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Chapter 1

Executive Summary

This Deliverable encapsulates several contributions to the implementation of a cognitive architecture for a
robot system with cognitive grasping capabilities. This architecture should facilitates the implementation,
demonstration and evaluation of the application scenario on different platforms available in the project.

Starting from the components and tools developed in the first year of the project (see Deliverables D8)
and the core architecture of the simulator (see Deliverable D9), we continued our work on the conceptual
design as well as the implementation of this architecture.

According to the Technical Annex, Deliverable D17 presents the activities performed in the second year
of the project in the context of the tasks 7.1, 7.2, 7.3, 7.4 and 7.5. The objectives of these tasks are:

Task 7.1 Development and implementation of a cognitive control architecture for grasping and dexterous
manipulation necessary to bootstrap the system integration and the evaluation of methods and
algorithms in different scenarios on different robot platforms as it is the long-term goal of this work
package, in particular of task 7.5.

Task 7.2 Software infrastructure that allows for smooth and efficient exchange of modules in the project
in order to minimize the overhead in the overall system integration.

Task 7.3 Specification of interfaces for knowledge and control flows between perception, action, learning
and reasoning modules.

Task 7.4 Definition of the first year scenario, which is necessary for evaluating the developed algorithms
in the first year of the project.

Task 7.5 Evaluation of the developed methods and algorithms in different scenarios on different robot
platforms.

Task 7.6 Benchmarking environment for grasping and dexterous manipulation including software, robot
control frameworks, data sets of objects, robot and human hand models as well as grasp-related
algorithms.

The work in this deliverable is related to Milestone 5 ”Implementation of high-level controllers including
a global uncertainty model, integration and evaluation in the simulator and on experimental platforms,
grounding grasping primitives” as well as Milestone 6 ”Integration and evaluation of human body and
hand tracking on active robot heads, demonstration of a grasping cycle on the experimental platforms”.

The document is organized as follows. In Chapter 2, we present briefly general requirements on the
cognitive architecture. In Chapter 3, a summary of performed integration activities in the project is
given. These include 1) sensor-based scene exploration and grasping 2) human grasping activities 3)
integration of the simulator in WP6 and the control architecture in WP3 and 4) integrated grasp and
motion planning. Chapter 4 concludes the Deliverable.
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Chapter 2

Requirements on the Architecture

2.1 GRASP: the main idea

GRASP develops a framework for reasoning about the world state, causes, and effects by using the
simulator as a memory and reasoning agent. In contrast to traditional uses of a simulator, where the
simulator is assumed to model perfect knowledge of the world, in GRASP the simulator models the
belief of the robotic agent about its best guess of the world. Thus, world knowledge is acquired using
imprecise sensors such as vision, and continuously refined during interaction with the world. Update of
the world knowledge can be triggered on several levels from simple adaptation and estimation to high-
level conceptual surprise. The simulator thus partially solves the problem how to store and represent
world knowledge. This encapsulates the ”introspection” and ”surprise” aspects of GRASP.

The relation of GRASP to developmental robotics and classical execution of pre-programmed skills is
also important. GRASP combines high-level concepts with a learned mapping to embodiment specific
capabilities. For example, the task-relevant qualities may be defined by a human, however the anchoring
is a result of learning. Thus, GRASP addresses the major issue how to combine high-level symbolic
representations with low-level sensor processing. The use of machine learning techniques is not unique
per se, however the use of learning to explicitly link sensors (visual, haptic) to high-level concepts provides
a basis for symbolic reasoning.

GRASP rests upon the Predict-Act-Perceive paradigm where the knowledge of grasping in humans can
provide the initial model of the grasping process which then has to be grounded through introspection to
the specific embodiment. Some of the ideas originate from findings in human brain research where the
self-knowledge is retrieved through different emulation principles.

In the Predict-Act-Perceive paradigm, two loops run in parallel (not necessarily synchronously): One
in the real world and one in simulation (see Fig. 2.1). The current state of the world is first observed
with different real sensors (real perception), and used to build the world model in the simulator. In the
simulator (internal world of the robot), there are two different modes of prediction:

• Predict the values of different sensors, given an exploratory action and potential assumptions. E.g.,
the backside of objects is unobserved; an assumption is that objects are symmetric; the backside
can be explored with haptic sensors; given the assumed symmetry, the haptic sensor values can be
predicted. Note that the goal of this mode is to explore the world, to extend or verify the state
estimate.

• Predict the outcome of a specific action applied to the world. When interacting with objects,
dynamic simulation can provide the estimation of the next state. Given measurements of tactile
sensors after a grasp has been applied to an object, predict the outcome of a lifting action. When
interacting with objects, dynamic simulation can provide the estimation of the next state that can
ease, for example, tracking of objects.

Once the prediction has been made by the simulator, the selected action can be applied in reality and
the real sensor values can be compared with the predicted ones. A mismatch will in our case be treated
as a surprise that may, for example, trigger an exploratory action.

7
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Figure 2.1: Predict-Act-Perceive paradigm.

Thus, the paradigm encompasses on the one hand the evaluation of a currently executed action based on
its predicted outcome in simulation, while on the other hand the simulation state is grounded and refined
based on the experience in the real world, which consequently leads to an improvement in the prediction
and parameterization of future actions.

2.2 Requirements on Grasping Architecture

Research on cognitive architectures plays a central role in the development of artificial cognitive systems as
the architecture represents the underlying infrastructure that allows the integration of perception, action,
adaptation, reasoning and communication components, which should provide a concrete framework for
modeling of cognitive aspects through specifying essential structures, division of modules, relation between
modules, and a variety of other aspects. Several cognitive architectures have been proposed in the
literature. For a review on several known cognitive architectures, the reader is referred to [VMS07, LLR09]
and [Sun04]. Vernon et al. present in [VMS07] a broad survey on the various paradigms of cognition and
review several cognitive architectures. They summarize from a developmental approach point of view the
key architectural features that systems capable of autonomous development of mental capabilities should
exhibit. In [LLR09], important aspects of cognitive architecture related to representation, organization,
performance, and learning, as well as evaluating such architectures at the system level are discussed. Sun
discusses in [Sun04] behavioral characteristics commonly exhibited in human everyday activities, which
one should attempt to capture in cognitive architectures.

Despite of conceptual advances that have been achieved in the past and the practical use of some of
the proposed architectures, there remains a considerable amount of unsolved issues, which have to be
addressed. Most architectures emphasize a specific domain, where they rarely are confronted with the
interactions between a physical embodiment and the environment. Cognitive architectures for human-
inspired grasping should take into consideration the following aspects:

• Learning of grasping skills and task knowledge from human observation as well as the adaption of
such skills to new situations and contexts.

• Action representations, which allow the adaption of grasping skills to different situations and
contexts as well as the mapping of human grasping activities to robots with different embodiments.

• Scene representations, which integrate different sensorial entities and exploration strategies.

• The use of the simulator as memory and reasoning engine, which models the belief of the world
state for the system, and allows to predict the outcomes of performed actions.

• The connection between high-level symbolic and low-level sensorimotor space to facilitate planning
of complex tasks based on learned action primitives and explored scenes as well as reasoning about
the world.

8



Chapter 3

Integration Activities

3.1 Sensor Based Scene Exploration and Grasping

The central part of GRASP regarding scene modeling for exploration and context understanding is
studied in WP5 and it is closely related to work in WP1 (modeling and tracking human activity) and
WP2 (studying sensory-motor representations for object and action modeling). The main novelty in
WP5 is to map human attention strategies to artificial systems adapting the view-planning and detection
capabilities of the human eye to the capabilities of a given sensor and actuator configuration of a technical
vision system. Thus, WP5 makes use of investigation of human strategies of monitoring a specific task
or interacting with a given contextual situation to find best sensor data processing and next best view
strategies in the context of a manipulation task.

In GRASP, we employ two strategies in this context:

• Active scene exploration: done by robot either in real world or in simulation.

• Spatio-temporal scene understanding from human observation.

3.1.1 Scene Exploration

The knowledge representation in our system consists of geometric properties of the object (shape, texture),
its physical properties (density, center of mass, stiffness, grasp points), and action attributes that describe
the actions observed during handling of the object and typical locations where such objects can be found
or deposited. We extended the mismatch-based surprise detection from Year 1 to actions where the initial
mismatch-trigger triggers further verification based on known actions in the scene (Fig. 3.1).

Figure 3.1: Surprise hierarchy proposed in the Technical Annex

In addition to the standard exploration task that reconstructs the 3D information about the environment,
the system needs to distinguish between geometric structures that are not mission-relevant and structures
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Figure 3.2: System learns handling properties of objects stored in the Working Memory in WP5 from
human actions.

that need to be manipulated and, therefore, explored in their exact geometric and tactile properties. Since
our goal is operation in cluttered complex environments, we implemented a novel registration system that
allows object identification under significant occlusion in the scene, where the initial assumption from
Year 1 about a planar supporting surface does not hold anymore [PBed]. We implemented a system that
tracks the human actions (Fig. 3.2) and derives from the observed trajectories information about allowed
object handling properties [PBar].

Neuroscientific work on human grasping strategies in WP1 provides here additional information about
expected physical properties of objects depending on grasp point modifications of objects. Known objects
are stored in the a-priori Atlas representation often with multiple physical state alternatives, e.g. full or
empty, that result in changing grasp point selection by the human. The knowledge about human grasp
strategies allows here a pre-selection of possible object states that need to be verified in the active scene
exploration.

Passive observation of the environment does not allow to recover complete information about the environ-
ment. A static stereo head on a manipulator provides 2.5D information about the environment with no
information about the occluded faces of the object. Active exploration of the environment with moving
cameras as a possible extension of the manipulation system was proposed in [RBed] in continuation of
our previous work on next best view strategies in Year 1.

In terms of the active vision system, different exploration strategies are possible. During the second year,
we have developed methods for multimodal scene exploration, based on visual and haptic input. Here,
initial object hypotheses formed by active visual segmentation are confirmed and augmented through
haptic exploration with a robotic arm. We update the current belief about the state of the map with
the detection results and predict yet unknown parts of the map with a Gaussian Process. We show that
through the integration of different sensor modalities, we achieve a more complete scene model. We also
show that the prediction of the scene structure leads to a valid scene representation even if the map is
not fully traversed. Furthermore, we propose different exploration strategies and evaluate them both in
simulation and on the KTH robotic platform. Fig. 3.3 displays the overall process.

3.1.2 Grasping Known and Unknown Objects

Integration progressed along lines of known objects and towards unknown objects. Methods for known
objects are related to the methods mentioned above for scene exploration and interaction [PBar].

Familiar objects are recognized based on shape context presented in [BBK09]. We have worked further
on generating grasping actions for familiar and novel objects based on visual input from a stereo camera.
The work integrated two methods advantageous either in predicting how to grasp an object or where to
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Figure 3.3: The pipeline for the generation of an occupancy grid from individual views for scene explo-
ration. (a) displays the robotic head from which several individual views (b) are gathered. (c) These
views are projected into a common reference frame. and (d) cleaned to remove noise. The points are
labeled according to the 3D object segmentation. In (e) and in (f) these points are voxelized. The voxels
for those points labeled as objects are projected down into the map which appears in (g) with blue being
computed as unseen and gray levels corresponding to occupancy probability.

apply a grasp. The first one reconstructs a wire frame object model through curve matching. Elementary
grasping actions can be associated to parts of this model. The second method predicts grasping points
in a 2D contour image of an object. By integrating the information from the two approaches, we can
generate a sparse set of full grasp configurations that are of good quality. We demonstrate our approach
integrated in a vision system for complex-shaped objects as well as in cluttered scenes. An example of
the whole system is shown in Figure 3.4.

An important step to work towards the final project goal is to move towards grasping unknown objects
and to integrate this work into the overall system. To this end the work presented in [RV09] has been

Figure 3.4: (a): System setup with 6 DoF KUKA arm, a 7 DoF SCHUNK hand and the 7 Dof ARMAR-III
stereo head. (b,c): Left peripheral and foveated views. (d-h): The steps of the grasping system.
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Figure 3.5: Grasping unknown objects.

made available to other partners. In this work stereo or laser data is used to obtain the shape of parts
in the scene. An example is given in Figure 3.5. The approach is to split work in two groups of objects,
rotationally symmetric objects and all other objects, which are estimated with planar patches starting
from the top surfaces.

Figure 3.5 shows an example of a scene with objects, the detection of grasping points and hand poses.
The green points display the computed grasping points for rotationally symmetric objects. The red
points show an alternative grasp along the top rim. The illustrated hand poses with the Otto Bock
hand prosthesis on the TUW robot arm shows a possible grasp for the remaining graspable objects. The
numbers refer to the objects in the database for purposes of evaluation in [RV09].

To achieve the integration of detecting these grasp points, the partners implemented similar stereo systems
as TUW or adapted their stereo systems to the needs. For example, for the Karlsruhe head, that is also
used at KTH, special calibration of the cameras has been developed to achieve optimal results of stereo
matching as the first step in the above approach of grasping point detection. As indicated, the approach
does not know which objects are presented, but starts from the detected geometrical primitives. Tests in
the next weeks will give feedback on the present state of the method. With this integration the partners
are able to exploit the visual grasp point detection. This is needed as the first step for progressing with
the work on integrating with tactile grounding, haptic exploration and estimating grasping stability.

3.1.3 Haptic Exploration and Stability Learning

Related to haptic exploration, Deliverable D13 presents how machine learning can be used to link tactile
sensor measurements to the abstract concept of “stable grasp”. The approach allows the use of abstract
representation of manipulation actions developed in WP3 such that embodiment-specific mappings can be
learned and embodiment-independent plans can be used. Integration of the system to the overall GRASP
system is work in progress. The approach (see Fig. 3.6) has been studied on two GRASP platforms at
KTH and LUT.

3.1.4 Integration of Vision and Haptics

Integration of visual pose estimation with contact force control was demonstrated at LUT. The task
demonstrates grasping of known objects using vision to determine the objects’ initial poses. A stereo
camera is first used to detect the location of an object (a DVD case is shown in the example) on a table.
Then a robot hand is used to grasp the object and transfer it to a box in preset location, while controlling
contact forces using a tactile sensor. The overall setup is shown in Fig. 3.7(a) and few frames from a video
taken during a test run in Fig. 3.7(b). The setup integrates software components from LUT, TUW and
TUM as well as object models from UniKarl. A general diagram of the integrated software components
and the flow of information between them is presented in Fig. 3.8.

The process is started by acquiring a 3D point cloud of the scene. This was performed by taking a stereo
image using a Bumblebee2 stereo camera from Point Grey Research and then using proprietary software
by the camera manufacturer to generate a point cloud. At this step the coordinate transform between
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Figure 3.6: Learning grasp stability.

(a)

(b)

Figure 3.7: (a) The setup of the demonstration task: the stereo camera, the robotic hand and the DVD
case; (b) A series of images showing how the DVD case is moved to box on the right.

the camera coordinates and the robot coordinates was also performed, by using markers positioned at
known coordinates. The corresponding calibration methods have been developed at LUT.

After the point cloud was acquired, a dominant plane was removed and the rest of the point cloud
segmented by using a software component from TUW. The next step was to recognize the object in the
scene and determine its pose, that is, registration of the object. This requires both 3D models of the used
objects and a method for matching a 3D model to an acquired point cloud. The models were provided by
UniKarl and the registration software component by TUM. Additional models of simple objects (boxes
and cylinders) were constructed algorithmically. The registration component only handled finding a pose
in which the model and a segmented point cloud matched the best. Therefore, additional functionality
was implemented at LUT for determining which point cloud segment represented the correct object.

After the pose of the object was known, pre-planned grasps were used for deciding where to grasp the
object. At this point the pose of the robot hand which can be used for grasping the object is known.
Grasping was performed by the manipulation architecture developed at LUT, described in Deliverable
D13. The grasping action is based on a state machine which defines a set of controllers for the robot
platform which are used to control the robot. The structure of this state machine that was used to move
and place the object was static, however the variables such as the object pose were changed according to
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Figure 3.8: Software components and flow of information.

the output of the registration system, so that the object can be grasped from any pose within reachable
distance from the robot. Contact force was controlled using tactile sensors.

3.2 Human Grasping Activities

3.2.1 Human Studies

Since the seminal studies by Jeannerod (1981) on primate grasping, many investigations have analyzed,
in considerable detail and for a variety of different conditions, properties and control of reach-to-grasp
movements. A particular focus of many of these studies was on kinematic parameters such as transport
velocity, time and size of maximal grip aperture, and selected posture. However, normally these actions
do not occur in isolation, but are part of a large action sequence by which the actor aims at reaching
one or several goals. Indeed, there has been surprisingly little research on how actors move and shape
their hands depending on the type of action they intend to perform with the goal object, on whether
other objects in the field of view also need consideration, and on whether the other hand is also somehow
involved in the action plan.

Obviously, robotic benchmark tasks such as emptying a dishwasher are characterized by just these complex
conditions: objects are grasped in the presence of obstacles, they are moved to other locations, and new
objects then have to be picked up. In order to provide GRASP with data on human strategies and
behaviour in such tasks, we studied in the second work period various aspects of human grasping in more
complex, prototypical actions, in several lines of experiments:

• Effects of obstacles and intermediate goals on reach-to-grasp kinematics

• Kinematics of grasping when attention resources have to be shared with a secondary action

• Planning of sequential pick-and-place actions

14
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• Relation of covert and overt attention in combined eye and hand movements

• Gaze direction in pinch grasp preparation

• Grasping irregular shapes and natural objects with 2, 3, and 4 fingers

• Understanding manifolds of grasping actions

Together, our findings are not only exciting and novel for the neuroscience of human grasping, but we
are convinced that they are also of considerable importance for the development of artificial systems that
should be able to produce cognitive grasping. The studies have revealed several important principles
that we deem to be of basic significance for the production of fluent, human-like grasping movements in
a complex environment.

Manifolds of Grasping Actions

Natural human hand motion is highly non-linear and of high dimensionality. For some specific activities
such as handling and grasping of objects, the observed hand motions lie on a lower-dimensional non-linear
manifold in hand posture space. This notion has been commonly used in the area of robotics for the design
of grasp taxonomies. The goal of the work was to, differently from all the existing grasp taxonomies,
model the spatial dimensionality and temporal context of hand actions. Instead of studying how different
objects are grasped, we study how different grasps are performed. Apart from the important insights
of human hand motion, the developed technique has also been used to evaluate the state-of-the-art
taxonomies. We have shown how the technique can be used to embed high-dimensional grasping actions
in a lower-dimensional space suitable for modeling, recognition and mapping. Considering the whole
grasping sequence instead of just a single grasp posture facilitates the spatial and temporal reconstruction
of a grasping action. The method is evaluated on both synthetic and real data. The resulting latent space
for synthetic data is shown in Figure 3.9 and it has a very distinct star shape. This is due to the special
nature of the data set, with a common starting posture and linear interpolation to the different end
postures. In the middle of the star is the resting position of the hand. If one moves outside along a
branch, a specific grasp type will be formed.

An immediate application of the extracted latent space is a non-parametric dynamic model of grasping
actions for tracking and classification. We do not model dynamics explicitly but include back-constraints
that indirectly enforce temporal continuity in the latent space. This avoids the unimodal nature of the
GPDM dynamics. The created GPLVM model allows the generation of concatenated grasping actions
with natural transitions.

Figure 3.9: Grasp space spanned by synthetic data of 31 grasp actions.
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3.2.2 Human Tracking

In [DRK+09] (Attachment 1 to this Deliverable) we present a system for vision-based grasp recognition,
mapping and execution on the humanoid robot ARMAR-IIIb. The system comprises three components:
a real-time and markerless human upper body motion capture system which provides the approaching
direction towards an object, hand pose estimation and grasp recognition system, which provides the grasp
type performed by the human as well as a grasp mapping and execution system for grasp reproduction
on a humanoid robot with five-fingered hands. Once an object is reached, the hand posture is estimated,
including hand orientation and grasp type. For the execution on a robot, hand posture and approach
movement are mapped and optimized according to the kinematic limitations of the robot. Experiments
are performed on the humanoid robot ARMAR-IIIb.

Further progress on the tracking of human hands is reported in Deliverable D11.

3.2.3 Goal-Directed Imitation of Grasping Activities

We continued the work on learning motor skills from human demonstration and the realization of a
goal-directed grasping imitation framework (see Fig 3.10).

Markerless Observation of 
H G

Scene and Object
T ki

Marker‐based 
Observation of Human

Human GraspsTracking
Observation of Human 

Grasps

Goal
Task Representation as 
Human Action Segments

Task Constraints

Human Action Segments

i i f i Task ConstraintsInstantiation of Motion 
Primitives

Mapping with MMM

Controller

Execution Success
No

Execution Success

Figure 3.10: Framework for goal-directed imitation of grasping activities

Starting from observation of human actions, a library of motion primitives is built. The dynamic move-
ment primitive (DMP) formulation proposed in [INS02] and [SIB03] is used for the representation of
demonstrated movements with a set of differential equations. Representing a movement by a differential
equation has the advantage that a perturbance can be automatically corrected for by the dynamics of
the system (robustness against perturbation). Furthermore, the equations are formulated in a way that
adaptation to a new goal is achieved by simply changing a goal parameter. This characteristic allows
generalization. Based on this representation, we build a library of movements by labeling each recorded
movement according to task and context (e.g., grasping, placing, and releasing). For further details the
reader is referred to [PHAS09].
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In WP2 we extend the framework of dynamic movement primitives to action sequences that allow object
manipulation. We added semantic information to movement primitives, such that they can code object-
oriented actions. We demonstrated the feasibility of the approach in an imitation learning setting, where
a humanoid robot learned a pick-and-place task from a human demonstration, and could generalize this
task to novel situations.

Ongoing work in cooperation between UniKarl and KTH is the learning of task constraints in grasping
and the incorporation of such constraints in the imitation framework. These constraints describe the
relationship between task, objects and actions and are thus of great importance for the adaptation of
grasping actions to different objects and situations.

More details are given in Deliverable D12.

3.3 Integrated Grasp and Motion Planning on Armar-III

For grasping an object several tasks have to be solved in general, as searching a feasible grasping pose,
solving the inverse kinematics (IK) or finding a collision-free grasping trajectory. We developed an
algorithm to solve such problems based on a probabilistic planning approach using Rapidly Exploring
Random Trees (RRT) (see [VDAD10], Attachment 2 to this Deliverable). The so-called RRT-Grasp
planner searches a feasible and reachable grasp during the planning process and thus pre-calculated
grasping positions are not needed. The developed approach combines the three main tasks needed for
grasping an object: finding a feasible grasp, solving the inverse kinematics and searching a collision-free
trajectory that brings the hand to the grasping pose. This means that there is no explicit definition of
a target configuration, since the target is derived from a feasible grasp which is calculated during the
planning process (see Fig. 3.11). Searching a feasible grasping position online has the advantage that the

Grasp-RRT Plannerpobj 

qstart

grasping
trajectory

Approach
Trajectory
Generation

RRT
Growing

Grasp
Scoring

Collision
Checking

Approach
Sphere

Distance
Calculation

Convex Hull
Computation

Figure 3.11: Overview of the Grasp-RRT Planner.

search is not limited to a potentially incomplete set of offline generated grasps. Furthermore, the search
for a feasible grasp is focused on reachable configurations and thus the computation of grasping poses is
only performed for positions that can be reached by the robot. The algorithms can even be used when
just a rough estimation of an unknown object is given, since an approximated 3D model can be used to
search grasping poses online.

In Alg. 1 the main planning loop is presented. The planner is initialized with the root configuration
qstart and pobj , the 6D pose of the object that should be grasped. Starting from qstart RRT-based
extension methods are used to build up a tree of collision-free and reachable configurations. For every
new configuration qi, that is created to extend the tree, the corresponding workspace position pi of
the grasp center point is calculated and stored together with the configuration. Later, these workspace
positions are used to choose a candidate for testing a grasping pose. From time to time a node of the
RRT is selected and via the pseudoinverse Jacobian J+(q) the TCP is moved toward a feasible grasping
pose in the ApproachTrajectory method (see Alg. 2). The Jacobian matrix J(q) for the participating
joints is built in every loop and J+(q) is derived via single value decomposition.

When Alg. 2 succeeds, the resulting RRT node defines a potential grasping pose which is scored by the
grasp quality measurement module. In case the quality score lies above a threshold, the final grasping
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Algorithm 1: GraspRRT (qstart, pobj)

RRT.AddConfiguration(qstart);1

while (!TimeOut()) do2

ExtendRandomly(RRT );3

if (rand() < pSearchGraspPose) then4

ngrasp ← ApproachTrajectory(RRT, pobj);5

if (ScoreGrasp(ngrasp) > scoremin) then6

return BuildSolution(Grasp);7

end8

end9

trajectory can be built easily since the approach trajectory already defines a collision-free connection to
the RRT.

Scoring a grasping configuration is realized by a grasp quality measure based on forces, which are adapted
to the torques exerted on the object. Analogue to the determination of the object wrench space (OWS),
the surface of an object is sampled once to generate a set of m possible contact points Co. Initially, unit
forces are applied on these points. The direction of a contact force f at each contact point is constrained
by a friction cone, which is approximated by a friction pyramid to reduce the complexity. Each applied
force leads to a torque vector, whose magnitude and direction depend on the geometry of the object and
the length of the force vector. A stable grasp is given if the sum of all torques, the net torque, on the
contact points is zero, i.e. the exerted forces immobilize the object in the hand. For this purpose, the
magnitude of fi is scaled by a factor bi, which can be formulated as an optimization problem:

min(
m∑
i=1

(ci − pcom)× bifi)
2 , (3.1)

where ci denotes the i-th contact point and pcom the object center of mass. Using steepest descent
method, a solution for the force magnitude scaling is found. A convex hull is used to approximate the
space of forces applied on the object. Hence, for Co, the convex hull CHo is obtained (depicted in
Fig. 3.12).

Regarding a multi-fingered hand grasping an object, the contact point set Cg consists of n points. After
adjusting the force magnitudes (see Eq. 3.1), the grasp is represented by the convex hull CHg as depicted
in Fig. 3.12. The quality of a grasp qg ∈ [0, 1] is determined by the factor, which scales CHo to optimally
fit in CHg. Unlike grasp quality measures in wrench space, the method described above is computationally
efficient, since the force space can be easily approximated by a convex hull consisting of only a few facets.

Figure 3.12: Top Row: The object with a visualization of CHo. Bottom Row: The grasp specific CHg

is used to compute the grasp quality score. For the measuring cup a grasp quality score of qg = 0.46 is
determined.
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Algorithm 2: ApproachTrajectory(RRT, pobj)

nApproach ← SelectGraspExtensionNode(RRT );1

pgrasp ← ComputeGraspingPose(nApproach, pobj);2

n← nApproach;3

repeat4

∆p ← pgrasp · (n.p)−1;5

∆q ← J+(n.q) ∗ LimitCartesianStepSize(∆p);6

n′.q ← n.q + ∆q;7

if (Collision(n′.q) || !InJointLimits(n′.q)) then8

if (NumberOfContacts(CloseHand(n)) ≥ 2) then9

return n;10

else11

return NULL;12

end13

n′.p← ForwardKinematics(n′.q);14

RRT.AddNode(n′);15

n← n′;16

until (Length(∆p) > ThresholdCartesean) ;17

return n;18

When large objects like the wok in Fig. 3.14 should be grasped by a humanoid robot, both hands are
needed for applying a stable grasp. Based on the Grasp-RRT planner, introduced in the last section, we
propose the Bimanual-Grasp-RRT planner which combines the search for a bimanual feasible grasp with
the search for a collision-free grasping motion for both arms.

Fig. 3.13 depicts an overview of the Bimanual Grasp-RRT planner. The planner instantiates two Grasp-
RRT planners, one for each hand. These instances are started in parallel, so that the search for feasible
grasps is done simultaneously for the left and the right hand. Furthermore they are configured to search
and store grasps until the main thread terminates.

The algorithms have been evaluated with different setups in simulation and on the humanoid robot
Armar-III (see [VDAD10], (Attachment 2 to this Deliverable)).

Bimanual GraspRRT Plannerpobj 

qstart

bimanual
grasping
trajectory

GraspRRT
Left

grasps
trajectories

GraspRRT
Right

Bi-Grasp Scoring
Self Collision Checking

Figure 3.13: Overview of the Bimanual Grasp-RRT Planner.
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Figure 3.14: The Bimanual Grasp-RRT planner is used to search a collision-free grasping trajectory for
14 DoF of both arms of Armar-III.

3.4 Integration of Simulator and Control Architecture

The control architecture described in D13 is currently being used to control different robots platforms,
focusing on manipulation, especially grasping by a robotic arm and hand. In GRASP, it is necessary
that the simulated robot performs identically to a real one, including the control logic and sensors. In
the following we describe work aiming towards this goal.

In summary, for creating a simulated model of a real robot, for which the controllers already exist, the
following are needed:

1. Implement the interfaces for the simulated hand and arm, addressing the commands to the simulated
actuators.

2. Implement the simulated sensors and attach them to the robot

3. Initialize the High-level controller with the specific simulated robot

The rest of the implementation should remain the same for both cases.

The manipulation actions are described by abstract state machines which are defined in eXtensible
Markup Language (XML). The state machine contains the definition of states and the transitions between
the states. It also describes the conditions that determine whether the described action is a success or a
failure, which is especially useful in simulation as the system can learn the reasons of the failures before
actual action takes place in the real world. As the abstract state machine is hardware independent, it
does not need to be changed in the simulated case. This hardware independent description of the action is
translated to a hardware- or embodiment-specific state machine, which allows the abstract state machine
to be adapted to the hardware platform. The embodiment-specific state machine contains the control
logic in a hybrid discrete-continuous automaton. This hybrid structure allows real-time control of the
robot while having a discrete set of states, which are dictated by the abstract state machine.

The high-level controller consists of the embodiment-specific state machine, interfaces to the hardware
manipulator and the control arbitrator. These interfaces should be implemented for the simulated arm
and hand and passed to the controller at initialization.

Each state of the embodiment-specific state machine contains the control logic in the form of primitive
controllers. These controllers output the control signals to the hardware actuator. The signal should be
the same as in the real robot but the control arbitrator will send it to the simulated robot instead. The
simulated manipulator will then send the given command to the specific simulated actuator.
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The transitions and primitive controllers have access to all the sensors in the system. When defining the
specific robot, the simulated sensors are attached and can be accessed as any real sensor.

The first example of a simulated robot using this abstraction architecture was implemented using the
platform of the Lappeenranta University of Technology, consisting of a Melfa RV-3SB robot arm with
a Schunk PG70 parallel jaw gripper. The arm was not considered in order to concentrate only on the
gripper fixed to a static position. Each finger of the gripper has a Weiss tactile sensor (DSA 9205)
attached.

The control architecture design for this specific gripper is shown in Figure 3.15 and the implementation
of its components is described in the following sections.

Figure 3.15: Control architecture design for the simulated gripper

3.4.1 Implementation

The implementation of the different components of the system is based on OpenRAVE [DK08], a planning
architecture developed at the Carnegie Mellon University Robotics Institute. It has been designed to be
an open architecture targeting a simple integration of simulation, visualization, planning, scripting, and
control of robot systems. We have extended its functionality developing our own custom plugins for
controllers, sensors, actuators and physics engines.

The real Schunk PG70 parallel jaw gripper was modeled using three Inventor files, one for the base and
one for each finger. The environment consists of the robot, a table and a box laying on it. The description
of the robot and the environment was stored in XML files.

The real robot and its model in OpenRAVE are shown in Figure 3.16.

In addition to the robot geometry, several sensors had to be implemented to model the PG70 gripper: a)
A time sensor which queries the physics engine defined in the environment about the simulated time is
used by the high-level controller to synchronize events. b) The PG70 gripper has a sensor which returns
three values: the position of the gripper fingers, which is the distance between them; the velocity of the
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(a) Schunck PG70 gripper (b) OpenRAVE model

Figure 3.16: Schunck PG70 gripper, real and simulated.

fingers and finally the measured current. c) The Weiss tactile sensor attached to each finger was modeled
using soft contacts. The detailed implementation is described in [SMM10].

All these sensors were implemented in a sensor plugin loaded to OpenRAVE at runtime. Each of them
has a specific type defined, which should be specified when attaching the sensor to a robot and will
differentiate them from the real ones such as SimTimeSensor or SimTactileSensor.

The possibility to create actuators did not exist in OpenRAVE. The architecture originally was meant for
planning purposes so it does not perform dynamic simulations. For example, a robot can be moved by
changing the values of its joint angles, but not applying a torque to them. In order to dynamically move
a robot, actuators that represent the real motors should be modeled and added to the specific joints. In
order to allow this functionality in OpenRAVE a new interface called ActuatorBase was defined, allowing
plugins of this type to be created and attached to a robot.

For our example, a new plugin modeling the Gripper Actuator was implemented. The slider joint name of
each gripper finger should be specified in the XML file. It uses the function SendCmd to set the velocity
to each joint in order to open, close or stop the gripper fingers.

The diagram in Figure 3.17 shows in a simplified way, the sequence of actions performed by OpenRAVE
to control the simulated robot.

Figure 3.17: OpenRAVE control sequence diagram.

The example used to test the integration was the following:

• The robot hand starts static, in a predefined position, with the fingers open.

• An object is placed between the fingers.
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• The fingers start closing while the gripper sensor is being read.

• When the readings indicate that the fingers have closed around the object, they stop closing.

• The fingers are then opened to the start position.

3.5 New Features in the Simulator

See Deliverable D16.
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Chapter 4

Conclusions and Future Work

This Deliverable presented the work in the second year in WP7 towards the implementation of a cognitive
control architecture for grasping and manipulation. Major integration efforts related to scene exploration,
learning from human observation, grasp planning as well as the use of the simulator are described.

The integration efforts will be continued in the next period of the project. The focus will be on further
development of platform independent software components to allow on the one hand the smooth trans-
ferability of the developed methods to all robot platforms in the project as well as on the other hand to
serve as a basis for a framework for benchmarking in the context of object grasping.
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Grasp Recognition and Mapping on Humanoid Robots

Martin Do, Javier Romero, Hedvig Kjellström, Pedram Azad,
Tamim Asfour, Danica Kragic, Rüdiger Dillmann

Abstract— In this paper, we present a system for vision-based
grasp recognition, mapping and execution on a humanoid robot
to provide an intuitive and natural communication channel
between humans and humanoids. This channel enables a human
user to teach a robot how to grasp an object. The system com-
prises three components: human upper body motion capture
system which provides the approaching direction towards an
object, hand pose estimation and grasp recognition system,
which provides the grasp type performed by the human as
well as a grasp mapping and execution system for grasp
reproduction on a humanoid robot with five-fingered hands.
All three components are real-time and markerless. Once an
object is reached, the hand posture is estimated, including
hand orientation and grasp type. For the execution on a
robot, hand posture and approach movement are mapped and
optimized according to the kinematic limitations of the robot.
Experimental results are performed on the humanoid robot
ARMAR-IIIb.

I. INTRODUCTION

A humanoid robot’s capability of autonomously adapting
and acting in new and unstructured environments is very
limited. In the majority of cases, a skilled and experienced
user is needed for the programming in order to adapt an
existing action to a new situation. To enable teaching of
a robot by non-expert users, a natural intuitive interface
is needed. Since imitation presents an obvious solution for
tackling this problem, this field has received great interest in
humanoid robotics. The benefit of exploiting demonstration
is clearly revealed in [1], where an anthropomorphic arm is
capable of balancing a pole in the first trial after observing
a human.

A challenging problem where a robot could greatly benefit
from a human demonstration is an object grasping task. Such
a task involves the control of several degrees of freedom,
visual servoing, tactile feedback, etc., turning it to a highly
complex task. About the grasp action, a grasp can be divided
in two stages: an approach stage and final grasp stage. Due
to high object variety concerning shape, size, and mass,
determining an adequate approach movement and selecting
a suitable grasp type increase the chances that an object is
successfully grasped. Instead of telling the robot explicitly
which approach movement and which grasp type shall be
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used, it is desirable to have a system which enables the robot
to observe a human during grasp execution and to imitate
the demonstration. For the implementation of such a system,
various problems have to be tackled, like observation of the
human performing the grasp, the mapping of the grasp, and
the final execution on the robot.

An important part of the grasp imitation system is the
block in charge of getting information about the arm and
hand movements. In order to provide this information, the
approach movement of the arm as well as the hand pose have
to be recognized. Aiming towards ease of use, markerless
systems seem to be the most obvious solution for the
observation of human grasps since, besides vision sensors,
additional equipment is avoided and the preparation effort
is kept to a minimum. However, markerless 3D motion
capturing and reconstruction of hand pose based on image
data are extremely difficult problems due to unstructured
environments, the large self-occlusion, high dimensionality
and non-linear motion of the arm and the fingers.

Besides the perception modules, another crucial part of an
imitation system consists of the mapping and the execution of
an observed human grasp on a humanoid robot. Due to severe
constraints of mechanical systems and differences between
the human and the robot’s embodiment, a large number of
requirements arise, which are difficult to be satisfied at once.
Towards enabling a humanoid to imitate a human grasp,
our system integrates several subsystems and methods. First,
using a stereo camera setup human observation is initiated
by capturing upper body motion and scanning the scene for
known objects to attain information on the approach stage.
Subsequently, grasp classification and hand orientation are
provided through the estimation of the full hand pose in a
non-parametric fashion. Finally, the motion data is gathered
and mapped onto the robot for execution. The mapping is
accomplished via a standardized interface and the ensuing
execution is achieved by means of non-linear optimization.

II. RELATED WORK

Several approaches have been made to create a markerless
human motion capture system for humanoid robots. Espe-
cially, image-based approaches have been a major focus of
this field. These approaches are either search-based ([2], [3]),
utilize an optimization approach based on 2D-3D correspon-
dences [4], [5], or are based on particle filtering. In [6], it
was shown that human motion can be successfully tracked
with particle filtering, using three cameras positioned around
the scene of interest.



Towards imitation of human motion by a robot, the map-
ping and execution of motion capture data are issues whereas
possible solutions pursue strategies which either make use of
artificial markers and landmarks or which are based on the
transfer and post-processing of joint angles. Marker-based
approaches are presented in [7] and [8] where methods based
on minimization of the mismatch between robot and human
markers are introduced. However, in [9] and [10], joint angles
of a demonstrators posture are determined and transferred to
the robot for execution. Due to joint and velocity constraints,
a scaling and transformation process must be performed in
order to obtain a feasible joint angle configuration for the
robot.

Analysis of human hand pose for the purpose of learning
by demonstration (LbD), see [11] has been thoroughly inves-
tigated, almost exclusively with the help of markers and/or
3D sensors attached to the human hand. In the work by
Oztop [12] motion capture, color segmentation with artifi-
cially colored hands, and active-marker capture systems were
compared. Magnetic gloves have also been used extensively
because of their accuracy [13]. Another input source for LbD
systems is the passive joint measurements of the robot itself
[14]. However, the methods shown above all use invasive
devices. We envision a LbD scenario where the teaching
process can be initiated without calibration and where the
robot-user interaction is as natural as possible. For this
reason, we want to reconstruct the hand posture in a visual
markerless fashion.

Methods for hand pose estimation that are not constrained
to a limited set of poses can largely be classified into
two groups [15]: I) model based tracking and II) single
frame pose estimation. Methods of type I) usually employ
generative articulated models [16], [17], [18], [19]. Since the
state space of a human hand is extremely high-dimensional,
they are generally very computationally demanding, which
currently makes this approach intractable for a robotics
application. Methods of type II) are usually non-parametric
[20], [21]. They are less computationally demanding and
more suited for a real-time system, but also more brittle
and sensitive to image noise, since there is no averaging
over time. The method presented here falls into the second
approach. However, it takes temporal continuity into account
and it can be used for online real-time reconstruction.

III. GRASP OBSERVATION

As mentioned before, we assume that a grasp consists of
an approaching stage and a final grasp stage. The observation
of the whole grasping process involves recognition of the
grasp type, estimation of the approach arm movement and
object detection. Following the target of having an intuitive
and natural programming interface for robots, we use a
markerless human motion capture system for the observation
of human motion using the stereo vision system of the robot’s
head [22]. The head has two eyes and each eye is equipped
with two cameras, one with a wide-angle lens for peripheral
vision and one with a narrow-angle lens for foveal vision.

First, the robot recognizes known objects in the scene and
starts capturing human motion. The hand pose estimation
system is triggered as soon as the human hand is in the
vicinity of the object. To obtain a close-up of the hand, the
foveal cameras are used. The grasp observation is finished
with the classification of the observed human grasp.

A. Hand Pose Estimation
The input to the method is a sequence [It], t = 1, . . . , n

of monocular images of the human hand [21].
In each frame It, the hand is segmented using skin color

segmentation based on color thresholding in HSV space. The
result is a segmented hand image Ht.

The shape information contained in Ht is represented with
a Histogram of Oriented Gradients (HOG). This feature has
been frequently used for representation of human and hand
shape [23], [24], [25]. It has the advantage of being robust
to small differences in spatial location and proportions of
the depicted hand, while capturing the shape information
effectively.

1) Non-parametric Pose Reconstruction: In this section,
we omit the time index and regard the problem of recon-
structing a single pose p from a single HOG x.

Our goal is to obtain the grasp class and orientation of the
human hand. We can infer this information from the pose
p of the hand, since all this information is stored for each
entry of the database. Therefore, we want to find the mapping
p̂ = M(x), where p̂ is the estimated 31D hand pose in terms
of global orientation (lower arm yaw, pitch, roll) and joint
angles (3 wrist joint angles, 5 joint angles per finger) , and x
is the observed 512D HOG representation of the hand view,
described in Section III-A.

The mapping function M can be expected to be highly
non-linear in the HOG space, with large discontinuities. Fol-
lowing [21], M is therefore represented non-parametrically,
i.e., as a database of example tuples {〈xi,pi〉}, i ∈ [1, N ].
Due to the high dimensionality of both the HOG space
(512D) and the state space (hereafter denoted JOINT space,
31D), the database needs to be of a considerable size to cover
all hand poses to be expected; in our current implementation,
N = 90000. This has two implications for our mapping
method, as outlined in the subsections below.

2) Generation of Database Examples: Generating a
database of 105 examples from real images is intractable.

(a) HOG x, JOINT p (b) HOG x1, JOINT p1 (c) HOG x2, JOINT p2

Fig. 1. Ambiguity in mapping from HOG space to JOINT space. Even
though it is visually apparent that ‖p−p2‖ # ‖p−p1‖ in JOINT space,
database instance 1 will be regarded as the nearest neighbor as ‖x−x1‖ <
‖x−x2‖. Note that the object in the hand just contributes with occlusion of
the hand in HOG extraction, as it is then colored uniformly with background
color.



Instead, we used the graphics software Poser 7 to generate
synthetic views Hsynth

i of different poses. The database
examples are chosen as frames from short sequences of
different grasp types from different view points, different
grasped objects, and different illuminations.

The grasp types are selected according to the taxonomy
developed in the GRASP project1, which integrates the
Cutkosky [26], Kamakura [27], and Kang [28] taxonomies.
The whole database is also available at the same place.

From each example view Hsynth
i , the tuple 〈xi,pi〉 is

extracted, where xi is generated from Hsynth
i as described in

Section III-A, and pi is the pose used to generate the view
Hsynth

i in Poser 7.
3) Approximate Nearest Neighbor Extraction: Given an

observed HOG x, the goal is to find an estimated pose
p̂ = M(x). With the non-parametric mapping approach, the
mapping task p̂ = M(x) is one of searching the database
for examples 〈xi,pi〉 such that xi ≈ x. More formally, Xk,
the set of k nearest neighbors to x in terms of Euclidean
distance in HOG space, di = ‖x− xi‖ are retrieved.

As an exact kNN search would put serious limitations on
the size of the database, an approximate kNN search method,
Locality Sensitive Hashing (LSH) [29] is employed. LSH is a
method for efficient ε-nearest neighbor (εNN) search, i.e. the
problem of finding a neighbor xεNN for a query x such that

‖x− xεNN‖ ≤ (1 + ε)‖x− xNN‖ (1)

where xNN is the true nearest neighbor of x. The com-
putational complexity of εNN retrieval with LSH [29] is
O(DN

1
1+ε ) which gives sublinear performance for any ε >

0.
4) The Mapping M is Ambiguous: The database retrieval

described above constitutes an approximation to the true
mapping p̂ = M(x), robust to singularities and disconti-
nuities in the mapping function M.

However, it can be shown empirically that M is inherently
ambiguous (one-to-many); substantially different poses p can
give rise to the similar HOGs x [23]. An example of this is
shown in Figure 1.

Thus, the true pose p can not be fully estimated from a
single HOG x (using any regression or mapping method);
additional information is needed. In the next section, we de-
scribe how temporal continuity assumptions can be employed
to disambiguate the mapping from HOG to hand pose.

5) Time Continuity Enforcement in JOINT Space: We
now describe how temporal smoothness in hand motion can
be exploited to disambiguate the mapping M.

Consider a sequence of hand poses [pt], t = 1, . . . , n,
that have given rise to a sequence of views, represented
as HOGs [xt], t = 1, . . . , n. Since the mapping M is
ambiguous, the k nearest neighbors to xt in the database,
i.e. the members of the set Xk, are all similar to xt but
not necessarily corresponding to hand poses similar to pt.
An important implication of this is that a sequence of hand
poses [pt], t = 1, . . . , n does not necessarily give rise to a

1www.grasp-project.eu.
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Fig. 2. Grasp Classification with continuity enforcement in JOINT space

sequence of HOGs [xt], t = 1, . . . , n continuous in the HOG
space.

However, due to the physics of the human body, the speed
of the hand articulation change is limited. Thus, the sequence
of hand poses [pt], t = 1, . . . , n, i.e. the hidden variables,
display a certain continuity in the JOINT space. This is
illustrated in Figure 2.

The hand pose recognition for a certain frame t is therefore
divided into two stages; I) retrieval of a set of k nearest
neighbors Xk using single frame non-parametric mapping,
as described in Section III-A.1; II) weighting of the members
of Xk according to their time continuity in the JOINT space.

Let Pk be the set of poses corresponding to the kNN set
Xk found in stage I). Moreover, let p̂t−1 be the estimated
pose in the previous time step. In stage II), the members
pj , j ∈ [1, k] of Pk are weighted as

ωj = e−
‖pj−p̂t−1‖

2σ2 . (2)

where σ2 is the variance of the distance from each entry pose
pj to the previous estimated pose pt−1.

The pose estimate at time t is computed as the weighted
mean of Pk:

p̂t = (
k∑

j=1

ωjpj)/(
k∑

j=1

ωj) . (3)

The grasp class estimation Gt is obtained through a
majority voting process within the Np poses with the highest
weight ωj (for our experiments Np = 15). Gt is then
smoothed temporally taking the majority vote in a temporal
window of Nf frames (Nf = 10 in our experiments). This



can be seen in Figure 2. The whole system runs at 10 Hz on
a 1.8 GHz single core CPU.

B. Object Recognition

For the robust recognition and accurate 6D pose estimation
of single-colored objects, in our previous work, we have
developed a model-based approach based on a combination
of stereo triangulation, matching of global object views and
online projection of a 3D model of the object [30]. The
requirement for the approach is global segmentation of the
objects, which is accomplished by color segmentation. For
training, a 3D model of the object is used to generate views
with different object orientations in simulation. Each view is
stored along with its corresponding orientation. For recog-
nition, each region candidate obtained by the segmentation
routine is matched against the database. An initial orientation
estimate is given by the stored orientation information with
the matched view. An initial position estimate is given by
the stereo triangulation result of the segmented regions in
the left and right camera image. The triangulation result of
the centroids depends on the view of the object and thus
cannot serve as a constant reference point. In order to solve
these problems, a pose correction algorithm is applied, which
make use of online projection of the 3D model. This pose
correction algorithm is an iterative procedure, which in each
iteration corrects the position vector by computing the tri-
angulation error in simulation and correcting the orientation
estimate on the basis of the updated position estimate.

C. Markerless Motion Capture

In the following, our real-time stereo-based human mo-
tion capture system presented in [31] will be summarized
briefly. The input to the system is a stereo color image
sequence, captured with the built-in wide-angle stereo pair
of the humanoid robot ARMAR-IIIb, which can be seen
in Figure 5. The input images are preprocessed, generating
output for an edge cue and a so-called distance cue, as
introduced in [32]. The image processing pipeline for this
purpose is illustrated in Figure 3. Based on the output of
the image processing pipeline, a particle filter is used for
tracking the movements in joint angle space. For tracking
the movements, a 3D upper body model with 14 DoF (6
DoF for the base transformation, 2·3 for the shoulders, and
2·1 for the elbows) consisting of rigid body parts is used,
which provides a simplified description of the kinematic
structure of the human upper body. The model configuration
is determined by the body properties like the limbs length of
the observed human subject. The core of the particle filter
is the likelihood function that evaluates how well a given
model configuration matches the current observations, i.e.
stereo image pair. For this purpose, an edge cue compares
the projected model contours to the edges in the image. On
the basis of an additional 3D hand/head tracker, the distance
cue evaluates the distance between the measured positions
and the corresponding positions inferred by the forward
kinematics of the model. Various extensions are necessary
for robust real-time application such as a prioritized fusion

segmented shirt color gradient map

segmented skin color

input image

Fig. 3. Illustration of the image processing pipeline.

method, adaptive shoulder positions, and the incorporation of
the solutions of the redundant arm kinematics. The system
is capable of online tracking of upper body movements with
a frame rate of 15 Hz on a 3 GHz single core CPU. Details
are given in [31].

IV. GRASP MAPPING

Before the execution on the robot, the approach movement
in the form of joint angle configurations and the recognized
grasp type are mapped onto the robot. In order to map
motion onto the robot, we proposed in our previous work
(see [33]) the Master Motor Map (MMM), a standardized
interface which features a high level of flexibility and
compatibility, since it allows mapping from various motion
capture systems to different robot embodiments. The MMM
provides a reference kinematic model of the human body
by defining the maximum number of DoF, currently 58, that
can be used by a human motion capture module and a robot.
Trajectories in the MMM file format can be represented in
joint angle space as well as in Cartesian space. Concerning
movements in Cartesian space, in order to enable grasping
and manipulation tasks, the MMM provides mapping of the
desired 6D pose and the grasp type on the robot’s end
effector. A proper connection via the MMM of a motion
capture module to a robot requires the implementation of a
conversion module which transforms module specific data
into the MMM file format and vice versa for overcoming
different Euler conventions, active joint sets and orders of
the joint angle values between the modules. As depicted in
Figure 4, in the current system one conversion module has
been implemented for each human motion capture system,
converting the motion capture data to the MMM format. A
third conversion module is implemented for mapping the
MMM data to the kinematics of ARMAR-IIIb.

Along with the approach movement in the form of joint
angle values the grasp type and the estimated hand orien-
tation are passed from the hand pose estimation system to
the robot through the MMM interface. According this data,
from a set of preimplemented grasp the corresponding one is
selected to be executed. To complete the grasp mapping, the
grasp type to be performed is adjusted regarding the extent
of the object shape. For this purpose, a rudimentary grasp
type adjustment is implemented, which projects the object



Fig. 4. Structure of the entire framework.

shape onto the thumbs position such that the thumbs tip lies
on the shapes margin. The aperture of the fingers is scaled
in a way that the positions of the remaining finger tips also
approximately meet the margin of the shape. This method
works on objects with simple shape properties.

A. Grasp Execution

The grasp reproduction of ARMAR-IIIb is performed in
three different stages. The first stage describes the approach
movement of the end effector towards the object based on
the observed movement, while in the second stage the end
effector is placed at the final grasp pose. The reproduction
concludes with the execution of the recognized grasp type.
Regarding the approach stage, by mapping these joint angle
movements onto the robot, through forward kinematics one
obtains a trajectory of the TCP in Cartesian space. The
resulting trajectory is not sufficient for a goal-directed repro-
duction due to differences in the kinematic structure between
the embodiments of the robot and a human e.g. mechanical
joint constraints, differing joints and limb measurements.
Therefore, the TCP trajectory for movements such as grasp-
ing is stretched and directed towards the object position to
be reached. In order to attain a goal-directed reproduction,
which additionally should feature a high similarity to the
demonstrated human movement, in each frame, joint angles
as well as desired TCP position of the modified trajectory
have to be considered during execution. In [34], we devel-
oped an approach, which supports reproduction of observed
human motion on the robot using non-linear optimization
methods. In order to formulate an optimization problem
which comprises displacements in Cartesian space regarding
the TCP position as well as in joint angle space, a similarity
measure is defined as follows:

S(σ) = 2−

1
n

n∑
i=1

(
σ̂i

t − σi

)2

π2
−

1
3

3∑
k=1

(
p̂k

t − pk

)2

(2 · larm)2
(4)

with n representing the number of joints, σi, σ̂i
t ∈ [0, π]

and pk, p̂k
t ∈ [−larm, larm], whereas larm describes the

robot’s arm length. The reference joint angle configuration
is denoted by σ̂ ∈ Rn, while p̂ ∈ R3 stands for the desired
TCP position. The current TCP position p can be determined
by applying the forward kinematics of the robot to the joint
angle configuration σ. Based on Equation 4 and the joint
constraints {(Cmin, Cmax)} of a robot with n joints, one
obtains following constrained optimization problem:

minS′(σ) = 2− S(σ) (5)
subject to Cimin ≤ σ̂i ≤ Cimax (6)

For solving Equation 5, we apply the Levenberg-Marquardt
algorithm, since it features numerical stability and more ro-
bust convergence compared to other optimization algorithms
such as the Gauss-Newton and the steepest descent method.
Following this optimization approach a trade-off is attained,
which on the one hand results in an accurate TCP positioning
with small displacement error while it provides on the other
hand a feasible robot joint angle configuration resembling
the observed human configuration. This way goal-directed
imitation of the approach movement is achieved. For further
details, the reader is referred to [34]. For the execution
of the final grasp phase, due to errors and inaccuracies
originating from the object localization and the robot’s
mechanical elements, a displacement error arises between
the TCP and the object that has to be diminished. To achieve
exact alignment of the end effector and the robot, we make
use of visual servoing methods as presented in [35]. Within
this approach the hand and object are tracked. The resulting
distance between both is reduced and the hand orientation is
controlled. The hand orientation estimate coming from the
grasp recognition module is used to determine if the grasp
should be executed from the top or from the side. Therefore,
the hand is placed over the object if the palm orientation was
similar to the table plane, or next to the object otherwise.

V. EXPERIMENTS

A. Experimental Setup
The humanoid platform ARMAR-IIIb, a copy the hu-

manoid robot ARMAR-IIIa [36], serves as the experimental
platform in this work. From the kinematics point of view, the
robot consists of seven subsystems: head, left arm, right arm,
left hand, right hand, torso, and a mobile platform. The head
has seven DoF and is equipped with two eyes, which have
a common tilt and independent pan. Each eye is equipped
with two digital color cameras, one with a wide-angle lens
for peripheral vision and one with a narrow-angle lens for
foveal vision. The upper body of the robot provides 33 DoF:
2·7 DoF for the arms and three DoF for the torso. The arms
are designed in an anthropomorphic way: three DoF for each
shoulder, two DoF in each elbow and two DoF in each wrist.
Each arm is equipped with a five-fingered hand with eight
DoF. The locomotion of the robot is realized using a wheel-
based holonomic platform.

The proposed approach was integrated on the humanoid
platform ARMAR-IIIb and was successfully applied. For



Fig. 5. Left: The humanoid robot ARMAR-IIIb. Right: Position-controlled
right hand with 8 DoF.

the experiments, objects were used which can be easily
identified such as single-colored cups. The experimental
setup stipulates that demonstration of the grasp is performed
in front of the robot. Observation is initiated by scanning the
scene for known objects. Once an object is found, tracking of
the human upper body is triggered leading to the capturing
process of movements in the approach stage. This process
is finished once the hand is positioned within a tolerated
distance to a specific object. At this point, observation is
switched to the hand pose estimation whereby its classifica-
tion and the outcoming orientation complete the motion data
of the grasp. As described in Section IV, the data is mapped
onto robot, optimized to its embodiment and executed. In the
execution phase, the robot searches for the same object which
was grasped in the demonstration and approaches it. Based
on the classification of the grasp type, an adequate instance
is selected from the set of implemented grasp on the robot
which is modified to the objects appearance. The hand pose
recognition system was running on an external computer,
while the rest of the system was running on ARMAR-IIIb.
The communication between the two systems was performed
through UDP sockets. It is possible to run the whole system
on the robot, but this setup was more preferable for debug-
ging purposes. Two sets of experiments were performed: in
the first one, the whole system (grasp observation, mapping
and execution) was tested with a reduced set of grasps:
power grasp from top, power grasp from side, and pinch
grasp(see Figure 6). In the second one, the set of grasps
was extended to five of them (power sphere, prismatic wrap,
parallel extension, tripod, and pinch). However, the execution
of the grasp was reduced to the hand pose, keeping the arm
still (see Figure 7).

B. Experimental Results

As depicted in Figures 6 and 7 the robot successfully
imitated the demonstrated grasp including approach and
grasp type. Since a non-linear optimization method is ap-
plied during approaching, we attained a trade-off between
the similarity of the reproduced movement concerning the
demonstration and accuracy in terms of positioning of the
end effector regarding goal-directed tasks. Furthermore, the
applied method provided a unique solution in terms of joint
angles, which standard inverse kinematics methods fail to

do due to singularities and redundancies. Nevertheless, in the
approach phase, we experienced a displacement error of max
65mm caused by kinematic inaccuracies which varies de-
pending on the cups distance regarding the end effector. The
displacement could be recovered by using visual servoing.
In order to test the grasp classification module, each grasp
was executed 20 times for the Experiment 2. The results
are shown in Table I. An overall classification accuracy
of 72% was achieved, clearly over the human baseline for
grasp recognition with similar grasps [21], with four out of
five grasp types with accuracies over 80%. The differences
between human model and synthetic had a stronger effect
in the parallel extension grasp, lowering the accuracy for
that particular grasp. Results of the grasp recognition, map-
ping and execution on the humanoids robot ARMAR-IIIb
are shown in the accompanying video submission, which
is also available under wwwiaim.ira.uka.de/users/
do/GraspRecognitionDivx.avi.

Grasp Type Illustration
Correct

Classification
Rate

Power Sphere 80 %

Prismatic Wrap 95 %

Parallel extension 50 %

Tripod 85 %

Pinch 80 %

TABLE I
GRASP TYPE CLASSIFICATION RESULTS.

VI. CONCLUSIONS

In this paper, we presented a system for grasp recognition,
mapping and execution on a humanoid robot. Human grasp-
ing activities are captured using markerless motion capture
system and mapped to the humanoid robot ARMAR-IIIb.
Human upper body tracking, object tracking and hand pose
estimation techniques are applied to perceive human object
grasping movements. The recognized grasps are mapped and
executed on a humanoid robot with a five-fingered hand.
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Abstract— In this work, we present an integrated planner
for collision-free single and dual arm grasping motions. The
proposed Grasp-RRT planner combines the three main tasks
needed for grasping an object: finding a feasible grasp, solving
the inverse kinematics and searching a collision-free trajectory
that brings the hand to the grasping pose. Therefore, RRT-
based algorithms are used to build a tree of reachable and
collision-free configurations. During RRT-generation, potential
grasping positions are generated and approach movements
toward them are computed. The quality of reachable grasping
poses is scored with an online grasp quality measurement
module which is based on the computation of applied forces in
order to diminish the net torque. We also present an extension to
a dual arm planner which generates bimanual grasps together
with corresponding dual arm grasping motions. The algorithms
are evaluated with different setups in simulation and on the
humanoid robot ARMAR-III.

I. INTRODUCTION

Humanoid robots are designed to work in human-centered
environments and to assist people in daily work. This means
that robots must be able to operate autonomously in non-
artificial surroundings in contrast to robots working in fac-
tories where the environment is structured to the needs of
the robot. One essential ability for working autonomously
is to grasp a completely known object for which an inter-
nal representation is stored in a database (e.g. information
about shape, weight, associated actions or feasible grasps).
Furthermore, the robot should be able to grasp objects for
which the internal representation is incomplete due to inac-
curate perception or uncertainties resulting in an incomplete
knowledge base.

For grasping an object several tasks have to be solved
in general, like searching a feasible grasping pose, solv-
ing the inverse kinematics (IK) or finding a collision-free
grasping trajectory. With the algorithms proposed in this
paper it is possible to solve all these problems with one
probabilistic planning approach based on Rapidly Exploring
Random Trees (RRT). The planner is searching a feasible
and reachable grasp during the planning process and thus
pre-calculated grasping positions are not needed. Searching
a feasible grasping position online has the advantage that
the search is not limited to a potentially incomplete set
of offline generated grasps. Furthermore, the search for a
feasible grasp is focused on reachable configurations and
thus the computation of grasping poses is only performed
for positions that can be reached by the robot.

Fig. 1. A bimanual grasping trajectory.

The algorithms can be applied for single and dual arm
planning problems and even when just a rough estimation of
an unknown object is given, an approximated 3D model can
be used to search grasping poses online.

In the next section, related work dealing with planning
motions for grasping is presented. The three parts of the
Grasp-RRT algorithm (computing grasping poses, generating
approach movements and the online grasp quality mea-
surement) are discussed in section III. In section IV the
Bimanual Grasp-RRT algorithm, an approach for generating
dual arm grasping motions, is presented. Several experiments
for planning single arm and bimanual grasping motions
in simulation and on the humanoid robot ARMAR-III are
discussed in section V.

II. RELATED WORK

Planning collision-free motions for robots with a high
number of degrees of freedom (DoF) is a known to be a P-
Space hard problem in general [1]. This means that complete
algorithms will suffer from low performance mainly caused
by the complex task of building a representation of Cfree, the
part of the configuration space (C-Space) whose configura-
tions do not cause work space collisions. Instead of building
up a representation of Cfree, probabilistic algorithms may
be used to implicitly cover the free space and thus a time
consuming computation of Cfree can be avoided. RRT-
based approaches are widely used in the context of planning
grasping and reaching motions for humanoid robots. The
general theory for planning collision-free motions with RRT-
methods can be found in [2] or [3].



Planning grasping motions with pre-defined sets of grasp-
ing poses is discussed in [4], [5], [6], [7]. These approaches
use offline calculated grasping poses for which the IK-
solutions are searched during the planning process. The
grasping poses can be calculated automatically in an offline
step [8], [9] and the grasping information is stored in a
database for use during the online search. [10] presents
algorithms to automatically build a database of stable grasps
for numerous objects and their application resulting in The
Columbia Grasp Database. Multi-grasp manipulations are
discussed in [11].

Planning dual arm motions is addressed in [7] where
collision-free motions for two end effectors are planned with
RRT-based algorithms for bimanual grasping or re-grasping
actions.

In the work presented in [12], object specific task maps
are used to simultaneously plan collision-free reaching and
grasping motions. The proposed motion optimization scheme
uses analytic gradients to jointly optimize the motion costs
and the choice of the grasp on the manifold of valid grasps.

Evaluation of an object grasp by a multi-fingered robot
hand has been a major topic in robotics for years. A common
approach is based on the computation of the wrench space
formed by the contact points between hand and object, also
called Grasp Wrench Space (GWS). Based on the GWS, a
score is introduced in [13] which approximates the GWS by
a convex hull and tries to fit in the largest wrench space
sphere. [14] proposes the concept of the Object Wrench
Space (OWS) which represents the optimal grasp in wrench
space by applying forces on numerous points distributed
along the objects surface. The OWS is scaled to fit within
the GWS leading to a score in the form of the scaling
factor. In [15], which proposes a task-dependent wrench
space, the complexity of calculating the OWS is reduced
by approximating it by an ellipsoid.

III. INTEGRATED GRASP AND MOTION PLANNING

In this section the Grasp-RRT planner and the required
components, like the definition of an end effector, the
generation of approach movements and the algorithms for
measuring the grasp quality, are presented.

A. Grasp-RRT: The Concept

The proposed Grasp-RRT planner combines the search
for a collision-free motion with the online search for a
feasible grasp. Thus there is no explicit definition of a target
configuration, since the target is derived from a feasible grasp
which is calculated during the planning process (see Fig. 2).
In Alg. 1 the main planning loop is presented. The planner
is initialized with the root configuration qstart and pobj ,
the 6D pose of the object that should be grasped. Starting
from qstart RRT-based extension methods are used to build
up a tree of collision-free and reachable configurations.
For every new configuration qi, that is created to extend
the tree, the corresponding workspace position pi of the
grasp center point is calculated and stored together with
the configuration. Later, these workspace positions are used

Algorithm 1: GraspRRT (qstart, pobj)

RRT.AddConfiguration(qstart);1

while (!TimeOut()) do2

ExtendRandomly(RRT );3

if (rand() < pSearcℎGraspPose) then4

ngrasp ← ApproacℎTrajectory(RRT, pobj);5

if (ScoreGrasp(ngrasp) > scoremin) then6

return BuildSolution(Grasp);7

end8

end9

to choose a candidate for testing a grasping pose. From
time to time a node of the RRT is selected and via the
pseudoinverse Jacobian J+(q) the TCP is moved toward
a feasible grasping pose in the ApproachTrajectory method
(see Alg. 2). The Jacobian matrix J(q) for the participating
joints is built in every loop and J+(q) is derived via single
value decomposition.

When Alg. 2 succeeds, the resulting RRT-node defines a
potential grasping pose which is scored by the grasp quality
measurement module. In case the quality score lies above
a threshold, the final grasping trajectory can be built easily
since the approach trajectory already defines a collision-free
connection to the RRT. Furthermore, no explicit IK-solution
has to be computed for the grasping pose, since through the
pseudoinverse Jacobian-based movements, the IK-problem
is implicitly solved. In order to produce appealing solution
trajectories, the result is finally smoothed with path pruning
techniques.

Grasp-RRT Plannerpobj 

qstart

grasping
trajectory

Approach
Trajectory
Generation

RRT
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Fig. 2. Overview of the Grasp-RRT planner.

B. End Effector

The proposed planning approach uses a virtual representa-
tion of the hand including a grasping point and an approach
direction. Based on the work of [16], the grasp center point
(GCP) and the approach direction are defined for the hand
that should be used for grasping. The definition of the GCP
and the approach direction of the anthropomorphic hand that
is used in our experiments can be seen in Fig. 3.

C. Online Computation of Potential Grasping Poses

At the beginning of Alg. 2 a node nApproacℎ of the RRT,
and thus an associated C-Space configuration n.qApproacℎ

together with the workspace pose of the GCP n.pApproacℎ,
is selected and used for calculating pgrasp, a 6D grasping



Algorithm 2: ApproacℎTrajectory(RRT, pobj)

nApproacℎ ← SelectGraspExtensionNode(RRT );1

pgrasp ← ComputeGraspingPose(nApproacℎ, pobj);2

n← nApproacℎ;3

repeat4

Δp ← pgrasp ⋅ (n.p)−1;5

Δq ← J+(n.q) ∗ LimitCartesianStepSize(Δp);6

n′.q ← n.q + Δq;7

if (Collision(n′.q) ∣∣ !InJointLimits(n′.q)) then8

if (NumberOfContacts(CloseHand(n)) ≥ 2) then9

return n;10

else11

return NULL;12

end13

n′.p← ForwardKinematics(n′.q);14

RRT.AddNode(n′);15

n← n′;16

until (Lengtℎ(Δp) > TℎresℎoldCartesean) ;17

return n;18

pose. The loop of Alg. 2 moves the TCP toward pgrasp
and if no self-collisions, no collisions with obstacles and
no violations of joint limits occur during the movements,
the target grasping pose is returned. In case a collision or
a violation of joint limits is noticed during the approach
movement, the last valid configuration n is used to check
the number of contact points when closing the hand. If n
results in more than one contact point between the hand and
the grasping object, the RRT-node is returned as a potential
grasping pose.

The target grasping pose pgrasp is determined by searching
the point ptobj on the object’s surface which has the shortest
distance to the GCP. ptobj defines the translational part of
pgrasp and the rotational component is derived by rotating
the coordinate system of the GCP by �, so that the approach
direction points toward ptobj (see Fig. 3).

α

approach

direction
GCP

pgrasp

Fig. 3. The computation of the grasping pose pgrasp.

D. Representing Approach Directions

The approach direction toward an object is essential for
finding a feasible grasp, since in general a stable grasp may
only be found for a small amount of all possible approach
directions. In our case, where a RRT-node nApproacℎ has to
be selected as a starting point for generating an approach
movement, a random node selection does not respect this
fact since the distribution of configurations of the RRT is

independent from the 3D relation between TCP and object.
In contrast, if the distribution of the node selection uniformly
covers the approach directions, the search for good scored
grasps benefits from varying relations between object and
TCP.

In order to encode different approach directions an Ap-
proachSphere, an approximated sphere located at the object’s
3D position, is used. Whenever a new RRT-node nnew is
added during the planning loop, the corresponding triangle
tn of the ApproachSphere is determined by projecting the
TCP position onto the sphere (see Fig. 4(a)). Then nnew is
added to a list of associated RRT-nodes of tn.

When a random RRT-node nApproacℎ for grasp testing is
selected, at first one of the available approach directions is
randomly chosen and then one of the associated nodes is
randomly selected. Hence the distribution of the selection of
grasp testing nodes uniformly covers the possible approach
directions (within the limits resulting from the approximation
of the sphere). The advantage of selecting extension nodes
this way can be seen in Fig. 4(b). Here the state of the
ApproachSphere after building up a RRT is shown. The color
intensity of a triangle is proportional to the number of RRT-
nodes in direction of the triangle. It can be seen clearly that
a random selection of nApproacℎ out of all RRT-nodes will
result in a non-uniform distribution of approach directions.

Fig. 4. (a) For each RRT-Node the corresponding triangle of the Approach-
Sphere is determined by projection the TCP position on the sphere’s surface.
(b) The distribution of approach directions is visualized by setting the color
intensity proportional to the number of RRT-nodes in the direction of the
triangle.

E. Scoring a Grasp

The quality of a grasp is an important aspect for the
selection of the best grasp candidate from the set of grasps
resulting from grasp planning. A common approach to eval-
uate the quality of grasps is the construction of the grasp
wrench space (GWS), which describes the set of all wrenches
that can be applied on the grasp contact points. A single
wrench is defined as the concatenation of the force and the
torque vector exerted on a grasp contact point. However, the
calculation of the wrench space and even its approximation
e.g. by a convex hull is highly complex and time consuming
in the context of online planning. Hence, inspired by the
works presented in [14], we implemented a grasp quality
measure based on forces, which are adapted to the torques
exerted on the object.

Analogue to the determination of the object wrench space
(OWS), the surface of an object is sampled once to generate



a set of m possible contact points Co. Initially, unit forces
are applied on these points. The direction of a contact force
f at each contact point is constrained by a friction cone. To
reduce the complexity, a friction cone is approximated by
friction pyramid with k sides. Therefore, following equation
holds for f :

f =
k∑

j=1

�jfj , (1)

whereas fj denotes a force on the boundary of the friction
pyramid. Furthermore, for all contact forces applied on the
object the following condition is imposed:

m∑
i=1

fi = fc. (2)

Each applied force leads to a torque vector, which mag-
nitude and direction depends on the geometry of the object
and the length of the force vector. A stable grasp is given if
the sum of all torques, the net torque, on the contact points is
zero, i.e. the exerted forces immobilize the object in the hand.
For this purpose, the magnitude of fi is scaled by a factor
bi, which can be formulated as an optimization problem:

min(
m∑
i=1

(ci − pcom)× bifi)2 , (3)

where ci denotes the i-th contact point and pcom the object
center of mass. Using steepest descent method, a solution
for the force magnitude scaling is found subject to Eq. 2.
Since the steepest descent method tends to get stuck in local
minima, an initial solution binit close to the desired one is
generated by separating the set of contact points Co by a
plane, which goes through pcom and leads to two point sets
C1 and C2, which maximize the distance between both net
torques �1 and �2. Force magnitudes of the point set with
the smaller net torque are gradually increased, while force
magnitudes of the other set are decreased until the distance
∥ �1 − �2 ∥< �. Like in [13], [14], [15], a convex hull is
used to approximate the space of forces applied on the object.
Hence, for Co, the convex hull CHo is obtained. A depiction
of CHo is shown in Fig. 5.

Regarding a multi-fingered hand grasping an object, the
contact point set Cg consists of n points. After adjusting
the force magnitudes (see Eq. 3), the grasp is represented
by the convex hull CHg as depicted in Fig. 5. The quality
of a grasp qg ∈ [0, 1] is determined by the factor, which
scales CHo to optimally fit in CHg as described in [14].
Unlike grasp quality measures in wrench space, the method
described above is computationally efficient, since the force
space can be easily approximated by a convex hull consisting
of only a few facets.

IV. DUAL ARM GRASP PLANNING
When large objects like the wok in Fig. 8 should be

grasped by a humanoid robot, both hands are needed for
applying a stable grasp. On basis of the Grasp-RRT planner,
introduced in the last section, we propose the Bimanual-
Grasp-RRT planner which combines the search for a biman-
ual feasible grasp with the search for a collision-free grasping
motion for both arms.

Fig. 5. Top Row: The object with a visualization of CHo. Bottom Row:
The grasp specific CHg is used to compute the grasp quality score. For the
measuring cup a grasp quality score of qg = 0.46 is determined.

A. Bimanual Grasp-RRT

Fig. 6 depicts an overview of the Bimanual Grasp-RRT
planner. The planner instantiates two Grasp-RRT planners,
one for each hand. These instances are started in parallel, so
that the search for feasible grasps is done simultaneously for
the left and the right hand. Furthermore they are configured
to search and store grasps until the main thread terminates.
The main thread collects the grasps and the corresponding
grasping trajectories for the left and the right hand and tries
to find a feasible bimanual solution by calculating quality
scores of the bimanual grasping combinations. Every time a
planner for one hand reports that a new grasping trajectory
was found, all possible bimanual combinations of this grasp
together with the already stored grasps of the other hand are
built and scored as described in section IV-B. If the resulting
bimanual score is above a certain threshold the self-collision
status of the two pruned grasping trajectories is checked.
If no collision was determined the combined solution for
both arms together with the resulting grasping information
is returned (see Alg. 3).

Bimanual GraspRRT Plannerpobj 
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Fig. 6. Overview of the Bimanual Grasp-RRT Planner.

B. Scoring Bimanual Grasps

The grasp score presented in this work can be easily
applied on bimanual grasping. Considering a robot with two
hands, one obtains the two contact point sets Cl

g and Cr
g , for

the left and the right hand. The united set C ′g = Cl
g ∪Cr

g is
used to adjust the contact forces and to build the convex hull
CH ′g analogously to the single-handed case. The increase of



Algorithm 3: BimanualGraspRRT (qleftstart, q
rigℎt
start , pobj)

GraspRRTleft ← GraspRRTInstance(qleftstart, pobj);1

GraspRRTrigℎt ← GraspRRTInstance(qrigℎtstart , pobj);2

GraspRRTleft.start();3

GraspRRTrigℎt.start();4

while (!TimeOut()) do5

/* process new results of GraspRRTleft*/6

sl ← GraspRRTleft.GetNewSolution();7

if (sl) then8

Resultsleft.add(sl);9

foreach (sr ∈ Resultsrigℎt) do10

if (BiGraspScore(sl, sr) > scoremin &&11

!SelfCollision(sl, sr)) then
GraspRRTleft.stop();12

GraspRRTrigℎt.stop();13

return BuildSolution(sl, sr);14

end15

end16

end17

/* process new results of GraspRRTrigℎt*/18

...19

end20

the number of contact points leads to wider force space which
results in an higher grasp score, whereas the position of the
contact points, respectively the pose of the hands, plays a
more crucial role.

V. EXPERIMENTS

A. A Measuring Cup in a Drawer

In this experiment the humanoid robot ARMAR-III should
grasp a measuring cup located in a drawer of a kitchen. The
robot should use three hip and seven arm joints and thus
the C-Space used for planning is 10-dimensional. The setup
depicted in Fig. 7 limits the possibility of applying a feasible
grasp in a collision-free way, since the measuring cup is
located near the side walls of the drawer. Nevertheless, the
Grasp-RRT algorithm is able to find a suitable grasping pose
together with a collision-free trajectory in 3.7 seconds on
average (measured over 30 test runs).

B. A Wok in the Kitchen: Evaluating the Bimanual Grasp-
RRT Planner

In this simulation experiment, the Bimanual Grasp-RRT
planner is queried to find a grasping trajectory for a wok
located at the sideboard of the kitchen. The use of both arms
of ARMAR-III results in a 14 DoF planning problem which
is solved in 1.7 seconds on average. Due to the parallelized
search for a left and a right trajectory, the planner performs
well in this experiment (see table I). A resulting grasping
configuration together with the collision-free trajectories for
the left and the right arm are shown in Fig. 8.

Fig. 7. The Grasp-RRT planner is used to search a feasible grasp together
with a collision-free grasping trajectory for 10 DoF of ARMAR-III.

Fig. 8. The Bimanual Grasp-RRT planner is used to search a collision-free
grasping trajectory for 14 DoF of both arms of ARMAR-III.

C. Experiment on the Humanoid Robot ARMAR-III

This experiment is performed online on the humanoid
robot ARMAR-III. The Bimanual Grasp-RRT is used to
search a collision free trajectory for grasping a bowl on the
sideboard with both hands. The ketchup bottle, located near
the target object, is limiting the number of feasible grasps
for the left hand. Fig. 9 shows the results of the planner and
the execution of the planned trajectories on the humanoid
robot ARMAR-III.

D. Results

The performance of the proposed Grasp-RRT planner in
single and dual arm planning setups is presented in Fig. 10
and table I. The runtime analysis has been carried out on
an Intel DualCore CPU with 2.0 GHz by averaging 30
test runs. The time spent for the three main parts of the
algorithm are distinguished, pointing out that the parameter
setup was well balanced since approximatively the same
amount of time is spent for building up the RRT, computing
the approach directions and for scoring the grasping poses.



Fig. 9. The Bimanual Grasp-RRT enables the humanoid robot ARMAR-III
to grasp a bowl in the kitchen.

The last two columns of table I show the number of approach
trajectories which have been generated and the number
of grasp measurements which were calculated during the
planning process. These values differ, since not all approach
trajectories result in a suitable grasping configuration.
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Fig. 10. Overview of the average performance measurements.

TABLE I
PERFORMANCE EVALUATION.

Planning Time (seconds) # Appr. # Gr.
Total RRT Approach Score Traj. Scores

Measuring
Cup 3.7 1.3 1.4 1.0 26.8 18.9
Wok 1.7 0.6 0.6 0.4 21.3 9.8
Bowl 2.8 1.1 1.0 0.7 35.0 16.5

VI. CONCLUSIONS AND FUTURE WORKS
In this work, a planning approach for computing grasping

trajectories was presented. Compared to existing state-of-
the art planners, the proposed Grasp-RRT planner does not
rely on any precomputed grasping positions, since suitable
grasping poses are determined during the planning process.
The algorithm integrates the search for solutions of the
three main tasks needed for grasping an object: Finding a
feasible grasp, solving the inverse kinematics and computing
a collision-free trajectory. As shown in the experiments in
section V, the setup of the planner is well balanced, since
on average for each task (building the RRT, computing
the approach trajectories and determining the grasp quality
measures) approximately the same part of the planning time
is spent.

Further improvements may be achieved by adding con-
straints to the grasp quality scoring algorithms, e.g. if a post-
grasping action implies such constraints. Furthermore, a local
optimization of the calculated grasping trajectory could be

applied to locally maximize the pose for grasping. In case of
grasping non-convex objects, better results could be achieved
by a hierarchical decomposition in multiple superquadrics,
which can be used to generate a more comprehensive set of
approach directions as introduced in [17].
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