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Chapter 1

Executive Summary

Deliverable 16 describes the second release of the simulator developed in WP6 “Introspection and Predic-
tion through Simulation”. The first release was described Deliverable 9. Both Deliverables have presented
the activities in Tasks 6.1 and 6.2 according to the Technical Annex:

• [Task 6.1]: Implementation of the engine core architecture and the representation standards.

• [Task 6.2]: Development of the basic modules.

The work in this Deliverable is related to Milestone 5: “Implementation of high-level controllers includ-
ing a global uncertainty model, integration and evaluation in the simulator and experimental platforms,
grounding grasping primitives.”

Improvements in the GRASP simulator

Deliverable 9 introduced the first release of the simulator. Since then, several improvements and exten-
sions have been included in the software package:

• The GRASP simulator is a combination of different existing software packages with some important
extensions developed by the GRASP project. The name of the whole toolkit is OpenGRASP.
The whole software is now accessible at the new url:

http://opengrasp.sourceforge.net

From this URL it is possible to download all the components and have access also to new plug-ins,
robot models, documentation, and demonstration movies.

In addition to this we append Attachment 1 which fully describes the whole toolkit, its architecture
and its features.

• The second release, described in this Deliverable, includes models of popular robots hands in the
robotics community. They have been developed using the Robot Editor from OpenGRASP and
can be downloaded from the project site:

http://opengrasp.sourceforge.net/Downloads.html

• A computational contact model has been developed with the purpose of providing realistic contact
simulation. Attachment 2 describes the foundations and implementation of this model. It also
describes its use to implement the simulation of a tactile sensor. This report also describes the
procedure for the validation of the contact model and the sensors simulation.
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Attached papers
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OpenGRASP: A Toolkit for Robot Grasping Simulation

Beatriz León, Stefan Ulbrich, Rosen Diankov, Gustavo Puche, Markus Przybylski,
Antonio Morales, Tamim Asfour, James Kuffner and Rüdiger Dillmann

Abstract— Simulation is essential for different robotic re-
search fields such as mobile robotics, motion planning and
grasp planning. Especially for grasping, there are no software
simulation packages, which provide a holistic environment
that can deal with the variety of aspects associated with this
problem. These aspects include development and testing of new
algorithms, modeling of the environment and robots, as well as
modeling of actuators, sensors and contacts.

In this paper, we present a new simulation toolkit for
grasping and dexterous manipulation –called OpenGRASP–
with special focus the aspects mentioned as well as extensibility,
interoperability and public availability. OpenGRASP is based
on a modular architecture, that supports the creation and
addition of new functionality and the integration of existing
and widely used technologies and standards. For instance,
OpenGRASP uses an abstraction of physics engines and widely
accepted open industrial standard for representation of robot
models. In addition, a designated editor has been created for
the generation and migration of such models.

We demonstrate the current state of the OpenGRASP devel-
opment and its application in a grasp evaluation environment.

I. INTRODUCTION AND RELATED WORK

Robot simulators have accompanied robotics for a long
time and have been an essential tool for the design and
programming of industrial robots. Almost all industrial ma-
nipulators manufacturers offer simulations packages accom-
panying their robotics products. These tools allow the users
to program and test their applications without using the real
hardware or even building it since such tools allow to analyze
behaviour and performance in advance. In robotics research,
simulators have an important role for the development and
demonstration of algorithms and techniques in areas like
path planning, grasp planning, mobile robot navigation, and
others. The reasons for the use of robot simulations are
several. First, they allow exhaustive testing and tuning of
mechanisms, algorithms on different environmental condi-
tions. Second, they avoid the use and wearing of complex
and expensive robot systems. And third, simulation software
is cheaper than real hardware.

Often, simulation tools used to support research are specif-
ically developed for particular experiments. However, there
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has been some successful attempts to develop general robot
simulators specially focused on mobile robotics. Stage and
Gazebo are respectively 2D and 3D simulators back-ends
for Player ( see [1], [2]), which is a widely used free soft-
ware robot interface. In particular, Gazebo [3] implements
a 3D multi-robot simulator including dynamics for outdoor
environments. It implements several robot models, actuators
and sensors. USARSim [4] has a similar functionality. It is
a free mobile robot simulator based on a gaming physics.
There is also Webots [5], a commercial product which
has a wide success for educational purposes. Microsoft is
commercially delivering its Robotics Studio [6], a framework
for robot programming that includes a visual simulation
environment. OpenHRP [7] is open software platform with
various modules such as dynamics simulator, view simulator,
motion controllers and motion planners for humanoid robot
systems. OpenHRP is integrated with CORBA, and each
module, including the dynamics simulator is implemented
as a CORBA server.

The variety of simulation tools for robotic grasping is
rather limited. The most renowned and prominent one is
the grasping simulation environment GraspIt! [8]. GraspIt!
includes models of several popular robot hands, implements
the dynamics of contacting bodies, includes a grasp planner
for a Barrett Hand and recently has included a simple
model of the human hand. However, GraspIt! has several
limitations. It’s rather monolithic and less modular archi-
tecture makes its improvement and functionality extension
by other as well as integration integration with other tools
and control frameworks very difficult. In addition, it does
not provide a convenient Application Programming Interface
(API), which allows script programming. Further, it does not
include sensor simulation.

Another existing and public available architecture and soft-
ware framework is OpenRAVE [9], which has been designed
to be an open architecture targeting a simple integration
of simulation, visualization, planning, scripting and control
of robot systems. It is designed in a modular way, which
allows its extension and further development by other users.
Regarding robot grasping simulation it provides a similar
functionality to what GraspIt! and various path planning
components. It provides the models of several robot arms
and hands and allow the integration of new ones. In addition,
it also allows the development of virtual controllers for such
models.

The remaining of the paper is organized as follows.
Sec. II defines the requirements imposed on the simulation
environment. Sec. III describes the underlying components



in OpenGRASP including the OpenRAVE architecture, the
physics simulation, the implemented file formats and a mod-
eling tools. In Sec. IV we present current results regarding
the generation of robot models and the physics engines
abstraction. Sec. V concludes the paper and gives an outlook
on future work.

II. REQUIREMENTS FOR A GRASP SIMULATOR

From a scientific point of view, a novel simulator for
robot grasping should provide primarily a realistic sim-
ulation of dynamic properties of, at least, rigid objects
and advanced contact models including soft contacts and
deformable surfaces. From practical and user-level point of
view, it should include the models of the most popular robot
hands, and provide the possibility of creating and adding
new ones. Further, it should provide realistic simulations
of real actuators and sensors, which would enable the use
of the same API for those simulated robots. Regarding
sensors, a grasping simulator has to provides simulations of
specific grasping sensors, like force/torque, contact, tactile
and others. Finally, it should provide a rich and detailed
visualization of simulations.

With respect to software engineering, a novel robot grasp-
ing simulator must be implemented in a modular way that
allows on the one hand an easy extension by both de-
velopers and users and on the other hand the integration
within commonly used software frameworks in the robotics.
Therefore, such a simulator should be implemented using
standard interfaces and protocols to allow communication
with third-party applications and tools. Thus, the simulator
architecture must clearly separate the different functionalities
of the system and integrate all modules through a common
representation of the world, objects and robot models.

In order to have the chance to be accepted and used
in the scientific community, the simulator should be open
source and make use of open standards for file formats and
other representations. In addition, the simulator should have
appropriate tools import/export of robot and object models
from/to standard representations.

To our best knowledge, none of the existing simulation
tools and software packages solutions fulfill all these re-
quirements. Therefore, we are present a software toolkit for
grasping simulation OpenGRASP, which build on top of
OpenRAVE [9] to meet the requirements discussed above.

III. TOOLKIT DESCRIPTION

In order to develop a tool that meets the requirements
listed in the previous section, we adopted a basic practical
principle: Do not reinvent the wheel. This means, first to
review the existing software paying special attention to those
that already meet part of the requirements and second to
make use of existing open and widely software packages
and standards.

After a wide review of existing simulators, physics en-
gines, 3D render engines, and CAD 3D modellers we con-
clude that OpenRAVE is the tool that most closely meets our
requirements. So our efforts have consisted in improving and

extending the OpenRAVE capabilities and features towards
the realization of an advanced graping simulator. These
enhancements have consisted in:

• We have improved OpenRAVE core itself by adding
a new type of plug-in interface for including robot
actuators plugins and also by developing new types of
sensors.

• We have integrated Physics Abstraction Layer
(PAL) [10] to allow the interchange of physics engines
within the simulator.

• We have chosen COLLADA [11] as the file format
for specifying object and robot models used by the
simulator.

• We have developed a robot editor to create and modify
new robot models.

In the following we describe these extensions in more
details.

A. OpenRAVE Architecture

OpenRAVE, the Open Robotics and Animation Virtual
Environment [9], is a planning architecture developed at
the Carnegie Mellon University Robotics Institute. It is
designed for autonomous robot applications and consists
of three layers: a core, a plugins layer for interfacing to
other libraries, and scripting interfaces for easier access to
functions (see Fig. 1).

Fig. 1. OpenRAVE Architecture

The Scripting Layer provides network scripting environ-
ments like Octave, Matlab and Python to communicate with



the Core Layer in order to control the robot and the environ-
ment. It is possible to send commands to change any aspect
of the environment, read any of its information, move real
robots, or change physics/collision libraries. The scripts also
allow the control of multiple OpenRAVE instances across
the network, thus allowing different users to independently
see and interact with the environment.

OpenRAVE is designed as a plugin-based architecture
which allows to create new components to continuously im-
prove its original specifications. Each plugin is an implemen-
tation of a standard interface that can be loaded dynamically
without the need of recompiling the core. Following this
design, different kind of plugins can be created such as
sensors, planners, controllers or physics engines. The core
layer communicates with the hardware through the plugins
using more appropriate robotics packages such as Player and
Robot Operating System (ROS).

A GUI can be optionally attached to provide a 3D visual-
ization of the environment. It continuously queries the core
to update the world’s view andallows the user to change
the position of the objects in the scene. Because viewers
are provided through plugins, a single OpenRAVE instance
can allow multiple viewers to communicate with multiple
environments copies.

Although a many plugins are already implemented to
provide basic functionality, the current grasp simulation
functionality offered has several shortcomings. In order to
make OpenRAVE suitable for our purposes, we require:

• Implementation of plugins for specific sensors used to
improve the grasping capabilities of the robot.

• Implementation of more physics engines and collision
checkers that helps to compare and improve the simu-
lation performance.

• A standard plugin interface of a basic actuator should
be added and implementations for these type of motors
should be developed. This would allow us to accurately
simulate the motors of the arm and hands joints.

We have taken these considerations into account in our
toolkit. First of all, we have developed two new sensor
plugins to be used mainly on anthropomorphic robot hands.
One is a tactile sensor, commonly used in fingers tips such as
in the Barrett hand, which detects and calculates the forces
on the predetermined sensory area and return them as an
array. The other is a force sensor, placed for example in the
wrist, to measure the forces applied while grasping.

Additionally, as models for actuators were not included
in OpenRAVE, we have developed a new plugin interface
called ActuatorBase. Using this interface, we implemented a
new plugin to simulate the motor of the arm and hands joints
which can be controlled using angles, velocities or voltages.

In order to use different physics engines, we have also
implemented a plugin of this kind which make use of a
physics abstraction layer called PAL, which is addressed with
more detail in the next section.

Visualisation is an important part of the simulation. At
the moment OpenRAVE uses Coin3D/Qt to render the en-
vironment, but we are extending it to communicate with

Blender given that our RobotEditor (see Section III-D) is
developed on top of it. Because both Blender and OpenRAVE
provide a Python API, it is possible to use Blender as a front-
end for not just visualization, but also for calling planners,
controlling robots, and editing robot geometry.

We have created the environment setup that we have in the
Universitat Jaume I, consisting of a Barrett hand attached to
a PA10 Arm, which is fixed to a mobile base (An screenshot
can be seen in Fig. 2).

Fig. 2. Screenshot of OpenRAVE simulating the environmet setup located
at the Universitat Jaume I (UJI).

B. Physics Simulation

Simulation of the real world consist not only in creating a
realistic graphic representation of the environment but also to
simulate the forces applied to the bodies and the interactions
between them. Physics engines have been created to simulate
these interactions and are able to approximately predict what
happens in real life.

Nowadays there are many available physics engines,
both commercial and open-source. Some of them are high-
precision engines that require elevated computational power
and others sacrifice this accuracy to work in real time. The
methods they use to simulate physics are also different. Some
of them use penalty methods, specially useful for deformable
objects, some rely on physical laws using constraint equa-
tions; and others, use methods based on impulses [12].

Non of these engines are perfect, they all have advantages
and disadvantages which make it very difficult to decide
which one to use for a simulator. It basically depends on
what we want to simulate and also what the application of
the simulator will be.

The Physics Abstraction Layer (PAL) [10] is a software
created by Adrian Boing which save us from having to
decide, since the beginning, which engine to use for our
simulator. This layer provides an interface to a number
of different physics engines allowing us to dynamically



interchange between them. These functionality adds an in-
credible flexibility to our simulator offering us the possibility
to, depending of our specific environment and use, decide
which engine give us the best performance [13]. Using their
interface, it is also possible to create our own engines, test
and compare them with the existing ones.

The OpenRAVE Physics Engine interface allows the sim-
ulator to run using different engines. It has also an interface
to implement different collision checkers. Each one of them
has to be created as a plugin, extending either the Physic-
sEngineBase or the CollisionCheckerBase class. The actual
version of OpenRAVE only offers the implementation of
ODE (Open Dynamics Engine) within the oderave plugin.
We have created a new plugin to use PAL, called palrave.
This plugin is able to initialize PAL with the specific engine
we want to use, without the need of creating different plugins
for each one of them.

C. COLLADA File Format for Robot Models

During the development of the simulator, a new file format
for robot models has been chosen. In contrast to the original
XML-based file format of OpenRave, a format was looked
for that

• is widely accepted,
• supports the definition of both kinematics and dynamics,
• is extensible,
• and is public domain.

This way, it becomes possible to easily exchange robot
models between all supporting applications and gain more
flexibility in the selection of appropriate tools. Another
important aspect is the conversion from and to other formats
that now becomes possible. However, among the large variety
of file formats for 3D models, there are only a few that are
open and are not limited to store only visual information.
The simulator environment does not rely only on geomet-
rical structures, but also –for instance– on information on
dynamics, kinematics, sensors and actuators of the robot.

The acceptance as an industry standard and the wide distri-
bution, in addition to a clear and extensible design led to the
choice of COLLADA1 as the preferred file format for robot
models accepted by the simulator. It is already supported as
an interchange format by many modelling tools such as 3D
Studio, Blender, OSG, OGRE, Sony, etc. In addition to that,
there are open source frameworks available that facilitate
the integration into new applications. COLLADA stands for
COLLAborative Design Activity. The development of the
standard is currently managed by the Khronos Group2. In
August 2008, version 1.5 of the standard was introduced.
It now contains useful constructs dedicated to describe
kinematic chains and dynamics that can be used directly for
the descriptions of robot models. COLLADA is an XML-
based file format and enables and encourages developers to
extend the specifications to their needs without having to
violate the underlying schema definition. Every file entry can

1https://collada.org
2http://www.khronos.org/

hereby be augmented by additional data that is associated to
a specified application. The only restriction to this data is
to be valid XML code by itself. Constructs embedded in
this way can be validated according to an separated schema
definition together with the complete document. In order to
support specific robot features like sensors and actuators,
we have used this mechanism to extended COLLADA. The
additions include several parts of the original OpenRAVE
file definition. All entries specific to the simulator are be
hidden to all other applications and the compatibility remains
guaranteed. So far, basic support for the COLLADA import
and export has been included in the Simulator.

D. Robot Editor

With the creation of a simulator for grasping also arises
the need for a large data base of geometrical, kinematic and
dynamic models of robot arms and manipulators. To fill this
gap, the development of a modelling tool –the Robot Editor–
has been started. Its main goal is to allow the convenient
creation and integration respectively of the all popular robots
available. The development is driven by the following key
aspects:

• Geometric modeling: The modelling of new robots re-
quires a tool that excels in modeling of the geometrical
components (i.e. meshes).

• Semantic modeling: Even more important is the ability
to allow the description of semantic properties of the
robot manipulator, such as the definition of kinematic
chains, sensors, actuators, etc –or even specify algo-
rithms.

• Dynamics modeling: Another important aspect is the
ability to define physical attributes of the robot’s ele-
ments. At the moment, the focus lies on the dynamics
of rigid bodies.

• Conversion: Robot models usually come in a variety
of different file formats. The modelling tool needs to be
capable to process these formats and convert them into
the COLLADA standard (see section III-C). Especially
GraspIt! files –being an already widely used standard
with many conform models available– should be usable
by the simulator.

To our knowledge, there is no existing solution openly
available that could meet all of these requirements. Therefor,
we decided to develop a new modelling tool which is based
on available open source software. The conceptual design of
the Robot Editor hence relies on two techniques: on the one
hand the open data format COLLADA (see section III-C)
and on the other hand on the open source project Blender3.
Blender is a very versatile, powerful and extensible 3D editor
that has been chosen as basis because of its

• built-in support for many CAD formats,
• convenient 3D modeling,
• support of rigid body kinematics,
• capability of ray-tracing and the production of high

quality rendered images,

3http://Blender.org



Fig. 3. The Robot Editor with its user interface. The Robot Editor allows
the definition of new robot kinematics in a convenient way.

• and easy extensibility via a Python scripting interface.
Blender itself cannot be used directly to generate appropriate
input for the simulator. It lacks the functionality and the
interface for the definition of robot kinematics and dynamics
as well as information on sensors, actuators and algorithms.
In addition to that, conversions between certain file formats
need to be improved or newly implemented, namely the
import of GraspIt! robot models and the COLLADA format.

The scripting interface mechanism mentioned above al-
lows to build the modelling tool on top of Blender. On
the scripting level, one gains access to all relevant data
structures in Blender. The robot model can be augmented
by the required data structures and conserved within the
native file format. The scripting mechanism also allows for
the creation of an user-interface that is specialized for the
use in robotics (see Fig. 3), e.g. you can define a kinematics
via Denavit-Hartenberg parameters. In the long run, the
Robot Editor will contain and provide interfaces for essen-
tial robotics algorithms, e.g. the computation of dynamics
characteristics from the geometric meshes and conversions
between kinematics representations. Adjacency information
of joints and the impact of joint movements to the robot
are additional computational information, which is useful for
developers planning algorithms. In Fig. 4, a functional model
of the anthropomorphic hand of Karlsruhe [14] loaded into
the simulator that has been created with the Robot Editor.

The COLLADA support is currently (Blender version
2.49) available in form of import and export scripts that ship
with the main Blender distribution. They are published as
open source software and have been developed by Illusoft4.
However, they were designed with compatibility only to
documents in version 1.4, and they do not allow other
scripts to include or modify the document either. Hence,
neither the kinematics and dynamics introduced in version
1.5 nor additional descriptions needed by the simulator
can be included in the resulting output . This led to the
further development of this COLLADA compatibility which
now enables the Robot Editor to create valid COLLADA
documents that can be used with the simulator (see Fig. 4).
At the time of writing, there is also a concurrent effort in the

4http://colladablender.illusoft.com/cms/

Fig. 4. Screenshot of the complete model of the Karlsruhe anthropomorphic
robot hand in the simulator.

a. b. c.

Fig. 5. Different robot hand models generated with the Robot Editor: a)
the Otto-Bock hand, b) the Karlsruhe five-fingered hand , and c) the Schunk
hand.

community to integrate version 1.5 support in Blender5 based
on the OpenCOLLADA framework6 which is also currently
adapting to the new standard.

IV. CURRENT ACHIEVEMENTS

A. Robot Models

As stated in section II, it is of great importance to have
models of the most popular robot hands included in the tool
kit. The modelling capabilities of the Robot Editor already
allow to quickly and comfortably create new models for
inclusion. So far, a selection of robot hands have been trans-
formed into COLLADA 1.5 for the use with the simulator:

• a myoelectric upper extremity prostheses of Otto Bock7,
• the anthropomorphic hand of Karlsruhe [14] (Fig. 5-b),
• and the Schunk three finger hand (Fig.5-a).

All these models can applied in simulation as shown in
Fig. 4. In addition to the new models, there are various
models available in the old file format which is still sup-
ported. These are the barrett hand and the katana, pa10,
puma, shadow and ARMAR-III robots.

5http://www.blendernation.com/
blender-google-summer-of-code-2009

6http://www.opencollada.org/
7http://www.ottobock.de/cps/rde/xchg/ob_de_de/hs.

xsl/384.html



Fig. 6. Grasping simulated for several robot hands.

B. Physics Simulation

The PAL plugin has been implemented to be use with
OpenRAVE. Currently PAL supports the most popular
physics engines such as Bullet, Newton, Novodex (Ageia
PhysX) or ODE (Open Dynamics Engine). In theory, with
the development of this plugin, it should be possible to
use any of these engines. The reality is that most of them
are in current development and new versions are released
very often, so their implementation in PAL also has to be
constantly updated, which is not always the case. We have
tested and fixed some problems with Bullet and ODE, so
they can be certainly used with OpenRAVE. We are planning
to test some of the others, so we have more options to
compare and choose the one with better performance for
each particular application.

C. Planning and Grasping

Using the functions provided by OpenRAVE, we can
easily build a set of stable grasps and quickly get our robots
to manipulate various objects in their environment. Figure 6
shows the grasp simulation process by analyzing the contact
points between the robot and the target object. In order to
get the robot to autonomously manipulate objects in the

Fig. 7. Several grasping experiments in a cluttered environment with the
Mitsubishi PA10 arm and a Schunk gripper.

environment, we would need an inverse kinematics solver
that can quickly map grasp locations into robot configuration
joints. Recently OpenRAVE started providing analytical in-
verse kinematics equation solver called ikfast. With it we can
generate C++ code that can return all possible IK solutions
while simultaneously handling degenerate cases. By combin-
ing the automatically generated grasp sets, inverse kinematics
solvers, and planners, we can get robots developed in our
RobotEditor to manipulate everyday objects (Figure 7).

V. CONCLUSION AND FUTURE WORK

The paper presents our ongoing work on the devel-
opment of an open source software toolkit for grasp-
ing simulation. It motivates and describes the features
and internals of the toolkit. The toolkit can be down-
loaded from http://wikis.itec.uka.de/grasp/
wiki/GRASP_Simulator.

We are currently working on several important features
that will be released in the near future. First, and more im-
portant we are working in the development and integration on
soft contact models within the physics engines, that provides
a more realistic behaviour of the interaction between objects
and robots hands. Such a contact model will permit also the
development of tactile sensor models.

We are also working on the modelling of popular and
commercial robot hands, including its actuators and sensor
capabilities. This will help for the establishment of the toolkit
as helpful tool for researcher teams.

The toolkit has been developed within the GRASP [15]
project funded by the European Commission.
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Model of tactile sensors using soft contacts and its application to
simulated robot grasping

Sami Moisio, Beatriz León, Pasi Korkealaakso, Antonio Morales

Abstract— This work uses soft contacts to model a tactile
sensor. It is essentially a contact patch with multiple contacts
based on a geometry. The element calculates the collisions
to triangularized target geometries and then determines the
contact forces. The contact itself is a soft contact with a full
friction description including stick-slip phenomena. Due to the
discrete nature of simulations soft contacts are difficult to
model. Especially in grasping a complete friction description
is essential in order to perform a stable grasp on an object.
Previous collision algorithms allowing for grasping have been
non-penetrative which make pressure calculations difficult if
not impossible. This method makes soft contact grasping in
simulations possible. A simulator with simulated tactile sensors
offers new possibilities for studying robot grasping using tactile
sensors. The flexibility and repeatability of a simulator can be
used to a great advantage in grasping research.

I. INTRODUCTION

The main goal of this work was to create a simulated
tactile sensor element. That is to say a simulated tactile
element with the same physical properties as a real tactile
sensor element would have, compressibility, friction, etc. In
order to create a model of the sensor dynamics three differ-
ent areas need to be addressed: tactile sensor construction,
modeling soft contacts and friction modeling. All these areas
are combined to make a physical model of a tactile sensor
element. The sensor element type itself is universal and
can be used to model any kind of a tactile sensor but the
aim of this work was to simulate a Weiss robotics tactile
sensor commonly used in grasping. A model was created
that enables the calculation of surface pressure as well as
the holding torque around the contact surface and the stick-
slip phenomenon. Due to the discrete nature of simulation
these phenomenon are very difficult to model correctly.

Research on using tactile sensors in grasping has been
an active topic for some years now [1] obtaining some
good results and new methods. Simulation has some great
advantages over using real hardware when researching grasp-
ing. For example changing or repeating some configuration
with the real simulator can be very time consuming. In the
simulator these situations are easily and efficiently solved.
Changing the configuration of the system can be as easy
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as just changing a number from the configuration file. The
simulation model also is not limited to existing hardware.
For example the positioning of the tactile sensors as well
as the type can easily be changed unlike in the real hard-
ware. Another great possibility of using a simulator is the
availability of different information. The real hardware needs
always some sort of an actual sensor for detecting things. The
simulator on the other hand has all the information related
to the virtual world available for use by just knowing what
to query from the simulation. For example the slippage in a
tactile sensor can be queried from the sensor model because
it exists in the tactile sensor friction model. This availability
of information allows for construction on non-real sensor
types. For example an approach vector from an end effector
base that measures the distance to the nearest object is easy to
create, but in real hardware this might be impossible for some
end effectors. These non-real sensors offer great possibilities
for researching new ways of studying grasping without being
restricted by existing hardware. It might even offer new ideas
for constructing new types of hardware sensors.

The related work is discussed in Section II. Section III
presents the proposed model of the sensors. The application
of the model to robot grasping is explained with a use case in
Section IV. The results of the implementation are shown in
Section V and the conclusion and future work are discussed
in Section VI.

II. PREVIOUS WORK

Robotic manipulators have been researched widely using
real hardware. Only in recent years the use of dynamic
simulations has been researched in a wider scope. Some
simulations environments like GraspIt! [2], [3] have also
been developed for the purposes of robotic grasping.

A. Collisions

Contact models can be divided into three different cate-
gories: Rigid body assumption for collisions is used in the
analytical [4] and in the impulse methods [5], [6] while
continuous contact models are used in the penalty methods
[7]–[9]. In this context rigid body assumption means non-
penetrative or colliding contact in which the exact impact
moment is solved after which the surfaces are prevented
from penetrating each other. In the impulse based approach
contacts between bodies are considered as a collision at a
specific point in time without the need of solve contact
forces meaning that the change in the object velocities
is applied directly to the bodies over one time-step. The
method is fast and easy to implement but problem arises with



steady contacts in static configurations. Analytical methods
are based on the use of constraints to handle contacts. In
contrast to impulse based methods the method is stable in
steady contacts but, however, due to simultaneous solving
of all contacts it is also computationally expensive. Penalty
methods are consequently called penetrative or soft contacts
(also non-colliding contacts) because they allow for small
penetrations in the colliding objects. Consequently, contact
forces are obtained using a temporal nonlinear springdamper
element at the contact point. Based on the elasticity of the
bodies in contact, the parameters of spring-damper element
can be defined using the Herzian contact theory [10].

Analytical and impulse methods gives accurate description
for contacts and are often used when there is not allowed any
interpenetration between contacting bodies. These methods
also allows longer timesteps compared to penalty methods
with stiff springs. However these methods leads complicated
equation especially in the case of multiple contact points
and contacts with friction. Furthermore, in the case of
mechatronic machines such as robots, the machine dynamics
requires the use of small time steps making penalty methods
more suitable especially for real time applications. It is
also important to note that rigid body assumption does not
account small deformations during collisions, instead there
occurs instantaneous changes in velocities. For this reason,
continuous contact models gives more accurate description
of contact forces during contact period.

Conventional penalty methods use only deepest contact
point for contact forces. [11] used geometry based approach
in order to find exact contact areas of the polygons applying
contact forces to multiple points. However, in the most
cases the algorithm is not efficient enough for real time
simulation and it is highly dependent on the body geometry
construction. The developed method solves the contact forces
in each of the sensor cells forming a contact surface. One
of the advantages in using penalty methods is the straight
forward applicability for solving surface pressures from
contacts due to the fact that the objects are allowed to form a
real contact surface. In non-penetrative contacts the surface
has to be formed using guess or assumptions since the objects
are not allowed penetrate and hence to form a real contact
surface. This in turn complicates many different calculations
for example holding torque around the contact area. For
this reason a penalty method was chosen to be used in the
developed sensor model.

B. Grasping in simulation

Grasping in robotics using simulated tactile sensors is a
new field of research. Some research has been done but they
are methods that are derived from existing non-penetrating
contact models such as in [12]. In general robotic grasping
simulations usually have been using kinematics instead of
dynamics. This can be due to the fact that the simulations
community has not co-operated extensively enough with
the robotic grasping community and the simple fact that
simulated grasping is a very difficult problem. The most
common simulation method for robotic grasping simulations

has been the impulse method (GraspIt!, ODE, Bullet, etc.).
The impulse method is a very effective method for simulating
structures that form open kinematic chains such as robotic
manipulators usually are. The drawback of using impulse
methods for solving the constraints between the bodies is
that the accuracy of the joint constraints is dependent on
the mass ratio of the two objects. This means that if the
robotic manipulator has very light grippers attached to a
heavy wrist the joints connecting the bodies can suffer from
instability. This in turn increases the difficulty of modeling
grasping. This mass ratio dependency is also a problem when
grasping different objects using the impulse methods [5], [6].
When a very light (Barrett hand fingertip is approximately
50 g) object tries to collide with a very heavy object (3
kg payload) the mass ratio becomes already problematic
in impulse methods. Using a penalty method this mass
dependency can be avoided but the solution becomes sensible
to variables such as the time-step size due to the stiffness of
the system.

III. TACTILE SENSOR MODEL

The tactile sensor element is formed based on a triangu-
larized geometry. This was done so that differently shaped
sensor elements could be easily defined. For example a
finger tip with a tactile sensor is not flat and therefore it
would be difficult to describe in order to form the tactile
sensor array to encompass the finger tip. A geometry can
be formed directly based on the finger tip geometry. In
Figure 1 are presented two different variations of a tactile
pad element array. One 1(a) being a simple grid and the
other a spherical surface 1(b). The image represents the
construction of a tactile sensor array. The blue lines represent
the normal directions of different triangles. The tactile sensor
element array is constructed using the vertices from the
sensor geometry. This means that for each vertex the sum
of all normals of the triangles connected to it is calculated
and used as a normal direction to the sensor element. The
sensor element maximum penetration needs to be defined in
order to determine the parameters for the sensor. It is also
used to place the beginning of a vector pointing in the normal
direction to the vertex. This vector in turn is used to calculate
the intersection against all possible targets.

The tactile element and its direction vector are then used
to determine collision against all objects the tactile sensor is
supposed to hit. The contact information (relative velocity,
penetration, position, etc.) from this possible contact point is
then used to calculate the force in a single tactile element.
This force in turn is then applied to the body the tactile
sensor is attached as well as the body the tactile sensor is
hitting.

So for example in the case of a 6*8 tactile sensor array one
would draw a 5*7 grid (such as in image 1(a)) having 6*8
vertices to represent the centers of the tactile elements. These
elements are then used to calculate the forces in the tactile
pad which are also used in the simulation in order to grasp
the object. This information is also used for the feedback



(a) A simple grid

(b) A spherical surface

Fig. 1. Tactile Sensor Geometries

from the tactile sensor element identical to the actual physical
sensor.

A. Soft contact model

Briefly, the kinematics of contact point between two bodies
a and b can be described using knowledge of the states and
geometries of the bodies. The normal of the force vector
is obtained from the tactile sensor collisiont model. This
normal vector is then used to define the force as well as
the tangential plane for the friction. The contact force in the
normal direction of the plane for colliding bodies can be
written as spring-damper element:

Fn =−(kd + cvrn)n (1)

where k and c are spring and damping coefficients respec-
tively. vrn is the relative velocity between the contact points,
d is the penetration distance and n is the penertation distance
which are both obtained from the collision detection.

The resulting moments of contact can be written:

Mcont = p̃Fn (2)

where p̃ is skew-symmetric matrix of contact point p
defined in global coordinates with respect to local coordinate
system.

The contact normal force is then used in order to solve
for the friction forces in the contact tangential plane. The
friction forces are then added to the force element and the
force is applied to the sensor and target bodies.

B. Friction model

In the grasping simulations, it is essential to have a proper
description of friction. In order for the friction algorithm
to perform in a stable manner the contact normal force
algorithm must also be very stable. Otherwise the friction
force becomes unstable as well. Another aspect in addition

to the friction is the contact points obtained from the collision
algorithm. In order to allow for a proper holding torque for
example several contact force points need to be generated. In
the conventional methods that use deepest contact point for
contact forces, the friction is also acting in one point. Due to
this fact, the models are not accounting torque induced by
the contacting area. However, the problem can be avoided
by formulating a proper contact surface such as in the tatile
sensor elements. In this study the friction forces are evaluated
using LuGre friction model [13] which accounts both
static and sliding phenomenas based on bristle deflection
interpretation. Accordingly, the LuGre model captures the
dynamic behavior of the contact surface using first order
differential equation for bristle deflections as follows:

ż = ẋ−σ0
|v|

g(v)
z (3)

where z is bristle deflection, σ0 is stiffness coefficent and
ẋ is relative velocity of the contacting surfaces. In Eq. (4)
g(v) is used to capture Stribeck effect in order to describe
stick-slip phenomena as follows:

g(v) = α0 +α
−
(

ẋ
ẋ0

)2

1 (4)

ẋ0 is the Stribeck velocity. Parameters α0 and α1 are
defined as follows:

α0 = Fnµd (5)
α1 = Fn(µs−µd) (6)

where Fn is contact force in direction of the normal of the
contact surface, µs and µd are the static and dynamic friction
coefficients, respectively. Using state variables of friction and
adding viscous term, the friction force can be written as
follows:

F = σ0z+σ1ż+ cẋ (7)

IV. APPLICATION TO ROBOT GRASPING

A tactile sensor can have several applications to improve
robot grasping [14]. First of all, it can use the haptic
information to position the hand correctly and detect the
contact points when the robot hand is grasping an object.
This contact information can be used to evaluate the grasp
quality, if a model of the object is available. Tactile sensors
can also be used to explore a new object and build its model
before grasping it or for object identification. Additionally,
it can be used by the controller during the grasping of an
object in order to detect the slip between the object and the
robot fingers.

Developing a model of a tactile sensor then allows the
simulator to take advantage of all these possibilities and it
has a wide range of uses for robot grasping. For example
when searching for appropriate grasps for an object, a
simulator can easily be used to run several approaches to
test the different grasps. The simulator can also be used to



easily change the robot configuration. If the research requires
testing using sensors that the real robot does not have, it can
be done easily on a simulator by just simply defining the
sensor to the simulation model. The same principle applies
to using the tactile sensor in simulations. If for example one
needed to know the best places for placing tactile sensors on
a robot it could easily be tested on a simulator.

Also, the simulated tactile sensors have certain advantages
over the real ones. First of all, it is always ideal and
consistent. No manufacturing faults or drift (unless espe-
cially modeled). Secondly, all the information used in the
simulation is available for use in the controller. For example
measuring the slippage in a real tactile system is difficult,
but in a simulated sensor that information is available.

Giving all these advantages, the model of a tactile sensor
explained in Section III was implemented and it is detailed
in the following sections.

A. Simulated use case scenario

A simple example of a robot hand trying to grasp an object
was used as a test case scenario for the simulated tactile
sensor. The robot hand has tactile sensors attached to each
finger. The following steps contain the basic flow of the use
case:
• The robot hand starts static, in a predefined position,

with the fingers open.
• An object is placed between the fingers.
• The fingers start closing while the tactile sensors are

being read.
• When the readings indicate that the fingers are touching

the object, they stop closing.
• The fingers then, are opened to the start position.
This example is demonstrated modeling the platform of

the Lappeenranta University of Technology, consisting on
a Melfa RV-3SB robot arm with a Shunck PG70 parallel
jaw gripper which is shown in Figure 2(a). The arm was not
considered in order to concentrate only on the gripper, which
was fixed to a specified position.

Each finger of the gripper has attached a Weiss tactile
sensor shown in Figure 2(b). These sensors are resistive
tactile sensors, which main components are a common
electrode and sensing electrodes arranged as a matrix. This
matrix measures the change on the resistivity according to
the applied load, returning an image of the applied pressure
profile [15].

The purpose of this use case is to demonstrate and validate
the use of the tactile sensor for a basic grasp activity. In the
next sections, the implementation of the use case is explained
in detail.

B. OpenRAVE implementation

The simulated model of the tactile sensor was imple-
mented using OpenRAVE [16], a planning architecture de-
veloped at the Carnegie Mellon University Robotics Institute.
It has been designed to be an open architecture targeting
a simple integration of simulation, visualization, planning,
scripting and control of robot systems. It allows the user to

(a) Shunck PG70 gripper

(b) Weiss Tactile Sensor (DSA 9205)

Fig. 2. Robot and tactile sensor simulated

easily extend its functionality developing their own custom
plugins, such a new controllers, sensors, planners and physics
engines.

Using this architecture, the model of the Shunck PG70
parallel jaw gripper was implemented and a new plugin for
tactile sensors was created, which are described in detail in
the following sections.

1) Environment and robot definition: The environment
used for the use case consists on a table, the robot hand
and a box between its fingers.

OpenRAVE uses XML to store all robot and scene de-
scriptions. The PG70 parallel jaw gripper was modeled using
three iv files, one for the base and one for each finger. An
snapshot of the OpenRAVE scene showing the PG70 gripper
model with the tactile sensors can be seen in Figure 3.

Fig. 3. OpenRAVE model of the PG70 gripper with the Weiss tactile
sensors.

2) Tactile Sensor plugin: The model of each tactile sensor
was implemented in a new Sensor plugin.



This plugin defines the parameters of the sensor stored in
the Tactile Sensor Geometry, the Tactile data that it returns
and the implementation of the base interface for sensors
including the initialization and uptate at each time step.

3) Tactile Sensor geometry: The plugin allows the user to
parameterize the sensor with specific values described in the
Tactile Sensor geometry. A new XML reader was created to
read this values from the xml file.

As explained in the previous sections, the model of the
sensor is based in a mesh which defines the vertices where
the forces are calculated. In OpenRAVE, each sensor is
usually attached to a link in order to move the sensor in con-
junction with the robot. For the tactile sensor this link should
contain the mesh geometry needed for the sensor definition.
The xml tag to use this definition is < shapeBaseOnGeom >,
which needs to be defined “true”. The false value will be used
to define the sensor geometry based on a plane mesh matrix
defined with the number of cells in x and y directions.

The tactile sensor geometry should also contain the thick-
ness of the sensor and the parameters used to calculate the
friction force (F) described in Table I.

TABLE I
FRICTION FORCE PARAMETERS.

parameter description
sigma0 Stiffness coefficent
xdot0 Stribeck velocity
mu s Static friction coefficient
mu d Dynamic friction coefficient

K Spring coefficient
C Damping coefficient

The following is an example of the OpenRAVE XML code
needed to attach a tactile sensor to a robot:

< AttachedSensor >
< link > ob ject1 < /link >
< sensorname = ”T 1”type = ”SimTactileSensor” >
< shapeBaseOnGeom > true < /shapeBaseOnGeom >
< sigma0 > 20000 < /sigma0 >
< xdot0 > 0.5 < /xdot0 >
< mus > 0.6 < /mus >
< mud > 0.3 < /mud >
< K > 1000 < /K >
< C > 100 < /C >
< /sensor >
< /AttachedSensor >

4) Tactile Sensor data: The data returned for the tactile
sensor is the same structure as the one defined for the real
sensor. In addition to the sensor type and the size of the
tactile array, it consist of a vector of doubles containing the
values of the forces calculated in each vertex of the sensor
mesh and the value of the combined force.

5) Tactile Sensor plugin implementation: When Open-
RAVE finds the XML code to attach a tactile sensor, it creates
a new instance of the Simulated tactile sensor plugin with

the parameters specified. It then waits until all the objects
and robots in the scene are created and finds the link which
the sensor is attached to. This link contains the mesh which
is used to store the triangles and vertices needed to define
the sensor.

Now that the sensor is created, it gets all the objects
in the environment excluding the ones that belongs to the
robot. These objects are stored as they are the ones that
can collide with the sensor. At the moment, all objects in
the environment are considered in the calculation but this
process can be optimized if only the objects that are going
to be grasped by the robot are specified in the XML file.

After this, each time step, when the sensor is updated, it
gets the positions and velocities of the sensor and collision
links and it checks if they are colliding. Finally, it calculates
the friction forces and updates the tactile data structure.
This data can be read calling the GetSensorData method,
for example by the controller.

C. Results

The tactile sensor was implemented in OpenRAVE using
the plugin architecture. It was loaded at runtime and it
successfully create the sensor, loaded the collision objects
and performed the use case with the help of the controller.

The sequence of the use case execution is shown in
Figure 4.

(a) Open (b) Closing (c) Stop (d) Opening

Fig. 4. Robot and tactile sensor simulated

The controller was checking the tactile readings when
closing the gripper until they showed that the sensor was
touching the box. They presented a meaningful behavior,
given zero when the gripper was closing and positive values
when it approached to the box. As future work, the readings
obtained with this simulated model are going to be compared
with the ones gotten with the real sensors executing the same
example, in order to calibrate and validate the model of the
tactile sensor.

V. CONCLUSION AND FUTURE WORK

This paper presented an approach to model a tactile sensor
using soft contacts. Using OpenRAVE, a new Tactile sensor
plugin was developed and tested using a simple grasp use
case.

Our priority for future work is the validation of the model
and simulation system using a real robot. The system will
be verified using the PG70 system used at the Lappeenranta
University of Technology. The robot controller will be used
to manipulate both the real and the simulated robot. The
results will then be verified and validated using a case where



a simple grasp action is taken using the PG70. After the
validation the same system can be added to the other robot
models in the OpenRave. The tactile sensor element will also
be improved to be more efficient. Also some other features
need to be developed for the sensor element like creating the
sensor element using parameters.

This work has been developed within the GRASP [17]
project funded by the European Commission.
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