensively evaluated on challenging
images of real scenes, exhibiting largely varying char-
acteristics concerning illumination conditions, scene
complexity, and viewpoint. Our experiments show that
the method, despite these variations, works in a stable
manner and that its performance compares favorably to
the state-of-the-art.

1. Introduction

In this work, we focus on mining monocular vision
input to detect potential points for robotic grasping of
previously unseen objects. Grasping of novel objects
using vision input is among the most challenging and
difficult problem in robotic research. In the past, ap-
proaches either assumed a-priori knowledge about ob-
jects, or in case of previously unseen objects, relied on
the extraction of sufficiently complete 3-d models eg.
by using stereopsis. However, in realistic scenarios,
where objects are occluded and only partially visible,
or do not exhibit enough texture for stereo-based recon-
struction, the latter are likely to fail.

Only recently, Saxena et al. [10, 11] presented a
promising approach capable of grasping previously un-
seen objects (classes) purely based on vision. Their lo-
cal, image-based, grasp point representation is learned
from artificially created images of object examples and
are separately searched for in pairs of stereo images.
Then, only image locations with a high confidence of
being a grasp point are triangulated to infer the 3D-
position were the object can be grasped - thus avoid-
ing the need of reconstructing the object’s 3D shape.

p=0.83

p=0.99

Figure 1. Detected grasp points (blue cir-
cles) and detector responses (right im-
age). Note the zoom view of the bottle
neck in the lower right of the left image.

In [3] the authors find grasping points by describing
the global object shape using shape context. However,
as shape context is known to perform poorly in clut-
tered scenes [13] the work relies on high quality figure-
ground segmentation, achieved with an active stereo
setup, and knowledge about the workspace in which ob-
jects are placed.

Our approach is motivated by the existence of sim-
ilar semi-local object parts in objects that themselves
have rather dissimilar shapes. A typical example is the
presence of handles in a large variety of objects rang-
ing from scissors to jugs. In that sense, our method is
similar in spirit to the one proposed in [10]. However,
by encoding shape information of semi-local structures
around grasp points, we arrive at discriminative repre-
sentations which are able to ignore image clutter to a
larger extent.

The contribution of our work is twofold: 1) We de-
vised a novel image descriptor based on radially con-
figured orientation-histograms. The descriptor is sim-
ple to implement, efficient, and can be easily extended
to include a variety of cues such as color or texture.



Figure 2. Illustration of the descriptor on
image gradients. Probes (circles) are ra-
dially arranged arround the center (dot).

2) In contrast to preceding work utilizing artificially
created data, we demonstrate that discriminative grasp
point representations can be learned from images of real
scenes.

2 Method

The presented approach consists of two stages: (1)
Discriminative grasp points models are learned from an-
notated grasp points in real images. For this, a novel
image descriptor is employed, which is able to effi-
ciently encode the grasp points shape and its semi-local
context. (2) In the detection phase, an input image is
scanned densely over a range of scales using the learned
model. On the resulting scale-space response maps,
mean-shift mode seeking is employed to find the posi-
tion and scale of potential grasp points. A typical result
obtained with our method is depicted in Fig. 1.

2.1 Grasp Point Representation

Our representation of grasp points is an extension
to Carmichael’s [4] shape descriptor using a circular
arrangement of edge probes. Each of these probes
captures the density of the underlying edge image by
weighted integration in a gaussian-shaped receptive
field. Borrowing the idea from [14], we extend the de-
scriptor to operate on channel images obtained from any
orientation selective feature detector or filter. Specifi-
cally, having an input image I, we compute a number C
of blurred orientation channels Gσp

o = Gσp
∗Co, o =

1 . . . C, one for each discretisized orientation. Here, the
channel image Co is the component of the feature de-
tector’s output for direction o. Gσp denotes a Gaussian
kernel with standard deviation σp and ∗ stands for con-
volution. Probe values at image location (x,y) for orien-
tation o can be now efficiently obtained by simply ac-

cessing Gσp
o (x, y) which equals the pooled oriented re-

sponse at that position. By stacking all channel-values
for one probe location into a vector, a C-dimensional
orientation histogram p is obtained.

Surrounding a probe at the query position, additional
probes are located on K concentric circles with radii
rk = kσp, k = 1..K. Each circle is populated with
an increasing number of 6k evenly spaced probes, see
Fig. 2. For the choice of particular values for σp, K,
and C we refer the reader to Sec.4.

2.2 Learning

Here, we utilize the GentleBoost algorithm to build
a so-called strong classifier by iteratively combining the
outputs of weak classifiers. The weak learners have
the form of regression stumps [8] built from individ-
ual probe-based gradient histograms. At each boosting
round, we run weighted Linear Discriminant Analysis
(wLDA) [9] on the vectors formed by the bins of the
orientation histograms for each probe position in the de-
scriptor. The histogram-vectors are then projected onto
the normal w of the discriminant and regression stumps
are fitted to the resulting scalars.

After M rounds of boosting, the final classifier has
the form of:

H =
M∑
m=1

am(wT
mp > thm) + bm, (1)

where am, bm, thm are the parameters of the best weak
classifier, and wm is returned by wLDA - all at round
m. p is the histogram described in Sec. 2.1.

At training time, positive examples are extracted by
scaling the grasp regions in each image to the canonical
scale and extracting the descriptor at the center of the
annotated grasping region. To increase the number of
positive samples, random variations of the grasp point
examples, obtained by translation, re-scaling, and rota-
tion in small ranges, are added [9]. To obtain negative
examples, descriptors are extracted at random from the
background of training images. For positions close to
the grasping region the classifier is often not able to con-
struct adequate discriminative models based on the ran-
domly chosen negative examples. To counter this, we
provide additionally negative examples near the grasp-
ing region [12]. In particular, we use positions located
on circles centered at the grasp points, with a radius 1.5
times of that of the grasping region.

Once the initial detector is learned, one can bootstrap
the gathering of further examples [5]. We scan the train-
ing set (see Sec. 2.3) for hard examples, i.e. misclassi-
fications, and inject them into the training set for full
retraining.



Figure 3. Examples from the dataset.

Figure 4. Grasping point (dots) and object
annotation (bounding boxes).

2.3 Detection

Grasp points are found by a simple sliding win-
dow approach, as used in many object detection frame-
works. We scan images in a range of predefined scales
{sk}, k = 1 . . .K. Specifically, for an image at scale
sk, one proceeds as follows: 1) Edges are computed and
the components are distributed over C different chan-
nel images according to their orientation. The resulting
maps are then smoothed by a Gaussian kernel to ob-
tain blurred channel images Gσp

o , see Sec. 2.1. 2) At
each image position (x, y), the boosted classifier is eva-
luted on the descriptor values extracted by accessing the
blurred orientation maps.

For each scale sk and position (x, y) we obtain the
classifiers confidence H(x, y, sk) which we convert to
the posterior probabilities of a grasp point presence us-
ing the logistic transform proposed in [7]:

P (grasp point(x,y,sk)) =
1

1 + e−H(x,y,sk)
(2)

For a confidence map computed in such way, we re-
fer the reader to Fig. 1. To find the set of grasp point
detections, mean-shift mode estimation is adopted as
described by Shotton et al. [12]. Location and scale of
grasps point are given by detected modes; the detection
confidence is obtained from the probability density es-
timate at the mode’s location.

3. Experimental setup

We compiled a challenging dataset containing im-
ages of 3 object categories. The collection consists of
630 images, of which 210 show mugs, 210 bottles, and
210 Martini glasses. 30 of the mug images and 30 bottle
images were taken from the database of Ferrari et al. [6],
the remainder was found by Google image search. The
images exhibit viewpoint changes, considerable back-
ground clutter and often more than one object instance
and class are present, see Fig. 3. The number of anno-
tated objects totaled 720.

Grasp points are represented by circular regions giv-
ing position and approximate scale of the relevant struc-
ture. Two grasp points were selected for each mug - one
at the top of the handle and one in the middle. Mar-
tini glass grasp points are located at the upmost part of
the shaft, bottles were annotated by the top of the neck.
Overall, 956 grasp points have been annotated. In addi-
tion, each object instance is provided with a bounding
box, designating the class of associated grasp points.
Fig. 4 shows examples of annotated object instances and
grasp points.

The dataset is split into two equally sized sets
for training and testing. During training, images are
rescaled such that each grasp point attains a canonical
radius of 7 pixels before extracting the descriptor.

Test images were not rescaled and grasp points ex-
hibit a scale range of roughly 3× from smallest to
largest. Given a minimum confidence threshold, de-
tections are regarded as correct if the circular region of
the inferred grasp point rinf agrees sufficiently with the
ground truth rgt, checked by the symmetric overlap cri-
terion Area(rgt∩rinf )

Area(rgt∪rinf ) ) > 0.25 similar to [1]. The over-
all performance of the detector is evaluated by means of
precision-recall (PR) curves [2]

4. Results

In order to study the influence of histogram gran-
ularity and the particular choice of gradient computa-
tion, we compared Gaussian derivatives and the Sobel
operator in two variants: Orientation estimation in the
full 4-quadrant range, and ignoring the gradient direc-
tion by mapping its orientation in the range from 0 to
π, i.e. bright to dark image transitions have the same
orientation as dark to bright. Additionally, orientations
were quantisized into C = 4 and C = 8 bin histograms
(channel images). During all tests reported here, the re-
maining descriptor parameters (see Sec.2.1) were set to
σp = 5 andK = 5, determined by cross-validation over
the training set.
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Figure 5. PR curves for our approach
(blue crosses) versus Saxena’s method
(red circles and green triangles).

The results of these experiments are depicted in
Fig. 5 (a), the corresponding area-under-curve values
(PR-AUC) [12] are listed in Tab. ??. Note that we omit-
ted plots of Sobelπ and GaussDπ for 8 bins to reduce
clutter. One can see that the Sobel filter consistantly
outperforms Gaussian derivatives and that ignoring gra-
dient polarity has the edge over its counterpart. This
is in accordance with [5]. Overall, the best PR-AUC
of 0.6656 was obtained by the polarity-ignoring Sobel
operator Sobelπ using orientation quantization into 4
channels. Fig. 6 shows some example detections taken
from the test set.

In addition, we compared our method with the ap-
proach suggested in [10]. There, a descriptor based
on Laws masks was used to encode texture over multi-
ple scales. Since experiments revealed a poor perfor-
mance (PR-AUC of 0.3460) of the proposed logistic
regression algorithm, to have a fairer comparison we
also present the improved results (PR-AUC of 0.5249)
obtained using our GentleBoost-based learning frame-
work. As can be seen from the precision-recall curves
depicted in Fig. 5 (b), the proposed semi-local detector
achieves significantly higher performance.

Finally, we tested our algorithm on images showing
novel object classes not contained in the training set.
The handles on the jar were detected as they resem-
ble the mug handles. The same effect can be seen in
the case of scissors. Furthermore, the detector is able
to detect similarities which are not immediately appar-
ent - the similarity of a flower stem to a martini glass
shaft. These examples illustrate that the descriptor is

Figure 6. Detection examples: Successful
detections (red) and false positives (blue).

Figure 7. Meaningful detections (red) for
classes not contained in the training set.

capable of capturing the relevant shape similarity lead-
ing to meaningful detections of grasping regions.

5. Conclusions

We presented a learning-based method for detecting
grasp points in monocular images of newly seen ob-
jects. Extensive tests have shown that our approach
based on boosted histograms outperforms the state-of-
the-art. We were able to demonstrate that the approach
is capable of capturing grasping relevant information,
achieving promising results on familiarly shaped object
from classes not contained in the training set.

Current work focuses on incorporating more monoc-
ular image cues as well as investigating extensions to
automatically determine the blurring scale and aperture
of the descriptors. Our next step will be the integration
of our algorithm in a stereo-based setup similar to the
one presented in [10].
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Abstract— We present a method for vision-based recovery of
three-dimensional structures through simultaneous model recon-
struction and validation from monocular images. Our approach
does not rely on robust feature detecting schemes (such as
SIFT, Good Features to Track etc.), but works directly on
intensity values in the captured images. Thus, it is well-suited
for reconstruction of surfaces that exhibit only minimal texture
due to partial homogenity of the surfaces. Additionally, we
describe an efficient method facilitating Levenberg-Marquardt
optimization of complex compositional functions.

I. INTRODUCTION

Tracking and reconstruction of surfaces from video data is
a problem that has been subject of extensive research work,
and a number of methods exist for this problem. Many of
the established methods, however, rely on presence of salient
image features, such as SIFT [1] features, Good Features to
Track [2], edges and so on. In some settings, however, the
objects one is dealing with do not exhibit much structure,
which makes it very hard to find robust, dense feature sets
using traditional methods. In such situations, it pays off to use
intensity-based methods, which is what we have investigated.

Originally, our idea was to generalize an approach devel-
oped by Ramey et al. [3] for efficient tracking of the disparity
map in stereo video streams. Their method is quite general in
that it can be used in conjunction with arbitrary parametric
models of disparity maps, and it is especially efficient if the
model is linear in parameters. In their test setups, they have
used a B-Spline surface to represent the disparity map. We
wanted to generalize their approach in the sense that the
cameras do not need to be mounted on a stereo rig, but instead
they are allowed to move independently from each other.

As an intermediate step to achieving this goal, we developed
the method presented in this paper, which allows simultaneous
model reconstruction and validation from monocular images
in static scenes. In comparison to the two-camera scenario
described above, this is equivalent to a situation where two
cameras are present, but only one of them is moving, and the
observed scene is static.

Our method belongs to the family of bundle-adjustment
techniques. An in-depth survey of the original bundle-
adjustment method is given in the book by Hartley and
Zisserman [4]. The paper by Triggs et al. [5] provides a good
overview of bundle adjustment variants and related methods.

Our Algorithm

Camera Images from different Positions

Fig. 1. Schematic overview of the problem addressed by our algorithm.

There is also a more recent paper evaluating the status of real-
time bundle adjustment methods [6].

Since we are working only with intensity values, we also
evaluated other approaches for intensity based tracking al-
gorithms. Tracking and matching of fixed point clouds has
been investigated by Sepp et al. [7], and is also related to
the problem considered herein. The tracking methodology is
very similar to that used herein, but we are using a monocular
camera instead and determining the parameters of a surface
model during the process.

A number of offline methods for model-based bundle-
adjustment have been described with applications to face
modeling [8, 9]. Our method is different in that it tries to
build the model during run-time, starting out with a very crude
initial model (a plane) and refining the model in each step.

II. PROBLEM STATEMENT

We are interested in recovering and validating the structure
of a 3D object on-line from a stream of monocular camera
images. The object we are interested in must be static, and
it must be possible to represent the object by means of a
parametric surface model. Furthermore, since we are also
tracking the object of interest, it is required that during the
video sequence, sight of the object is not lost. The concept is
visualized in Figure 1.

The basic idea is as follows: In traditional bundle ad-
justment, coordinates of 3D points that are associated with
features are recovered from a set of 2D feature position



Fig. 2. Left, middle: Surface under two different camera positions. Right: Warping of surface coordinates from left to right image.

measurements. This approach will obviously work only if a
feature detecting scheme can be used at all. In our case, we do
not assume that robust feature extraction is possible, and thus
we do not work with 2D positions, but with image intensities.

III. APPROACH

There are many possibilities for representing a model of
a scene, with the most straightforward one being a point
cloud. This is a very general representation that is actually
used in the traditional bundle adjustment algorithm, where it
works well under the assumption that points can be reliably
identified through use of reliable feature detection methods.
Unfortunately, this assumption does not hold in the situation
described above: We assume that the scene we are looking at
does not exhibit a lot of structure, and we expect it to be very
difficult to reliably detect and track features. Using a point
cloud model would thus be problematic, since the position of
a point can only be determined if the point can be identified
reliably, which is not the case.

A better suited model would be a parametric surface of
type S : Rk × R2 → R3. Mathematically speaking, S maps
a set of k parameters together with surface coordinates u, v
to three-dimensional spatial coordinates. Such a model is
especially suitable for representation of scenarios that can be
described with a small parameter set. This loss of generality
is a compromise that is necessary in the difficult situation of
3D reconstruction in scenes with low structure.

Inspired by the method of Ramey et al. [3], we do not
directly model the scene as a 3D surface. Instead, we choose
to the model to be a depth map of some object of interest
for some reference image of the video stream. A 3D surface
model can easily be retrieved from that representation, as will
be shown later.

Observing a static, three-dimensional smooth surface S
under two different camera positions will essentially yield
two images that are related to each other via a “warping”
function. If, for two snapshots of a scene, we exactly know
the corresponding extrinsic camera parameters and we have
a perfect mathematical description of the surface that we
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Fig. 3. Overall structure of the algorithm.

are observing, we can, for each surface pixel in one image,
determine the position of that pixel in the other image. In
other words, we can formulate a function of type R2 → R2

that transforms pixel coordinates from one image to another,
and we would expect the corresponding image values to be
equal. Figure 2 shows an example for the warping function.

The idea of our approach is now basically the same as in
traditional bundle adjustment: Using a nonlinear optimization
technique, we are able to compute parameters for the warping
function that best explain the observations. Thus, we are able
to determine a good approximation of the warping function
itself. Figure 3 shows the concept.

We do not take into account all pixels in the region
of interest because the optimization process is quite costly.
Instead, we only focus on a number of reference pixels that
are picked according to a weak criterium that will be described
later. These pixels are selected from a user-defined region of



interest in a reference image and tracked through the entire
image sequence.

As we have mentioned earlier, we are modeling the depth
map of the region of interest that has been chosen by the
user. That depth map is then a function Sd(u, v) mapping
a k-dimensional parameter vector d together with image
coordinates (u, v) ∈ R2 to a depth value λ ∈ R at the
specified coordinate. Given intrinsic camera parameters, this
depth map can actually be interpreted as a 3D surface. In the
following, we will derive the image warping function step by
step. Before we start with the mathematical part, we want to
give an overview of definitions and notations. In the following,
images are numbered consecutively, and the numbering starts
with n = 0. Then, let

• dn denote the k-dimensional vector of parameters of the
model describing the depth map.

• Sd(u, v) denote a function of type Rk × R2 → R
that maps model parameters together with image pixel
coordinates to 1D pixel depth values.

• pn = (tn,qn) denote the extrinsic camera parameters
corresponding to image n, consisting of translation vector
tn ∈ R3 and rotation quaternion qn ∈ R4.

• T (t,q,p) : R3 × R4 × R3 → R3 is a transformation
mapping 3D spatial coordinates p to 3D coordinates in
the camera frame described by a translation vector t and
a rotation quaternion q.

• π(p) be the projection of a 3D point p to 2D image
coordinates, according to the internal camera calibration
parameters of the camera used.

• In(x, y) be the image function of image n, containing all
pixel values. I0 is hence the reference image function.

• (u1, v1), . . . , (um, vm) denote the pixel coordinates of the
m reference pixels, chosen from the ROI in the reference
image.

For the monocular camera, we assume a pinhole model with
projection function

π(p) =
(

p1fx

p3
+ cx,

p2fy

p3
+ cy

)T

where fx, fy are focal lengths in terms of pixel dimen-
sions, cx, cy describe the location of the camera center, and
(p1,p2,p3)T is a vector of Cartesian point coordinates. In
case of significant radial distortions, the images can be recti-
fied before usage.

If we associate the camera frame in image 0 with the
reference frame, each pixel of the region of interest corre-
sponds to a ray originating from the camera position (which
coincides with the origin) that intersects the object surface
at a certain depth. The pixel color then corresponds (ignoring
possible specularities) to the color of the surface texture at that
position. The ray corresponding to pixel coordinates (u, v) can
be parameterized by depth λ as

ru,v(λ) = λ ·
(
u− cx
fx

,
v − cy
fy

, 1
)T

Then, the full 3D model surface is

ru,v(Sd(u, v)) = Sd(u, v) ·
(
u− cx
fx

,
v − cy
fy

, 1
)T

If that model is observed from a different camera position pn,
yielding a different image with index n, we need to rotate and
translate the 3D coordinates produced by above function. This
can be achieved by using the formula

T (pn, ru,v(Sd(u, v)).

If we knew the perfect model parameters d and exact camera
parameters pn for image n, we would expect the following
relationship to hold for all model surface coordinates (u, v):

In(π(T (pn, ru,v(Sd(u, v))) = I0(u, v)

Of course, we do not have a model, and we do not know
the camera position, but we want to determine them. Thus,
we assume that the correct camera position and the correct
model parameters together minimize the absolute difference,
or equally the squared difference in intensity values:

(In(π(T (pn, ru,v(Sd(u, v)))− I0(u, v))2

Obviously, it will be impossible to determine camera and
model parameters by comparing intensity values of only one
point seen in two images, we need to take more points into
account. However, it is also, due to computational complexity,
not advisable to compare intensities of all pixels of the
model surface. We will make a compromise and try to find
parameters that minimize the intensity differences of the m
reference points. The corresponding cost function c(d,pn) can
be defined as

m∑
i=1

(In(π(T (pt, rui,vi(Sd(ui, vi)))− I0(ui, vi))
2

Defining a vector-valued function of image intensities, the cost
function can be written in a more concise way. If we define

c(d,pn) =
In(π(T (pn, ru1,v1(Sd(u1, v1)))− I0(u1, v1)
In(π(T (pn, ru2,v2(Sd(u2, v2)))− I0(u2, v2)

...
In(π(T (pn, rum,vm

(Sd(um, vm)))− I0(um, vm)


then c(d,pn)T c(d,pn) is the value of the summed squared
intensity differences, and hence equivalent to the cost function
specified above. Our problem of finding a warping function
from the template image I0 to the current image In could then
be stated as the problem of minimizing the error function with
respect to camera and depth map parameters.

But, there are two more minor issues that we need to
take care of: Reconstruction of three-dimensional structures
from monocular image sequences is always only possible up
to scale, but we want at least to keep the scale constant.
Furthermore, a quaternion describing a rotation must have unit
length, and we need to enforce that somehow.



Keeping the scale constant over the image sequence can be
achieved by simply adding a constraint that fixes the depth of
one of the reference points to some fixed value. Let that depth
value be denoted by s ∈ R, and assume that, without loss of
generality, we fix the depth of the first reference point. Then,
the additional constraint to add to above constraints would
be Sd(u1, v1) = c. In our optimization formulation, we would
then need to minimize the squared difference (Sd(u1, v1)−c)2.

Similarily, for enforcing unit length of the rotation quater-
nion, we add the constraint |qt| = 1, or the constraint of
minimizing (|qt|−1)2. Overall, the total objective function to
be optimized can now be stated as

o(d,pn) =

 c(d,pn)
Sd(u1, v1)− c
|qn| − 1


By optimizing camera parameters and depth map parameters

according to above objective function, we can, for each
image, determine a 3D model that best explains the image
measurement.

Since through optimizing above function, we implicitly
try to track point positions through intensity values, our
approach will have difficulties tracking points in areas with
completely homogeneous intensity. Thus, whereever possible,
the reference points are chosen from the ROI in such a way
that they lie at positions where the image derivative is non-
zero.

Furthermore, reference points should be distributed in the
region of interest such that the parameters determining the
depth map are well constrained. For a B-Spline depth map
model, one will, e.g., need at least a number of reference
points that is equal to the number of control points used. The
more reference points are used, the better the problem will be
constrained.

IV. EFFICIENT OPTIMIZATION

To actually recover the model parameters from the scene,
we need some method to minimize the cost function described
above. Typically, the Levenberg-Marquardt method [10, 11,
12] is applied to such problems. That method is useful for
minimizing nonlinear functions, and it basically works through
solving a linear system, the so-called augmented normal
equations. The basic idea is as follows: If f : Rn → R
is the function to be minimized, ∇f is its gradient and Hf

its Hessian matrix, then the function can be approximated by
means of the Taylor expansion around the current parameter
vector p through

f(p+ δ) ≈ f(p) + δT∇f(p) +
1
2
δTHfδ.

We then proceed by minimizing the approximated term
through differentiating w.r.t. δ and setting the result equal to
0:

∇f(p) +Hfδ = 0⇔ Hfδ = −∇f(p)

In our case, we have f(p) = o(p)T o(p). The equation stated
above then becomes

Ho(p)T o(p)δ = −∇(o(p)T o(p))

By approximating the Hessian Ho(p)T o(p) with JoJ
T
o and using

basic calculus and the chain rule, this can finally be rewritten
as

JoJ
T
o δ = −JT

o o(p),

where Jo denotes the Jacobian of the objective function
defined above. This is the regular system of normal equations.
The so-called augmented normal equations are then obtained
by adding a so-called damping term λI:

(JoJ
T
o + λI)δ = −JT

o o(p).

That term basically allows the method to interpolate between
gradient descent steps and Gauss-Newton steps. This equation
system is solved for δ several times until convergence. A
detailed description and analysis of the method is provided
in Hartley and Zisserman’s book [4]. We will from now on
focus on the key part of the algorithm, which is efficient and
accurate computation of the Jacobian Jo.

For computing the Jacobian, we took three different ap-
proaches into consideration: Numerical approximation using
finite differences, code generation using symbolic computa-
tion, and Automatic Differentiation [13, 14]. Approximation
using finite differences has been shown to be both inefficient
and inaccurate as compared to the other methods, which
disqualified the method for our purposes.

Symbolic differentiation works through specifying the func-
tion of interest in a Computer Algebra System, which will then
be able to compute the symbolic Jacobian of that function.
After this step has been performed, efficient programming
language code can be generated from the symbolic Jacobian.
Still, purely symbolic differentiation is problematic for large
problems, because the symbolic computation alone can be
very slow. Even for rather simple problems, the symbolic
computation might take up to days, which is not acceptable.

Automatic Differentiation is a method to numerically eval-
uate the derivative of a function specified by a computer pro-
gram. It treats a computer program that implements a vector-
valued function y = F (x) as a composition of a sequence
of elementary functions. Each one of those functions can be
trivially differentiated using a look-up table. The derivative of
the composition can also be evaluated easily by applying the
chain rule from derivative calculus. This process yields highly
accurate derivatives. Actually, a symbolic computation step is
inherently used in this method as well, but because it is applied
only at the most basic level, the computational problems of
symbolic computation are avoided.

Since it is fast and accurate, the method of choice would
have been Automatic Differentiation. There was only one
problem: The implementation of the B-Spline surface func-
tions were not done by us, but were part of third-party li-
braries1. Compiling this library with Automatic Differentiation

1http://www.sintef.no/Projectweb/Geometry-Toolkits/SISL/



support would have required us to make really fundamental
changes to it, which is something we wanted to avoid. How-
ever, the library already provides functions for computing the
required derivatives, so we wanted to exploit that.

Instead of directly applying Automatic Differentiation, we
hence adopted a slightly different idea. Basically, the Jacobian
of a compositional function f = f1 ◦ f2 ◦ . . . ◦ fn can be
computed as matrix chain product of the Jacobians of the
individual functions:

Jf = Jf1 · Jf2 · . . . · Jfn

This idea can also be applied to our cost function, since it
can be interpreted as a composition of several functions. The
separate functions that we have used to define it are quite
simple and computation of their Jacobians is straightforward.
At first sight, one might think that this way of computing Jf

is not very efficient, since matrix multiplications are usually
very costly. But, looking at the structure of the Jacobians of
the used functions, we see that all of the Jacobians exhibit a
high degree of sparsity. Indeed, it can easily be shown that the
number of nonzero entries is actually linear in the number of
reference points chosen.

Since we are dealing with a matrix chain product, and
matrix products are associative, it is also important to take
into account the bracketing, i.e., the order of evaluation of
multiplications for computing the overall matrix product. It
is well-known that for dense matrices, the bracketing can
make a tremendous difference in computation time, and there
exists an algorithm that efficiently computes an optimal matrix
bracketing based on dynamic programming [15, 16].

In our case however, we are not dealing with dense matrices,
but with sparse matrices. Fortunately, the approach developed
for optimal bracketing of a dense matrix chain product can
easily be modified to work with sparse matrices as well.

The key function for determining the optimal bracketing
for dense matrix chain product is the computation of the
cost of multiplying two matrices, where only elementary
multiplications are counted. Let A1 and A2 be two matrices
with dimensions of n1×n2 and n2×n3, respectively. Then the
total cost of computing the matrix product would be n1n2n3.

For sparse matrices, the multiplication cost depends on the
actual sparsity structure of the involved matrices. Fortunately,
all of the functions used in the objective function have a
static Jacobian sparsity structure that does not depend on the
parameters. Thus, it suffices to compute the bracketing only
once, at the beginning of the algorithm. Consider the following
example with small matrices A,B that have sparsity structures
SA, SB . You will see that the product of the sparsity structure
matrices contains, for each entry of the product matrix, the

number of multiplications needed to compute that entry:

A =
(

1 2 0
0 0 1

)
, B =

1 3
0 1
1 0

 ,

SA =
(

1 1 0
0 0 1

)
, SB =

1 1
0 1
1 0

 ;SA · SB =
(

1 2
1 0

)
Then the overall multiplication cost is obviously the sum of
entries of SA · SB . Thus, if we replace the cost measurement
used in the dense chained matrix multiplication algorithm with
this cost function, we will retrieve an algorithm that computes
the optimal bracketing for sparse matrix multiplication. Note
that since the cost computation now relies on the sparsity
structure of the involved matrices, it is required that the
sparsity structures of all subchains are computed. This in turn
means that the preparation step is quite costly, but it pays off
later on. Another option for cost measurement would be to
use a heuristic, such as the one developed by Cohen [17].

It should be noted that our approach deals with the same
structural form of matrices as the method developed by
Griewank and Naumann [18]. Their method has been shown to
be very efficient for this type of problem. Roughly speaking,
they are using Automatic Differentiation for computing the
individual Jacobians of small sub-functions, then applying
sparse matrix chain multiplication with optimal bracketing to
compute the overall Jacobian. Since the problem of optimal
Jacobian accumulation (computing the Jacobian with minimal
computational expense) has been shown to be NP-complete
by Naumann [19], this is not the optimally efficient solution,
but can be interpreted as a heuristic approach to solving the
problem.

After the computation of the Jacobian is finished, the aug-
mented normal equations are solved by computing (JJT +λI)
and using a sparse LDLT Cholesky transformation on the
resulting matrix. Apart from that, the Levenberg-Marquardt
method is used in its standard form.

V. DEALING WITH LARGE DISPLACEMENTS

After we had implemented the optimization process as
described above, it was evaluated on some image sequences.
We found out that it works well on image sequences where
camera movement is sufficiently smooth and no large pixel
displacements occur between subsequent frames. However,
problems occured when that was not the case. This was to
be expected, since the algorithm operates on intensity values
and will have trouble aligning with the correct values again if
they are too far away.

The typical way to deal with this would be a pyramidal
approach: One could start with the optimization on a coarse
scale, and then move up to finer scales. This idea could prob-
ably be incorporated directly into our optimization approach.
However, the idea has also been used by Lucas and Kanade
[20] for their optical flow algorithm, which is well-established
and implementations of which are readily available.



Fig. 4. Left: Sample image from artificial sequence, Right: Sample image from real-world sequence.

Thus, instead of incorporating a pyramidal approach directly
into our method, we chose to implement a two-step approach:
The first step when optimizing the model and aligning it to a
new image would be to compute the optical flow between the
previous image and the current image and perform optimiza-
tion based solely on the 2D pixel coordinates of the reference
points. The point position estimates derived from the optical
flow algorithm shall in the following be denoted by (u′i, v

′
i).

The cost function that we use for that optimization is just a
simplified version of the cost function for the intensity based
optimization, namely

π(T (pn, ru1,v1(Sd(u1, v1)))− (u′1, v
′
1)

π(T (pn, ru2,v2(Sd(u2, v2)))− (u′2, v
′
2)

...
π(T (pn, run,vn

(Sd(um, vm)))− (u′m, v
′
m)

Sd(u1, v1)− c
|qn| − 1


.

Note that this is basically the original cost function, where
the mapping from 2D coordinates to intensity values by
application of In resp. I0 has been removed.

In the next step, we apply the original intensity based
optimization process to realign the points to the reference
intensity values. This essentially prevents drifting away from
the original point intensity values, which could easily occur
over time if only optical-flow based optimization was used.

Overall, our algorithm performs according to the following
scheme:

1) Show the reference frame to the user, allowing him to
mark the region of interest in the image.

2) Choose some reference points from the region of inter-
est.

3) Initialize model parameters to represent a plane.
4) For each new image:

a) Compute optical flow, optimize parameters accord-
ing to results.

b) Optimize parameters based on intensity values to
prevent drift.

VI. RESULTS

We have tested our algorithm on a set of artificial rendered
image sequences, as well as on sequences of real scenes.
The artificial data set was useful for generating images with
known ground truth, while the sequences of real images have
been used to show that the approach also works in the “real
world.” As depth map model, we have used B-Spline surfaces
of varying order and complexity.

Our first tests were on artificial images generated by a
renderer. Here, we show results for one of the used sequences.
Figure 4 shows an example image from the sequence, showing
a surface with a very difficult to track texture. Because we
wanted to get a rough idea of how well traditional approaches
would work on that sequence, we ran a SIFT feature detector
on some of the images. The feature detection process resulted
in about 20 features, depending on the actual image. Even
when assuming that all features can be reliably identified
through the whole sequence, and that no false feature match-
ings occur, this is by far not enough to fully describe the
complexity of the actual surface. The surface is a quadratic
spline surface determined by 25 control points (5 in each
direction).

Figure 5 shows a plot visualizing the reconstruction quality
achieved by our algorithm as compared to the ground truth of
the artificial sequence. The left plot indicates the difference
(measured by normalized cross correlation, since the recon-
struction is only up to scale) between the surface parameters
determined by our algorithm and the ground truth used by the
renderer. The reconstruction can be seen to be pretty accurate,
even though it is not 100% stable and temporarily diverges
from a previously found accurate model. This can be attributed
to problems in determining the optical flow. However, as can
also be seen from the plot, the algorithm is able to recover
after a small number of steps.



 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

N
C

C

Image number

Depth Parameters

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

D
ot

 P
ro

du
ct

Image number

Rotation Axis

Fig. 5. Left: Plot showing comparison between ground truth depth map parameters and recovered depth map parameters. Right: Analogous comparison of
camera parameters.

The right plot in Figure 5 shows a comparison of camera
parameters to ground truth. Camera rotation is compared based
on the dot product between rotation axes. Note that the dot
product between rotation axes is equal to the cosine of the
angle between the axes, thus 1 is the best value one can
achieve here. We have also compared rotation angle magnitude
and camera translation direction, and results were almost
equivalent, thus further plots are omitted.

The artifical sequences have been used because it is really
difficult in a real-world scenario to determine the ground truth.
Still, it is important to show that our approach also works on
actual data generated from a camera. Hence, we have tested
our method an scene that was showing a piece of cloth draped
over a cup. You can see one image of the recorded sequence
in Figure 4. Figure 6 shows two views of the resulting 3D
model.

Due to the piece of cloth being quite wrinkled, we were
actually expecting more difficulties in reconstructing the real-
world scene. However, we have seen that a spline surface with
only 12× 12 control points was already enough to model the
scene.

As for running times: Our algorithm has been tried on a
system with a 1.86 GHz dual core CPU. Using only one of
the two CPU cores, framerates of about 4-5 frames per second
were achieved. The major time spent during reconstruction
was due to intensity-based optimization. The convergence of
the intensity-based optimization was rather slow, which is
probably due to the non-convex nature of the cost function
in case of large displacements of the tracked pixels to the
optimal position. Still, the performance is promising, and we
expect it to be possible to further improve performance by
pursuing more elaborate optimization schemes.

VII. CONCLUSION

The basis for further research has been established with our
monocular model recovery and validation algorithm. There are
many possible extensions and improvements to this technique.

First of all, while the reference-point based reconstruction
works surprisingly well, it would probably constitute a major
improvement if we were able to capture, in addition to point
intensity values, some characteristics of the surface texture
surrounding a reference point, thus introducing a patch-based
correlation function. We would expect this to improve the
stability and convergence speed of the optimization method
considerably.

Another important issue is the fusion of optimization results
to achieve convergence of the reconstructed model. Until now,
the model parameters are optimized in each step, starting
with the reconstruction results from the previous step. This
is obviously not efficient, since the algorithm should be able
to accumulate knowledge from the images it has seen, so
that the confidence in depth parameters rises over time. This
would prevent the problem of the temporary decrease in model
quality that we have seen in the results section. A possible idea
is to treat the results from our algorithm as measurements for
a Kalman filter [?] that determines the model that has the
highest likelihood.

Furthermore, we did not address the issue of changing
illumination conditions. We would like to be able to deal
with changes in brightness, but also with specularities, which
would, in the current approach, both cause severe prob-
lems. However, some techniques for dealing with problems
of that kind have already been developed, e.g., normalized
cross-correlation matching for brightness-invariant matching.
It should be possible to integrate them into our method.

Until now, we have only used surface models with a fixed
level of detail that is uniform for the whole surface. The level
of detail is determined by the number of parameters used.
In the case of B-Spline surfaces, this directly corresponds to
the number of control points, and a higher number of control
points would allow us to model more complex surfaces.
In nature, however, surfaces often exhibit varying degrees
of complexity in different locations: They might have low
complexity in one part, but another part might be very com-



Fig. 6. Reconstruction result from real-world scenario.

plex. Consequently, a more appropriate model would allow to
dynamically increase the resolution in some parts, while the
resolution in other parts might be decreased. To be able to
exploit this idea, we also need to find a method for detecting
such areas that need to be modeled with higher resolution.

We would also like to extend the approach such that
deformable surfaces can be reconstructed and tracked. For
tackling this problem, we intend to use a setup of two indepen-
dently moving cameras. Based on such an idea, we would like
to introduce a method for determining deformation parameters,
allowing us also to predict and simulate deformations.
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