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Chapter 1

Executive summary

Deliverable D18 presents the third year developments within WP1 - “Learning to Observe Human Grasp-
ing and Consequences of Grasping”. According to the Technical Annex, deliverable D11 presents the
activities in the context of Tasks 1.3 and 1.4:

• [Task 1.3] Observing humans: Definition and development of a system that detects and tracks
humans and their movements in particular. Activities in this task will focus on the important
problem of acquiring real 3D motion of the arms while the human is interacting with objects. The
tracking should be successful also in cases when the robot does not have a frontal view of the human.

• [Task 1.4] Observing human grasping: Definition and development of a computational method
that detects, tracks and represents human hands in action. The derived representation includes
aspects and features in the full 4D spatiotemporal space (3D space and time dimensions). The aim
is to extract from a sequence of stereoscopic hand observations, the information that is necessary
and sufficient for subsequent (WP2) parsing and interpretation of observed hand activities that, in
turn, support future repeats by a robotic hand. Activities within this task will address important
subproblems such as figure-ground segmentation (environmental modelling, motion/colour based
segmentation, coarse object categorisation) tracking humans/hands in 2D/3D (feature selection,
hand models, representation of prior knowledge of motion models, prediction and search strategies),
etc.

The work in this deliverable relates to the following third year Milestone:

• [Milestone 7] Observing consequences of grasping; vocabulary of robot action/interactions and
definition of a hierarchical structure of features.

Still, the WP1 work carried out during the 3rd year is highly relevant to other project milestones:

• [Milestone 2] Definition of initial ontology based on human studies; acquisition (perception and
formalisation) of knowledge through hand-environment interaction.

• [Milestone 4] Analysis of action-specific visuo-spatial processing, vocabulary of human ac-
tions/interactions for perception of task relations and affordances.

• [Milestone 6] Integration and evaluation of human hand and body tracking on active robot heads,
demonstration of a grasping cycle on the experimental platforms.

The progress in WP1 is presented in the below summarized scientific publications, attached to this
deliverable.

• In Attachment A, it is shown that dual-task costs are observed when people perform two tasks
at the same time. It has been suggested that these costs arise from limitations of movement goal
selection when multiple goal-directed movements are made simultaneously. To investigate this, we
asked participants to reach and look at different locations while we varied the time between the cues
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to start the eye and the hand movement between 150 ms and 900 ms. In Experiment 1, participants
executed the reach first, and the saccade second, in Experiment 2 the order of the movements was
reversed. We observed dual-task costs - participants were slower to start the eye or hand movement
if they were planning another movement at that time. In Experiment 3, we investigated whether
these dual-task costs were due to limited attentional resources needed to select saccade and reach
goal locations. We found that the discrimination of a probe improved at both saccade and reach
locations, indicating that attention shifted to both movement goals. Importantly, while we again
observed the expected dual task costs as reflected in movement latencies, there was no apparent
delay of the associated attention shifts. Our results rule out attentional goal selection as the causal
factor leading to the dual-task costs occurring in eyehand movements.

• In attachment B, When reaching for objects, people frequently look where they reach. This raises
the question of whether the targets for the eye and hand in concurrent eye and hand movements are
selected by a unitary attentional system or by independent mechanisms. We used the deployment of
visual attention as an index of the selection of movement targets and asked observers to reach and
look to either the same location or separate locations. Results show that during the preparation
of coordinated movements, attention is allocated in parallel to the targets of a saccade and a
reaching movement. Attentional allocations for the two movements interact synergistically when
both are directed to a common goal. Delaying the eye movement delays the attentional shift
to the saccade target while leaving attentional deployment to the reach target unaffected. Our
findings demonstrate that attentional resources are allocated independently to the targets of eye and
hand movements and suggest that the goals for these effectors are selected by separate attentional
mechanisms.

• In Attachment C, we investigated the effects of visuospatial attention on movement kinematics
by employing a dualtask paradigm. Participants had to grasp cylindrical objects of different sizes
(motor task) while simultaneously identifying a target digit presented at a different spatial location
within a rapid serial visual presentation (perceptual task). The grasping kinematics in this dualtask
situation were compared with those measured in a single task condition. Likewise, the identification
performance was also measured in a singletask condition. Additionally, we kept the visual input
constant across conditions by asking participants to fixate. Without instructions about the priority
of tasks (Experiment 1) participants showed a considerable drop of identification performance (per-
ceptual task) in the dualtask condition. Regarding grasping kinematics, the concurrent perceptual
task resulted in a less accurate adaptation of the grip to object size in the early phase of the move-
ment, while movement times and maximum grip aperture were unaffected. When participants were
instructed to focus on the perceptual task (Experiment 2), the identification performance stayed at
about the same level in the dualtask and the singletask conditions. The perceptual improvement
was however associated with a further decrease in the accuracy of the early grip adjustment. We
conclude that visual attention is needed for the effective control of the grasp kinematics, especially
for a precise adjustment of the hand to object size when approaching the object.

• In Attachment D, we present a novel method that, given a sequence of synchronized views of a
human hand, recovers its 3D position, orientation and full articulation parameters. The adopted
hand model is based on properly selected and assembled 3D geometric primitives. Hypothesized
configurations/poses of the hand model are projected to different camera views and image features
such as edge maps and hand silhouettes are computed. An objective function is then used to
quantify the discrepancy between the predicted and the actual, observed features. The recovery
of the 3D hand pose amounts to estimating the parameters that minimize this objective function
which is performed using Particle Swarm Optimization. All the basic components of the method
(feature extraction, objective function evaluation, optimization process) are inherently parallel.
Thus, a GPU-based implementation achieves a speedup of two orders of magnitude over the case of
CPU processing. Extensive experimental results demonstrate qualitatively and quantitatively that
accurate 3D pose recovery of a hand can be achieved robustly at a rate that greatly outperforms
the current state of the art.

• In Attachment E, we start by observing that due to occlusions, the estimation of the full pose
of a human hand interacting with an object is much more challenging than pose recovery of a
hand observed in isolation. In this work we formulate an optimization problem whose solution is
the 26-DOF hand pose together with the model parameters and pose of the manipulated object,
that jointly best explain the incompleteness of hand observations resulting from occlusions due to
hand-object interaction. Thus, occlusions is not a curse we bypass but a feature we exploit. The
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proposed method is the first that provides accurate and fast solution to this problem. Additionally,
it is the first to demonstrate that hand-object interaction is not necessarily a complicating factor
but a context that can be exploited effectively for hand pose estimation. Extensive quantitative and
qualitative experiments with simulated and real world image sequences as well as a comparative
evaluation with a state-of-the-art method for pose estimation of isolated hands, support the above
findings.

• In Attachment F, we present a fingertip tracking framework which allows observation of finger
movements in task space. By applying a multi-scale edge extraction technique, an edge map is
generated in which low contrast edges are preserved while noise is suppressed. Based on circular
image features, determined from the map using Hough transform, the fingertips are accurately
tracked by combining a particle filter and a subsequent mean-shift procedure. To increase the
robustness of the proposed method, dynamical motion models are trained for the prediction of
the finger displacements. Experiments were conducted on various image sequences from which
statements on the performance of the framework can be derived.

• In Attachment G, we propose a novel, fully automatic method for the tuning of foreground detection
parameters in calibrated multicamera systems. The proposed method requires neither user inter-
vention nor ground truth data. Given a set of such parameters, we define a fitness function based
on the consensus built from the multicamera setup regarding whether points belong to the scene
foreground or background. The maximization of this fitness function through Particle Swarm Op-
timization leads to the adjustment of the foreground detection parameters. Extensive experimental
results confirm the effectiveness of the adopted approach.

• In Attachment H, we present work on exploiting modern graphics hardware towards the real-time
production of a textured 3D mesh representation of a scene observed by a multicamera system. The
employed computational infrastructure consists of a network of four PC workstations each of which
is connected to a pair of cameras. One of the PCs is equipped with a GPU that is used for parallel
computations. The result of the processing is a list of texture mapped triangles representing the
reconstructed surfaces. In contrast to previous works, the entire processing pipeline (foreground
segmentation, 3D reconstruction, 3D mesh computation, 3D mesh smoothing and texture mapping)
has been implemented on the GPU. Experimental results demonstrate that an accurate, high reso-
lution, texture-mapped 3D reconstruction of a scene observed by eight cameras is achievable in real
time.

• In Attachment I, we introduce a new method for integrated tracking and segmentation of a single
non-rigid object in an monocular video, captured by a possibly moving camera. A closed-loop
interaction between EM-like color-histogram-based tracking and Random Walker-based image seg-
mentation is proposed, which results in reduced tracking drifts and in fine object segmentation.
More specifically, pixel-wise spatial and color image cues are fused using Bayesian inference to
guide object segmentation. The spatial properties and the appearance of the segmented objects
are exploited to initialize the tracking algorithm in the next step, closing the loop between track-
ing and segmentation. As confirmed by experimental results on a variety of image sequences, the
proposed approach efficiently tracks and segments previously unseen objects of varying appearance
and shape, under challenging environmental conditions.
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Dual-task costs are observed when people perform two tasks at the same time. It has been suggested that these costs arise
from limitations of movement goal selection when multiple goal-directed movements are made simultaneously. To
investigate this, we asked participants to reach and look at different locations while we varied the time between the cues to
start the eye and the hand movement between 150 ms and 900 ms. In Experiment 1, participants executed the reach first,
and the saccade second, in Experiment 2 the order of the movements was reversed. We observed dual-task
costsVparticipants were slower to start the eye or hand movement if they were planning another movement at that time.
In Experiment 3, we investigated whether these dual-task costs were due to limited attentional resources needed to select
saccade and reach goal locations. We found that the discrimination of a probe improved at both saccade and reach
locations, indicating that attention shifted to both movement goals. Importantly, while we again observed the expected dual-
task costs as reflected in movement latencies, there was no apparent delay of the associated attention shifts. Our results
rule out attentional goal selection as the causal factor leading to the dual-task costs occurring in eye–hand movements.
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Citation: Jonikaitis, D., Schubert, T., & Deubel, H. (2010). Preparing coordinated eye and hand movements: Dual-task costs
are not attentional. Journal of Vision, 10(14):23, 1–17, http://www.journalofvision.org/content/10/14/23, doi:10.1167/10.14.23.

Introduction

In everyday situations, we frequently reach for
objectsVbe it a simple task like picking up a cup of coffee
or a complex task like clearing an office table. However
since we usually look at the object we reach for, most
reaching movements actually require doing two things at
the same time, that is, planning and executing an eye and a
hand movement simultaneously (Horstmann & Hoffmann,
2005; Johansson, Westling, Backstrom, & Flanagan,
2001; Land & Hayhoe, 2001; Pelz, Hayhoe, & Loeber,
2001). It might seem trivial to plan both eye and hand
movements together, but it constitutes an instance of
cognitive multitasking.
It is known that doing two tasks simultaneously bring

costs, since both error rates and reaction times typically
increase as compared to doing only one task at a time.
These are typically referred to as dual-task costs (Pashler,
1994; Schubert, 2008), which arise when two different
tasks compete for limited cognitive resources. In such a

scenario, the limited resources could either be shared
between the two tasks, leading to a slowing of both
(Kahneman, 1973), or else execution of one of the tasks
could be postponed until critical processing in the other is
finished (Pashler, 1994; Schubert, 1999). While much is
known about dual-task costs and the situations in which
they arise, it remains debated whether these do occur in
the case of simultaneous eye and hand movements, and if
so, which particular processing stage(s) between early
stimulus processing and final execution of the movement
might be specifically involved in the processing bottleneck.
A number of studies have shown that whether there is

interference between eye and hand movements depends
on a variety of factors, such as on how the saccade is
elicited and on what type of manual response is required.
Pashler, Carrier, and Hoffman (1993) have demonstrated
that there are almost no dual-task costs when simple
button presses and eye movements to an abrupt onset are
prepared together, suggesting that reflexive saccades
directed toward an onset stimulus can be possibly
executed without interference. Similarly, no dual-task
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costs have been reported when people made reflexive
saccades to a peripheral location and simultaneously
performed a rhythmic manual tapping task (Sharikadze,
Cong, Staude, Deubel, & Wolf, 2008). In contrast, dual-
task interference was found to occur even with simple
button presses when non-reflexive saccades had to be
performed to a location indicated by a central cue (Pashler
et al., 1993); obviously, the planning of these saccades
required an intentional selection of the movement goal.
Dual-task interference becomes more prominent when,

instead of a simple button press, a manual reaching
movement is required. It has been observed that latencies
of saccades directed to peripheral onsets are longer if,
simultaneous to saccade preparation, a reaching move-
ment has to be planned to the same target (Bekkering,
Adam, Kingma, Huson, & Whiting, 1994; Bekkering,
Adam, van den Aarssen, Kingma, & Whiting, 1995). This
suggests that dual-task costs for saccades arise when a
reach must be directed to a spatial target, but not when the
movement involves just a simple (non-spatial) button
press. In other words, it seems that dual-task costs do arise
when both eye and hand movements rely on the selection
of a spatial movement goal. They also arise when
saccades and button press responses have the same or a
different directional component (e.g., to make a saccade to
the right and press the left button; Huestegge & Koch,
2009). These findings make it likely that the mutual
interference between the two tasks occurs in the move-
ment planning phase, for instance, during the selection of
the movement target (Bekkering et al., 1995), rather than
in movement execution. Movement goal selection (“I will
reach for this apple”) occurs at an early stage of move-
ment planning during which object parameters such as
target location in space and object size are specified
(Andersen & Buneo, 2002; Milner & Goodale, 1995).
While at least some of the dual-task costs can be

explained by assuming that the two effectors compete for
resources to select the movement goal, not all findings suit
this pattern. Some studies reported even shorter saccade or
reach latencies if participants made simultaneous eye and
hand movement to the same object as compared to making
single eye or hand movements (Lünenburger, Kutz, &
Hoffmann, 2000; Niechwiej-Szwedo, McIlroy, Green, &
Verrier, 2005). However, these observations do not
necessarily contradict the hypothesis that movement goal
selection leads to dual-task costs, since in all of the above-
mentioned studies movement goal selection was limited
by the fact that participants were asked to make eye, hand,
or both movements to only one common target present on
the screen (or to one of two targets present in separate
visual hemifields). This raises the question as to which
degree saccade or hand movement goal selection was
activated, since in some cases movements might have
been purely reflexive, toward a single target present
within one visual hemifield.

It is important to note that none of these studies
analyzed movement goal selection directly but instead
relied on indirect measures such as reaction times or
movement endpoint errors. Thus, it is possible that while
movement execution was delayed in a dual-task situation,
movement goal selection was not affected by the need to
perform a second task.
It is now well established that the selection of a stimulus

as the goal of a movement is related to attention shift to
the movement target. A number of studies have shown
that these attention shifts precede the initiation of goal-
directed saccades, reaching movements and grasping
(Baldauf & Deubel, 2010; Deubel & Schneider, 1996;
Deubel, Schneider, & Paprotta, 1998; Montagnini & Castet,
2007; Schiegg, Deubel, & Schneider, 2003). Hence, spatial
attention can be used as an index of movement goal
selection before movement onset.
By measuring both movement latencies and spatial

attention, we investigated whether movement goal selec-
tion is the causal factor that leads to the costs observed in
these dual-task situations. Participants performed conjoint
saccades and manual reaching movements while we
manipulated the temporal overlap between the planning
of these movements. In three experiments, two central
movement cues were presented sequentially, with a
variable stimulus-onset asynchrony (SOA) between the
presentations. The movement cues could indicate either
the same spatial location or spatially separate locations.
The range of SOAs was selected such that in the short
SOA conditions planning of saccade and reaches would
overlap, whereas in the long SOA conditions those tasks
would not overlap. If dual-task costs would occur, they
should be largest at the shortest SOAs and smallest at the
longest SOAs. In Experiment 1, the first cue specified the
reach goal, and the second cue indicated the saccade goal.
In Experiment 2, we measured whether dual-task costs are
observed also when the movement order was reversedVthe
first movement cue indicated the saccade and the second
cue specified the reach. Finally, in Experiment 3, we
measured movement goal selection by using spatial
attention as its index. Participants had to reach and look
at two different locations while we presented a perceptual
probe (a letter) at randomly chosen times during move-
ment planning. This probe could be presented at cued
saccade or reach locations, or at locations that were not
relevant for the action. It is established that probe
discrimination at exogenously or endogenously (as is the
case with movement planning) cued locations can index
attention at that location (for a review, see Carrasco,
2006). Thus, we could measure whether attention
shifted to saccade or reach locations, and whether this
shift was delayed when saccade and reach planning
overlapped. Combined, the three experiments should
reveal (1) whether there are dual-task costs for combined
eye and hand movements as reflected in movement
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latencies, and (2) whether these costs would arise due to
movement goal selection as measured in probe discrim-
ination at the saccade and reach goals.

Experiment 1

In Experiment 1, we determined the dual-task costs
arising in a situation in which participants first made a
reach, and then a saccade. We varied the time interval
(SOA) between two arrow cues instructing to start each
movement. If dual-task costs occur, the costs should be
largest at the shortest SOAs and smallest at the longest
SOAs (Schubert, 1999), since under the first conditions
saccade and reach planning are temporally more over-
lapping than under the latter in which saccade planning
starts long after the reaching onset. Additionally, we
manipulated whether eye and hand movement goals were
shared or not: on half of the trials, participants made
saccades and reaches to the same location, and on the
other half of trials to two different locations. If eye and
hand movement planning shares a common goal selection
process, then for the short SOAs there should be a
crosstalk between these two systems, resulting in faster
saccades and reaches when the two movements were
directed to the same goal. On the other hand, if the goals
for eye and hand movements are selected independently,
there should be no benefit to plan saccades and reaches to
the same location.

Methods
Participants

Twenty-two participants (mean age 23 years, 10 females)
participated in this study. All participants had normal or
corrected-to-normal vision. Informed consent was obtained
from all participants.

Apparatus

Participants sat in a dimly illuminated room. They
placed their right hand on a slightly inclined pointing
plane, under a one-way mirror. Stimuli for pointing and
saccades were projected from a monitor above onto the
mirror. This setup allowed the visual stimuli to appear on
the pointing plane, while the participants could not see
their hand. In order to provide visual feedback about the
hand position, an LED fixed to the tip of the right index
finger could be illuminated during the experiment. LED
was lit up in the beginning of the trial for participants to
arrange their finger with visual stimulus and was illumi-
nated at the end of the trials to provide feedback about
reaching accuracy. Stimuli were presented on a 21-inch
Conrac 7550 C21 display with frame frequency of 100 Hz,

at a display resolution of 1024 * 768 pixels. Visual stimuli
were shown on a gray background with a mean luminance
of 5.1 cd/m2.
Reaching movements were recorded with a Fastrack

electromagnetic position and orientation measuring sys-
tem (Polhemus, 1993), consisting of a central transmitter
unit and a small receiver, mounted on the tip of the index
finger of the participant’s right hand. The sender unit was
placed 60 cm in front of the participant. The device allows
for a maximal translation range of 10 ft, with an accuracy
of 0.03 in RMS. The frequency bandwidth of the system is
120 Hz; the time delay is 4 ms. Eye movements were
recorded with a video-based eye tracking system (Senso-
Motoric Instruments, Eyelink-I), which provides an
accuracy better than 0.1 degree, at a recording frequency
of 240 Hz. Head movements were minimized by means of
an adjustable chin rest.

Procedure and stimuli

Figure 1 depicts the stimulus sequence. During each
trial, a central fixation cross and twelve mask elements
(size 0.9 � 1.4 deg, composed of randomly generated
lines) were presented on the uniform background,
arranged on an imaginary circle with a radius of 6.5 deg.
Participants first directed the index finger of the right hand
and their gaze to the central cross; 580 to 880 ms later, the
first movement cueVan arrow that pointed toward one of
the mask stimuliVwas presented at the central fixation.
The mask elements were arranged on the circle as if
forming a clock face, and the arrow could point toward 2,
4, 8, or 10 o’clock. The arrow was presented for 100 ms,
and participants were instructed to reach with the right
index finger to the object indicated by this cue. After a
variable time (SOA) from the first cue onset, a second
movement cue was presented, again for 100 ms. Partic-
ipants were instructed to saccade to the location indicated
by the second arrow. On 50% of the trials, the second cue
indicated the same target as the first cue (thus participants
had to reach and look at the same location); on the other
50%, the second movement cue indicated a different target
than the first cue. In those trials where the cues indicated
different targets, the distance between the first and second
movement targets was either three items in the clockwise
direction or three items in the anti-clockwise direction (for
example, if the first cue indicated a reach target at 2 o’clock,
then the second cue would indicate (with equal proba-
bility) a saccade target at 5 or 11 o’clock, which amounts
to an angular distance of 90 degrees from the first cued
location). The SOA between the two movement cue onsets
was 150, 200, 300, 350, 400, 450, 500, 600, 700, 800, or
900 ms. We chose this wide interval of SOAs in order to
precisely measure at which cue delay dual-task costs
would appear for saccades and reaches. Since the reaching
latencies were typically 200–300 ms, the interval covered
the time when reaches were still planned, when the hand
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was in motion, and when the finger was already at the
object.
Participants were instructed to reach and look as quickly

as possible when the respective movement cues appeared,
without delaying their movements or trying to group
them. Each participant performed 4 experimental blocks
of 144 trials each. All participants had a practice block
before starting the experimental task. Six of the partic-
ipants performed 12 experimental blocks in order to
investigate possible practice effects.

Movement data analysis

Saccade and reach movement data were stored for
offline analysis and saccades and reaches were detected
using custom software. Reach onsets were defined as
points in time when the vectorial velocity reached a
threshold of 1-/s. Saccade onsets were defined as points in
time when eye velocity threshold exceeded 150-/s. We
further defined a 2- radius circle around central fixation as
a maximum window within which saccade and reach
movement starting position could vary. We removed all

trials in which saccades smaller than 2- in size appeared
before saccade cue onset. We accepted reach or saccade
endpoint as correct if it fell closer to the reach/saccade
goal than to any other irrelevant location besides the goal,
and if the movement had a minimum latency of 100 ms
after the movement cue appeared. Additionally, all trials
with saccade or reach latencies longer or shorter than
3 standard deviations from the mean of each subject were
rejected.

Results

We analyzed whether there were dual-task costs when
participants made combined eye and hand movements. If
there were no dual-task costs, then neither the reaction
time of the first task (the reaching) nor the reaction times
of the second task (the saccade) should be influenced by
the SOA manipulation. Typical dual-task costs would be
reflected in an effect of SOA on the reaction times of the
second task (the saccade)Vthese should be longer for the
short SOA conditions than for the long SOA conditions.

Figure 1. Experimental procedure. In Experiment 1, participants were asked to quickly reach to the location indicated by the first arrow and
then quickly saccade to the location indicated by the second arrow. The time interval between the arrow onsets (SOA) was varied. In
Experiment 2, the arrow appearing first instructed the saccade, while the second appearing arrow instructed the reaching. In Experiment 3,
participants again reached and looked at two objects indicated by the two subsequent cues. Additionally, a probe display appeared at
j50 to 650 ms with respect to the first movement cue onset. The probe was a digital letter “E” or “3,” embedded in a circular array of
distractors. Participants reported the probe identity after completing the movement task.
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For the reaction time of the first task, there should be
either no effect of SOA or an effect that should also
depend on SOA.
The data indeed revealed that the SOA manipulation did

not affect the reaction times of the first taskVreaching
latencies for the shortest SOA of 150 ms were 336 T 14 ms
(mean and standard error of the mean) and were 337 T
15 ms for the longest SOA of 900 ms (repeated measures
ANOVA, F(10, 210) = 0.79, p 9 0.6). This means that
participants started the reach movement immediately after
the first movement cue appeared and did not try to
postpone their response until the second movement cue
was shown.
The SOA manipulation had a markedly different effect

on the saccade latencies. Saccade latencies decreased with
increasing SOA (repeated measures ANOVA, F(10, 210) =
53.03, p G 0.01), indicating that in the short SOA
condition participants were not able to initiate their
saccade immediately after the saccade cue appeared. The
observed dual-task costs were about 100 msVsaccade
latency decreased from 384 T 14 ms for the 150-ms SOA
condition to 280 T 9 ms for the 900-ms SOA condition.
Thus, typical dual-task costs did occur under these
conditions, with participants being unable to perform the
eye movement before they finished preparing the reaching
movement.
We next analyzed whether there were any costs or

benefits when saccades and reaches were directed to the
same location or to different locations. First, we analyzed

reaching movements, as it has been shown that in dual-
task situation the task that is performed first (here, the
reach) is completed faster if the second task shares a
common response code (here, the saccade made to the same
location as the reach), compared to a situation with different
responses in the two tasks (Hommel, 1998; Lien & Proctor,
2002). Unexpectedly, we did not observe this effectV
reaching latencies were not shorter when saccades and
reaches were directed to the same location (Figure 2A;
none of the planned one-tailed repeated measures t-tests
comparing each time bin was significant, all ps 9 0.5).
This indicates that planning saccade and reach to the same
location did not facilitate the preparation of the reach. One
possibility of explaining this discrepancy is that we used a
larger number of potential target locations (targets could
appear at 8 different locations), unlike other studies (e.g.,
Hommel, 1998; Lien & Proctor, 2002) that used mostly
two opposing response categories (e.g., left vs. right motor
response). Furthermore, our task required precise spatial
location codingVto reach to one of the multiple locations
on the screen while making a saccade to a different
locationVinstead of button presses. Note that the need to
plan spatially directed movements and the number of
potential reach locations could also interact, as reaches to
displays with multiple objects are executed faster than
reaches to displays with fewer objects (Song & Nakayama,
2006).
Next, we analyzed whether there were benefits when the

saccade was directed to the same location as the reach. It

Figure 2. Dual-task interference in Experiment 1. (A) Latencies of the reaching movements as a function of SOA. (B) Saccade latencies as
a function of SOA. Data are shown separately for trials when saccades and reaches were directed to the same location (red curves) or to
different locations (blue curves). Symbols in (B): *p G 0.05, ^p = 0.08. Vertical bars indicate TSE. Data are slightly translated horizontally to
increase the visibility of different conditions.
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has been demonstrated that movement planning leads to a
shift of attention to the movement goal location (Deubel
& Schneider, 1996; Linnell, Humphreys, McIntyre,
Laitinen, & Wing, 2005); thus, planning a movement to
one location is likely to be helpful as a cue in planning a
subsequent movement to the same location. This leads to
the prediction that latencies of saccades when they are
directed to the same location as the reaching should be
shorter than latencies of saccades directed to different
locations than reaches. A two-way ANOVA with the first
factor SOA and the second factor specifying saccade/
reach location agreement did not show significant effect of
the second factor (F(10,210) = 1.51; p = 0.2). However,
interaction between the second and SOA and saccade/
reach location agreement was significant (F(10,210) =
2.42; p G 0.01). We looked in more detail at short and
long SOA conditions by performing separate t-tests. Our
planned comparisons also showed that for SOAs less than
or equal to 600 ms saccade latencies were not shorter if
the saccades were directed to the same location as
reaching, not even for the shortest 150-ms SOA condition
(Figure 2B; at this time bin, mean latency of the saccades
directed to the same direction as reaching was 384 T 13 ms;
mean latency of the saccades made to a different location
than reaching was 390 T 17ms, repeated measures t-test p =
0.60).
For the long SOA conditions starting at 700 ms, saccade

latencies were found to be even longer if saccades were

directed to the same as compared to a different location
than the reaching movement (Figure 2B, last three SOA
conditions). A two-way ANOVA over these 3 last SOA
conditions with second factor specifying saccade/reach
location agreement was significant for the second factor
(F(1,21) = 13.21, p G 0.01). This effect seemed to persist
over all three SOA conditions (SOA 700, 800, and 900 ms;
individual repeated measures t-tests), and individual
subject data showed that majority of the subjects demon-
strated this effect. This effect can possibly be attributed to
Inhibition of Return (Klein, 2000), which we will discuss
in more detail later.
Our findings demonstrate that the second (saccade) task

was delayed while the first (reach) task was processed. In
order to provide further evidence that reach planning
indeed delayed saccades, we analyzed whether on trials
with longer reach latencies the saccades also exhibited
longer delays. For this purpose, reach latency in each trial
was assigned to one of four quartiles (movement latencies
increased from 260 ms in the first quartile to 380 ms in
last quartile). Then, saccade latencies were separated into
trials where the reaching latencies belonged to the 1st,
2nd, 3rd, and 4th quartiles. If reaching movements were
delayed, then saccade latencies should be delayed as well.
Thus, for short SOAs saccade latencies should be shorter
if reaching latencies were shorter and longer if reaching
latencies were longer. For long SOA conditions, this effect
should disappear, as reaches would have already started or

Figure 3. Reaching movements delay saccades. Data are shown for trials where the saccade was directed to (A) the same location as the
reaching or to (B) a different location. Reaching latencies were divided into quartiles; the higher the quartile number, the longer the
reaching latency. Four sample SOA conditions are shown (see figure legend). Other SOA conditions are plotted as light blue lines.
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even finished. For this analysis, we again split the data
according to reach/saccade location agreement. Figure 3
shows the result of this analysis, depicting saccade
latencies for all SOA conditions. Figure 3A depicts the
results for trials where reaches and saccades were directed
to the same location, and Figure 3B depicts those for trials
where the movements were aimed to different locations.
The data show that longer reaching latencies indeed
resulted in longer saccade latencies. This effect was most
pronounced for the shortest SOA conditions. For SOA
150 ms, the saccades were about 50 ms slower for the
longest as compared to the shortest reaching latency
quartile, whereas in the SOA 800-ms condition this differ-
ence was only 20 ms.
We computed repeated measures two-way ANOVAs

with quartile and SOA as main factors. We split this
analysis for trials with saccades and reaches to the same
location and trials with saccades and reaches to different
locations. When reaches and saccades were directed to the
same location, the main effect of SOA was significant,
indicating that saccade latencies decreased with increasing
SOA, F(10, 150) = 7.93, p G 0.01. The main effect of
quartile was also significant, showing that longer reaching
latencies lead to longer saccade latencies (F(3, 150) =
18.12, p G 0.01). The interaction between these two
factors was also significant, F(30, 150) = 1.61, p G 0.05.
An equivalent analysis performed for trials when the

saccade and reaches were directed to different locations
revealed similar results. Again, saccade latencies decreased
with increasing SOA (main effect of SOA was significant,
F(10, 150) = 8.88, p G 0.01), and longer reaching latencies
led to longer saccade latencies (main effect of quartile,
F(3, 150) = 27.65, p G 0.01). The interaction between
SOA and quartile was also significant (F(30, 150) = 1.60
p G 0. 05), again meaning that longer reaching latencies
delayed saccades most in the shortest SOA conditions.
We also analyzed whether longer reach latencies delayed

saccades more or less, if saccades were directed to the
same or different location as reaches. We found no
significant differences between those conditions (paired
samples t-test comparisons for saccades directed to the
same versus saccades directed to different location than
reaching for each reaching latency quartile were not
significant, p 9 0.05).
Last, we analyzed movement endpoint errors. When

making saccades and reaches to two different locations,
participants sometimes made movement errors by either
looking at the reach goal (15% of trials in this condition)
or by reaching to the saccade goal (14% of trials),
implying a crosstalk between the movement planning for
the hand and for the eye. We propose that these errors
may result from the difficulty of our task in which two
types of trials were interleavedVeye and hand movements
directed to the same location or to different locations.
Participants may have sometimes failed to switch to the

less preferred type of task (eye and hand movements
directed to different locations) and instead looked and
reached to the same target.

Experiment 2

In the second experiment, we asked whether similar
dual-task costs could be observed when the participants
first made a saccade, and then a reach.

Methods

Seven participants (mean age 25 years, 3 females)
participated in the study. All participants had normal or
corrected-to-normal vision. Informed consent was
obtained from all participants.
The procedure was the same as in Experiment 1, with

the following exceptions. The first movement cue now
directed the saccade, while the second movement cue
directed the reaching movement. SOA between the cues
varied between 150 and 600 ms (150, 200, 250, 300, 350,
400, 450, 500, and 600 ms). Each participant completed
3 blocks of 144 trials.

Results

After the first movement cue appeared, a saccade was
initiated with a similar latency for all SOA conditions
(repeated measures ANOVA, main effect of SOA not
significant, F(8, 48) = 0.37, p 9 0.9). Thus for the SOA
150-ms condition, i.e., the shortest SOA, mean saccade
latencies were 314 T 33 ms, which was not different from
the longest SOA, the SOA 600-ms condition, in which
saccade latencies were 334 T 46 ms. In contrast, reaching
latencies showed pronounced dual-task costsVas SOA
increased, reaching latencies decreased (F(8,48 = 8.05, p G
0.01)). For the SOA 150-ms condition, mean reaching
latency was 499 T 27 ms, which was longer than for the
SOA 600-ms condition in which mean reaching latency
was 417 T 25 ms (t(6) = 6.06, p G 0.01). Thus, in the
present task the reach latencies revealed dual-task costs of
around 80 ms (mean RT at SOA 150 ms j mean RT at
SOA 600 ms). Figure 4 shows saccade and reach latencies
as a function of SOA for trials when saccades and reaches
were directed to the same location or to different
locations. Again, saccade latencies were not shorter when
saccades and reaches were directed to the same location
(repeated measures t-test, all ps 9 0.05). On the other
hand, reach latencies were affected by saccade target
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location. When a two-way ANOVA was performed, with
SOA and saccade/reach location agreement as factors, the
main effect of saccade/reach location agreement was not
significant (F(8,48) = 1.09, p 9 0.30), but interaction
between the two factors was (F(8,48) = 2.44; p G 0.05).
For the SOA 150-ms condition, reaches directed to the
saccade location started after 488 ms T 26 ms; these
latencies were 63 ms shorter than when the reaches were
directed to a different location (551 ms T 42 ms; repeated
measures t-test, t(6) = j2.46, p G 0.05); none of the other
SOA conditions showed significant differences. The
benefit observed at the SOA 150-ms condition could be
explained by previous observations that people are faster
to reach to the objects they are allowed to look at
(Prablanc, Echallier, Komilis, & Jeannerod, 1979).
Finally, we analyzed movement errors. On trials when

saccades and reaches were directed to different locations,
participants made 23% of errors by looking at the location
they were supposed to reach, and on 4% of trials they
reached to the location they were supposed to look at. The
proportion of errors did not vary as a function of SOA
(ANOVA for saccade errors, with SOA as the main
factorVF(8,48) = 0.38, p 9 0.9; F(8,48) = 0.99, p 9 0.4
for reach errors). This demonstrates that there is some
crosstalk when saccade and reach targets have to be
selected. It is not clear, though, whether these saccade and

reach errors are due to participants being used to look and
reach to the same locations in everyday situations.
In sum, these results show that dual-task costs arise for

reaches when the saccade was executed first.

Experiment 3

In two parts of Experiment 3, we tested directly whether
movement goal selection (in contrast to movement
execution) is affected by the need to do two tasks
simultaneously. As it has been shown that attention may
shift to saccade and reach locations early during move-
ment planning (Deubel & Schneider, 1996; Rizzolatti,
Riggio, & Sheliga, 1994), we measured attention at
saccade and reach locations by presenting an attentional
probeVa briefly shown letter that participants had to
report at the end of the trial. During this task, the first cue
indicated a reach target and a subsequent cue indicated the
saccade target (like in Experiment 1), and a probe could
appear sometime during saccade or reach planning at
different locations on the screen. If participants shifted
their attention to saccade or reach location, probe
discrimination should be better at those locations than at

Figure 4. Dual-task interference in Experiment 2. The first movement cue directed the saccade target; the second movement cue
instructed the reach target. Data are shown for trials when saccades and reaches were directed to the same location (red line) or to
different locations (blue line). Symbol in (B): *p G 0.05. Vertical bars indicate TSE. Data are slightly translated horizontally to increase the
visibility of different conditions.
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other locations, to which no movement was planned.
During the experiment, we also varied probe presentation
time, which allowed us to determine at which point in
time attention shifted to saccade or (and) reach locations.
For example, it could be that attention deployment
associated with saccade planning is delayed as long as
the reaching does not start, leading to the prolongation of
the saccade latencies as demonstrated in Experiment 1.
Alternatively, it is possible that there are no dual-task
costs to select a saccade goal even when the selection
occurs during reach planningVthis should be reflected in
a parallel attention allocation to both saccade and reach
targets before reaching onset.

Methods
Participants

Eight participants (mean age 23 years, 3 females)
participated in Experiment 3. Ten participants took part in
the “Saccade-only” control task (mean age 25, 4 females).
They had normal or corrected-to-normal vision. Informed
consent was obtained from each participant.

Apparatus and procedure

The apparatus and procedure of the experiment were the
same as in Experiment 1, with the following exceptions.
After the first movement cue appeared, participants had to
reach to the object indicated by the cue. There were only 4
possible reaching locations (at 2, 5, 7, and 10 o’clock).
With an SOA of 150 or 400 ms after the first cue, a second
arrow cue was shown indicating the saccade goal (see
Figure 1). The saccade goal could be located 3 or 5 items
clockwise or anti-clockwise from the reaching location.
Saccade and reaching movement goal selection was
measured by presenting a probe stimulus. For this
purpose, the display containing the mask elements
changed into a display containing 11 distractor digits
(digital “2” and “5”) and one target character (digital letter
“E” or digital “3”). This probe display was presented for
80 ms and was then masked. Given the short presentation
time of the probe display, the probes could be detected
only if participants attended to the probe location at the
time when the probe was presented. The probe display
could appear randomly in a time interval ranging from
50 ms before to 650 ms after the onset of the first
movement cue. In other words, the mask elements could
change into probe and distractors at any point of time,
before the appearance of the first movement cue, up to a
point in time when both movements were already finished.
The probe was presented either at the saccade goal (33%
of trials), at the reach goal (33% of trials), or at one of the
other, movement-irrelevant locations (33% of trials).
Participants were asked to indicate the probe identity
(“E” or “3”) at the end of each trial. We analyzed only

trials where the probe appeared before eye movement
onset.
Each block consisted of 144 trials. Participants com-

pleted at least 6 blocks of the task.

“Saccade-only” control experiment

In order to provide a baseline on how attention shifted
to saccade goals when no simultaneous reach were to be
made, we additionally performed a control experiment in
which participants only looked at the object, without
executing any reach movement (Saccade-only task). The
design of this experiment was identical to Experiment 3,
except that only one movement cue was presented.
Participants had to saccade to the location indicated by
the cue. The probe could be presented at the saccade
target (50% of trials) or at a randomly selected, move-
ment-irrelevant location (50% of trials). Each participant
performed at least 4 experimental blocks of 192 trials
each.

Results

As in the previous experiments, we observed dual-task
costs when the planning processes for the two movements
overlapped in time. Saccade latencies decreased with
increasing SOA (316 T 22 ms for SOA 150 ms as
compared to 239 T 13 ms for SOA 400 ms, repeated
measures t-test, t(7) = 6.53, p G 0.01). On the other hand,
reaching latencies were not affected by the SOA condition
(286 T 15 ms for SOA 150 ms and 286 T 15 ms for SOA
400-ms conditions, repeated measures t-test, p 9 0.05).
Thus, saccade initiation was delayed if the reach was still
being planned at the time of saccade cue presentation
(SOA 150 ms). Saccade initiation was not delayed if the
reach had already started, which was the case for the SOA
400-ms condition.
Next we analyzed whether participants were able to

select movement goals during the preparation of the
movements. For this purpose, we used probe discrimi-
nation rate as a measure of movement goal selection.
Since the probe was presented at variable times, we were
able to analyze the time course of attentional deployment
to the probe locations. For each time point (every 50 ms),
we calculated the proportion of trials in which participants
correctly discriminated the probe. As we were interested
in the shift of attention to saccade and reach goals before
the movement onset, we excluded all trials in which
probes were presented either after saccade or reach onset.
The results are depicted in Figure 5. It can be seen that
after the reach cue appeared, participants were at chance
to discriminate the probes if they were presented at
movement-irrelevant locations (probe discrimination was
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not different from chance level, p 9 0.05). In contrast,
probe discrimination at the reach goal increased gradually
following the presentation of the respective cue. Further
data analysis revealed that 50 ms after presentation of the
reaching cue, participants became better than chance to
discriminate probes presented at the reaching location
(t-test comparing discrimination at reaching location
versus 50% chance level, t(7) = 2.56, p G 0.05). This
demonstrates that participants shifted their attention to the
reach goal before the start of the reaching movement.
For the SOA 150-ms condition, and about 100 ms after

the saccade cue appeared, probe discrimination became
significantly better than chance also at the saccade goal
(t(7) = 5.13, p G 0.01). After this point in time, i.e., already
relatively long before saccade onset and also before the
onset of the reach movement, participants were consis-
tently better than chance to discriminate probes presented
at the location of the saccade goal (all ps G 0.05). This
shows that the attentional shift to the saccade goal started
well before saccade onset. These results are in line with
previous demonstrations showing increased probe dis-
crimination at the saccade locations (Baldauf & Deubel,
2008; Deubel & Schneider, 1996; Godijn & Theeuwes,
2003).
Two important conclusions can be drawn from these

results. First, improvement of probe discrimination at the

saccade target was better than chance already before the
reaching movement started. So, even though these
saccades were markedly delayed due to the dual-task
conditions, participants did not delay the selection of the
saccade goal until after they started their reachingVthe
saccade goal was obviously selected before the start of
the reaching movement. Second, the data demonstrate that
attention was allocated to the two target locations simulta-
neously, as participants were better than chance to
discriminate probes presented at both the saccade and the
reaching goal before the reach started.
Somewhat unexpectedly, we found that for the SOA

400-ms condition, discrimination rate at the saccade goal
increased already 150 ms before the saccade cue appeared
(t(7) = 2.88, p G 0.05); from that time onward, participants
were better than chance to discriminate probes presented
at the saccade location. Note that after this initial increase
in accuracy, discrimination rate at the saccade goal did not
change over time until the appearance of the saccade cue.
Only then, discrimination performance improved further.
The predictive increase in probe discrimination accuracy
suggests that participants tried to anticipate where they
would have to make a saccade. If we assume that
participants split their attention evenly between 4 possible
saccade target locations, and given that probability to
guess the probe identity correctly was 0.5 in our two-
alternative forced choice task, then probe discrimination at
possible saccade target should be 63% (1/4 + (1j 1/4) * 0.5),
which was similar to what we observed.
It should be noted here that, given the similarity of the

initial increase of discrimination performance for both
SOA conditions (red and green curves in Figure 5), we
cannot exclude that anticipatory effects may also be
involved in the SOA 150-ms condition. However, the
assumption that the early attention shifts to the saccade
target in the SOA 150-ms condition are elicited by the
presentation of the saccade cue seems to be more
parsimonious.
Further converging evidence for this assumption comes

from the results of a parallel study in which we used a
different combination of SOAs (SOA 150 ms and SOA
200 ms). In this study, we also observed that probe
discrimination increased at the saccade location before the
reach onset for the SOA 150-ms condition, while attention
shifts were accordingly delayed for the SOA 200-ms
condition (Jonikaitis & Deubel, in press, cf. Figure 4).
Importantly, there were no anticipatory attentional shifts
apparent for the SOA 200-ms condition in this study,
which further confirms that saccade targets can indeed be
selected during reach planning.
Thus combined we found that 250 ms after the reach

cue appeared (time when green and red curves start rising
in Figure 5)Vand still before the reach onsetVprobe
discrimination was already better than chance at either the
already specified saccade goal (SOA 150-ms condition) or
at the yet to be specified saccade goal (SOA 400-ms
condition). These two observations strongly argue that

Figure 5. Probe discrimination rate at saccade and reach goals in
the dual task of Experiment 3 (results do not include data from the
Saccade-only task), as a function of time after reach cue
presentation. Vertical dashed lines indicate the onsets of the
cues for respective movements (e.g., blue dashed lineVreaching
cue presentation). Vertical arrows indicate the average movement
latencies (e.g., blue arrowVreaching onset). Vertical error bars
indicate TSE. Data are slightly translated horizontally to increase
the visibility of different conditions.
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reach movement planning did not prevent the attentional
shift to specified or potential saccade locations; thus,
attentional selection of saccade locations was not delayed
in time.
Even though participants shifted their attention to

saccade locations during reach planning, it could be that
this was an effect observed by mixing two different groups
of trials in our designVon some trials, saccade and reach
locations were close by, and on other trials, those
locations were further away. Participants could have
shifted their attention only to saccade locations further
away or to saccade locations in the different visual
hemifield than the reaches (for example, Alvarez &
Cavanagh, 2005). To assess this possibility, we split the
data by trials with saccades made to the opposite hemi-
field than the reaches and trials with saccades made to the
same hemifield. We observed no effect on probe discrim-
ination due to this data split (all ps 9 0.7). We also split
trials by whether saccade location was close or far from
the reach location (3 or 5 items away from the reach
object on the display). Again, we observed no discernible
differences (all ps 9 0.5; Figure 6).
Even though participants were able to select the saccade

target before reaching onset, it is still possible that
participants would have selected the target faster if there
were no need to perform simultaneous reaching. In other
words, the observed dual-task costs may have partly arisen
because saccade target selection was somewhat delayed
(even though it started before the reaching onset). To
investigate this possibility, we compared the discrimination

performance from the dual-task conditions with perfor-
mance in the Saccade-only task, which did not include a
reaching movement. Figure 7 shows discrimination per-
formance, aligned to the time of saccade cue presentation,
for the dual-task conditions and for the Saccade-only task.
It can be seen that probe discrimination increased at about
the same time after saccade cue onset in both the dual<task
and the Saccade-only task. We calculated at which time
probe discrimination after the saccade cue onset was
better than performance 50 ms before the saccade cue
onset (in order to equate for baseline differences in
discrimination before cue onset in the SOA 400-ms task).
This analysis shows that 100 ms after saccade cue onset in
the Saccade-only task probe discrimination was better
than baseline (t(9) = 3.21, p G 0.05); the same time value
was found for the SOA 150-ms task (t(7) = 4.86, p G 0.01)
and for the SOA 400-ms task (t(7) = 2.85, p G 0.01).
Figure 7 includes also the data where the probe appeared
after saccade onset. Note that in the Saccade-only task
probe discrimination reached a certain level before the
saccade and improved after saccade onset, as participants
were then looking at the target directly. Interestingly, in
the SOA 150-ms condition, probe discrimination at the
saccade goal kept improving as long as the saccade did

Figure 7. Probe discrimination at saccade goal during the dual
task of Experiment 3 and the Saccade-only task. Dashed gray line
indicates saccade cue presentation. Vertical arrows indicate
average saccade latencies (i.e., saccade onset times) in the
different conditions. Note that for both dual- and single-task
conditions attention allocation to the saccade goal follows the
same pattern, even after the onset of the saccade in the control
Saccade-only task. Vertical error bars indicate TSE. Data are
slightly translated horizontally to increase the visibility of different
conditions.

Figure 6. Probe discrimination at saccade goal in Experiment 3 as
a function of the distance between eye and hand movement goal
locations. Dashed gray line indicates saccade onset. Vertical error
bars indicate TSE. Data are slightly translated horizontally to
increase the visibility of different conditions.
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not start. The similarity of the temporal dynamics between
the two conditions (SOA 150 ms and Saccade-only task)
is striking, even though the saccade started in one
condition considerably earlier than in the other. So,
although saccade execution was considerably delayed in
the SOA 150-ms condition, the attention shifts to the
saccade target were not delayed. In other words, reach
planning and execution did not delay saccade goal
selection in the dual-task condition, as probe discrimi-
nation was not different from that in the Saccade-only
task.
Further evidence that the delay of the saccades in the

SOA 150-ms task was not related to the timing of the
presaccadic attention shifts was provided by an analysis of
the temporal relation between presaccadic attention shift
and saccade onset. In a different study, we observed that
saccades with shorter latencies are normally preceded by
an earlier attention shift to the saccade target (Jonikaitis &
Deubel, in press)Vthe faster the participants shifted their
attention to the saccade goal, the shorter were the saccade
latencies. For the dual-task conditions of the present
experiment, we expected to find this tight temporal
coupling between attention shift and saccade onset for
the SOA 400-ms condition, where reaching movement
and saccade processing no longer interfered. For the SOA
150-ms condition, however, the coupling should disap-
pear, given that the dual-task costs as reflected in the

saccade delay were unrelated to the presaccadic attention
shift. In order to test this prediction, we split, for each
SOA condition and each participant, saccade latencies by
median into short latency saccades and long latency
saccades.
As we had expected, saccadic reaction times were not

related to speed of attention deployment in the SOA 150-ms
condition. While the median split in this condition leads to
a mean latency of 270 T 16 ms for the faster saccades and
363 T 29 ms for the slower saccades, this difference is not
reflected in the attentional allocation for longer or shorter
latency saccades (Figure 8, left panel, all repeated
measures comparisons not significant).
In the SOA 400-ms condition, the trials with faster

saccades had an average saccade latency of 209 T 16 ms;
the trials with slower saccades had an average latency of
270 T 17 ms. As can be seen from the right graph of
Figure 8, probe discrimination at the saccade goal
increased earlier for the trials when saccades had shorter
latencies than on trials with longer latency saccades. At
150 ms after the saccade cue, discrimination was better at
the saccade target if the saccade latencies were shorter
(t(7) = 2.56, p G 0.05), while attention deployment
occurred considerably later for the slower saccades. Thus,
at the time when there were no dual-task costs observed,
earlier attention shifts were associated with shorter
saccade latencies. This finding suggests that the dual-task

Figure 8. Probe discrimination before short and long latency saccades. Saccade cue appeared at time 0. Vertical arrowsVaverage short
and long saccade latencies. Color curvesVprobe discrimination rate at saccade target when saccades latencies were short (red line) or
long (blue line). Vertical error bars indicate TSE.
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costs in the SOA 150-ms condition arise at a processing
stage different fromVand probably later thanVthe atten-
tional selection of the saccade goal.
Together the findings show that the participants were

able to shift their attention to saccade and reaching goals
before reaching onset, and that there was no delay in
saccade goal selection while the reaching was planned.
Thus, while the saccade onset became markedly delayed
due to the dual-task condition, this delay was not reflected
in the time course of attentional allocation before the
saccade.

Discussion

Our experiments investigated whether dual-task costs in
the simultaneous planning of eye and hand movements
result from a competition for attentional resources. Move-
ment latencies showed large dual-task costs when sac-
cades had to be planned during reaching preparation.
However, these costs did not arise from the attentional
selection of the movement goals. The results show that
participants can shift their attention to a saccade target
even while the reaching movement is being planned and
has not yet started.

Dual-task costs in the planning of saccades
and reaches

We found that there were large dual-task costs when the
planning of goal-directed saccades and reaches overlapped
in time. Our results are comparable to findings reported by
Pashler et al. (1993). In their study, participants were not
able to elicit a saccade if the central cue instructing the
saccade appeared while the participants performed a tone
discrimination task requiring a manual button press. The
magnitude of the effects found in our study (about 100-ms
dual-task cost for saccades made in the SOA 150-ms
condition) was about equal to the effect observed in
Pashler et al.’s study (also 100-ms cost for SOA 150 ms).
The main difference between these two studies is that in
our experiments participants had to plan two movements
directed to different locations, whereas in the study of
Pashler et al. the first task was a button press and the
second task was a goal-directed saccade.
The dual-task interference observed in our experiments

could result from various stages of movement planning. In
our task, participants had to interpret each cue, select an
appropriate response (to make an eye or a hand move-
ment), and to plan the movement itself. Movement
planning consists of selecting an appropriate target for
the movement and specifying all movement parameters.
Additionally, factors such as uncertainty about when the

second cue appears (Gottsdanker, 1980), impaired timing
judgments during dual tasks (Brown, 1997), and confus-
ability regarding the direction of motion of the effector
(Huestegge & Koch, 2009) may also play a role. Our
results suggest that one of the most important processes
involved in the task, namely the selection of the move-
ment goals, did not cause the dual-task interference. It
remains to be investigated at which stage during move-
ment planning the interference actually occurs.
It is difficult to directly compare our results to some of

the other studies that investigated saccade-reaching dual-
task costs, since these did not systematically manipulate
the overlap between saccade and reach planning (Bekkering
et al., 1994, 1995; Lünenburger et al., 2000). Although it
has been reported that saccade latencies are shorter if
concurrent reaches to the same object are planned
(Lünenburger et al., 2000), the opposite pattern of results
was found in a different set of studies (Bekkering et al.,
1994, 1995). It is possible that the requirement to make
two movements to the same object simultaneously might
evoke a pattern of eye–hand coordination that is “hard-
wired.” For example, both Lünenburger et al. and
Bekkering et al. have suggested that the superior collicu-
lus might mediate the observed coupling between the eye
and hand, as some of the neurons in intermediate and deep
layers of superior colliculus are known to fire before arm
movements (Werner, Dannenberg, & Hoffmann, 1997).
The assumption that simultaneous eye and hand move-
ments might be coordinated in a special way is also
supported by the finding that saccade durations decrease if
saccades are made simultaneously with hand movements
(Snyder, Calton, Dickinson, & Lawrence, 2002).

Movement goal selection for eye and hand

Another matter of debate in eye–hand movement
studies has been whether the target representation for
movement planning is shared between both systems or is
separate. We did not find a saccadic latency benefit when
the saccade was planned to the same location as the reach.
Thus, even though participants selected a target for the
reach, they were not faster to saccade to that same target
than to saccade to a different target. This indicates that
movement goal selection for the eye and the hand
movements is relatively independent. In other words,
when the reach is planned, the saccade does not have to be
planned to the same target (for a similar observation, see
also Stritzke & Trommershäuser, 2007).
Our results argue against some findings that were

interpreted as showing that eye and hand movement goal
selection is shared. Neggers and Bekkering (2000, 2001),
for example, reported that if participants are making a
saccade and a reach to the same object, they are unable to
move their eyes to a different location while the hand is
still moving. In addition, it has been observed that saccade
latencies are longer if a simultaneous hand movement is
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planned to the same location (Bekkering et al., 1994,
1995).
We think that those studies could be interpreted in a

different wayVit might be advantageous to keep the eyes
stable while the hand movement is planned or executed.
A number of studies, behavioral and neurophysiological,
show that eye position influences the planning for reach-
ing and pointing (Batista, Buneo, Snyder, & Andersen,
1999; Medendorp & Crawford, 2002; Medendorp, Goltz,
Vilis, & Crawford, 2003). This indicates that the visual
system keeps track of where the hand and the reach goals
are relative to the eye and suggests that every eye
movement requires the recalculation of the hand move-
ment goal position with respect to the new eye position.
Thus, keeping the eyes stable might be advantageous for
fast hand movement planning, but this coupling does not
necessarily mean that movement goal selection is shared
for eye and hand movements. Further research needs to be
carried out to clarify whether targets for eye and hand are
selected independently.
In Experiment 3, we demonstrated that two targets, one

for the saccade and one for the reach, can be selected in
parallel, before reaching movement onset. In other words,
before reaches started, participants were attending simul-
taneously to both saccade and reach locations. In addition,
attention was allocated to the saccade goal immediately
after the saccade cue onsetVregardless of SOA. Thus, it
did not matter whether the hand movement was planned at
that time or notVparticipants selected the saccade target
immediately after saccade cue onset. This demonstrates
that saccade goal selection was independent of whether
the reach goal was selected at that time or not. The finding
further supports the conjecture that the mechanisms
selecting the goals for eye and hand movements are
dynamically independent (Jonikaitis & Deubel, in press).

Split attention

We also demonstrate that attention can be split to
multiple locations, as illustrated by our finding that probe
discrimination was better than chance at saccade and
reach goal locations before reach onset. That attention can
be split has been proposed in a number of studies (e.g.,
Adamo, Pun, Pratt, & Ferber, 2008; Alvarez & Cavanagh,
2005; Awh & Pashler, 2000; Bichot, Cave, & Pashler,
1999); however, this view has also been vigorously
objected (e.g., Dubois, Hamker, & VaRullen, 2009; Jans,
Peters, & Weerd, 2010). Our data clearly support the view
that attention can be split to parallel locations in a task
involving the preparation of eye and hand movements, in
line with further recent evidence (Jonikaitis & Deubel, in
press). One interesting question concerns how this split is
achieved. Our task, contrary to typical tasks investigating
parallel attention foci, did not explicitly instruct attention
to shift to any location. The main task was the movement
task, and we observed that probe discrimination increased

at the movement goal locations. The shift of attention to the
movement goals seems to be involuntary to some degree, as
probe discrimination at movement goal locations increases
even when participants are explicitly informed that probe is
more likely to appear at other locations (Deubel &
Schneider, 1996; Jonikaitis & Deubel, in press; Tibber,
Grant, & Morgan, 2009; Wilder, Kowler, Schnitzer,
Gersch, & Dosher, 2009). This seems to be true also in
cases where no discrimination task is present, but
attention is measured using ERPs (Baldauf & Deubel,
2009). Moreover, attention was found to shift to multiple
locations when a sequence of eye or hand movements to
multiple targets is prepared (Baldauf & Deubel, 2008,
2010; Baldauf, Wolf, & Deubel, 2006; Godijn &
Theeuwes, 2003). All these evidences suggest that atten-
tional resources can be distributed to multiple targets
during the planning of combined eye and hand movements
as shown here, as well as during the preparation of
movement sequences.
The question still remains as to the relationship between

automatic attention allocation to movement goals as
studied here and the intentional, simultaneous attention
allocation to multiple stimuli. It could be that different
attentional resources exist for the shifting attention before
movement onset and the intentional attending to other
locations (Montagnini & Castet, 2007). While this ques-
tion remains to be investigated, our data support the view
that attention can be transiently split.

Inhibition of return

We also observed that saccades were delayed when
participants already reached to that location. This effect
occurred late, at an SOA of around 700–900 ms and thus
was within the time frame when Inhibition of Return
(IOR) is known to occur (Klein, 1988, 2000). IOR is
regarded as a mechanism that discourages attentional (or
saccadic) revisiting of previously attended locations. Our
results show that targets selected for hand movements can
inhibit saccadic orienting to those targets. In other words,
within the IOR time frame, participants tended not to
direct saccades to the locations they already reached at.
It has been suggested that IOR originates from either

attentional or saccadic systems. A possible attentional
explanation of our findings is that participants shifted their
attention to the hand movement target when they planned
the hand movement. Later, when the saccade had to be
planned to that same target, the shift of attention to this
location was delayed, resulting in the observed IOR effect.
Another possible explanation is that the observed IOR is

a saccadic effect (Theeuwes & Godijn, 2002). It could be
argued that participants planned a saccade to every reach
targetVwithout executing the saccade, which resulted in
an IOR effect. However, if this were the case, then at short
SOAs saccades directed to the reaching goal should have
been faster than saccades directed elsewhere, a result that
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we did not observe (see Figure 2). Our findings thus argue
for an attentional origin of IOR.

Reaction time is not attention

A striking observation of this study is that while
saccades showed large dual-task costs as measured in
saccadic latencies, there were no attentional target
selection costs, i.e., the attention shift preceding the
saccade showed no delay. This is surprising given the
common assumption that attention and saccades are
closely coupled when people are asked to make speeded
responses while eye or hand movements are planned. The
clear dissociation between saccadic reaction time and
attentional selection indicates that caution should be taken
in using saccade or hand movement latencies as a measure
of target selection or attentional allocation. Instead of
attentional processing, the latencies may merely reflect
dual-task constraints occurring at later stages of sensor-
imotor processing.
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To interact with objects in their environment, humans often 
make a combination of eye movements and reaching move-
ments. The control of these movements is not independent: 
Typically, the eye movement pattern is organized such that it 
helps to gather the information that is most important for 
reaching and manipulating an object. For instance, in a “pick 
and place” task, humans fixate the item to be picked up, look 
at possible obstacle locations when lifting it, and then make a 
saccade to the end goal of the hand movement before the  
hand reaches this location (Horstmann & Hoffmann, 2005; 
Johansson, Westling, Backstrom, & Flanagan, 2001; Land, 
Mennie, & Rusted, 1999; Pelz, Hayhoe & Loeber, 2001).

Planning these coordinated movements requires the selec-
tion of the movement targets. Given the commonly observed 
yoking of eye and hand movements, the question arises 
whether the targets for the eye and the targets for the hand are 
selected by a common mechanism or by independent systems. 
The first possibility would indicate that planning coordinated 
eye-hand movements is based on selecting a common target 
and results in eye-hand coupling at early stages of movement 
planning. Alternatively, if selecting targets for eye and hand 
movements involves separate, largely independent systems, 
eye-hand coordination may occur only at later stages of senso-
rimotor processing.

The view that the selection of goals for eye movements  
and hand movements involves separate, largely independent 
systems has gained wide support from a number of neurophys-
iological studies. Single-cell recording studies in monkeys 
have suggested that separate areas in parietal cortex represent 
movement goals for saccades and for reaches (Calton,  
Dickinson, & Snyder, 2002; Dickinson, Calton, & Snyder, 
2003; Snyder, Batista, & Andersen, 1997). Functional imaging 
and magnetoencephalography studies in humans have identi-
fied distinct parietal regions that show preparatory activity 
before eye or hand movements begin (Tosoni, Galati, Romani, 
& Corbetta, 2008; Van Der Werf, Jensen, Fries, & Medendorp, 
2010). Activity associated with selection of saccade goals has 
also been demonstrated in prefrontal cortex, in both single-cell 
and neuroimaging studies (e.g., Curtis & Connolly, 2008; 
Lawrence & Snyder, 2009). Finally, findings from psycho-
physical studies have revealed that the early stages of move-
ment planning are separate for eye movements and hand 
movements (Prablanc, Echallier, Komilis, & Jeannerod, 1979; 
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Abstract

When reaching for objects, people frequently look where they reach. This raises the question of whether the targets for 
the eye and hand in concurrent eye and hand movements are selected by a unitary attentional system or by independent 
mechanisms. We used the deployment of visual attention as an index of the selection of movement targets and asked observers 
to reach and look to either the same location or separate locations. Results show that during the preparation of coordinated 
movements, attention is allocated in parallel to the targets of a saccade and a reaching movement. Attentional allocations for 
the two movements interact synergistically when both are directed to a common goal. Delaying the eye movement delays 
the attentional shift to the saccade target while leaving attentional deployment to the reach target unaffected. Our findings 
demonstrate that attentional resources are allocated independently to the targets of eye and hand movements and suggest 
that the goals for these effectors are selected by separate attentional mechanisms.
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Sailer, Eggert, Ditterich, & Straube, 2000; Thompson &  
Westwood, 2007).

However, the alternative view that a single system under-
lies the selection of goals for eye and hand movements has 
also found support in a number of psychophysical studies 
(Bekkering, Adam, van den Aarssen, Kingma, & Whiting, 
1995; Neggers & Bekkering, 2000; Song & McPeek, 2009). 
Further evidence for this view has come from functional imag-
ing studies showing an overlap of the systems involved in 
selecting eye and hand movements in both parietal and pre-
frontal cortex (Beurze, de Lange, Toni, & Medendorp, 2009; 
Levy, Schluppeck, Heeger, & Glimcher, 2007).

It is important to note that the psychophysical studies we 
mentioned used measures related to motor output, such as cor-
relations between precision of saccade and reaching endpoints, 
movement velocity profiles, and movement latencies. There-
fore, the results cannot speak directly to the issue of whether the 
coupling of eye and hand occurs at the early stages of move-
ment planning involving selection of movement targets or at 
later processing stages. Here, we report four experiments in 
which we studied the selection of movement goals directly by 
using spatial attention as an index of target selection. We based 
our approach on the well-established fact that visual attention is 
allocated to the target of the planned movement before saccades 
(Deubel & Schneider, 1996; Kowler, Anderson, Dosher, &  
Blaser, 1995; Montagnini & Castet, 2007) and reaching move-
ments (Deubel, Schneider, & Paprotta, 1998; Linnell,  
Humphreys, McIntyre, Laitinen, & Wing, 2005) occur. Percep-
tual measures of attentional allocation are therefore direct indi-
cators of movement goal selection. In our experiments, we 
asked participants to make a saccade and a reach to spatially 
separate targets while their allocation of attention was measured 
by a probe-discrimination task. The results show that selection 
of the saccade target and the reach goal can occur indepen-
dently, suggesting that the goals of eye and hand movements 
are selected by separate mechanisms. This also implies that eye-
hand coupling does not result from a common attentional selec-
tion mechanism, but probably follows from interactions at later 
processing stages.

Experiment 1
In this experiment, we established that attention is allocated to 
movement-goal locations before movement onset. Participants 
either made a saccade to a centrally cued target (saccade-only 
task) or reached toward the cued target without looking at it 
(reach-only task). We measured covert attentional allocation 
by comparing probe-discrimination rates for probes at move-
ment goals and probes at movement-irrelevant locations.

Method
Participants sat in a dimly illuminated room with their right 
hand on an inclined surface and under a half-translucent mir-
ror (which reflects light coming from above it and lets through 

light coming from below it). Stimuli were projected onto the 
mirror from a monitor above it. This setup caused the projected 
visual stimuli to appear on the mirror and prevented participants 
from seeing the reaching hand below the mirror. Visual feed-
back about the accuracy of reaching movements was provided 
by an LED that was fixed to a fingertip and could be switched 
on and off during the experiment. Switching on the LED resulted 
in participants being able to see where their reaching movement 
ended with respect to the movement target shown on the mirror. 
Reaching movements were recorded at 120 Hz with a Fastrack 
(Polhemus Inc., Colchester, VT) electromagnetic position sen-
sor attached to the index finger of the right hand. Eye move-
ments were recorded with a video-based eye-tracking system 
(Eyelink-I, SensoMotoric Instruments, Teltow, Germany) at a 
temporal resolution of 250 Hz.

Figure 1 depicts the stimulus sequence. Twelve mask ele-
ments (size: 0.9° × 1.4°; composed of randomly generated 
lines) were presented on a uniform gray background and 
arranged on an imaginary circle with a radius of 6.5°. Partici-
pants first directed their index finger and their gaze to a central 
fixation cross. At a time between 580 and 880 ms after fixa-
tion, the central cross changed into an arrow that pointed 
toward any 1 of the 12 mask stimuli. Participants either made 
a saccade toward the cued location (saccade-only task) or 
reached to the cued location while maintaining central fixation 
(reach-only task). Visual feedback about reaching accuracy 
was given 1,500 ms later.

While performing the saccade task or reaching task, partici-
pants had to detect a brief probe stimulus that was shown at one 

Fixation 
(580–880 ms)

Movement Cue

Probe Display
(80 ms)

Mask

Time

–200 to 600 ms

Fig. 1. The stimulus sequence for Experiments 1 and 2. Each trial began with 
12 mask elements displayed in a circle. In Experiment 1, participants quickly 
looked (saccade-only task) or reached to (reach-only task) the item indicated 
by the centrally presented movement cue (arrow). A probe display comprising 
11 distractors (digital 2s and 5s) and the probe letter (a digital E or 3) appeared 
between 200 ms before and 600 ms after the onset of the movement cue, and 
participants reported the identity of the probe. After 80 ms, the probe was 
masked. In Experiment 2, the movement cue was the signal to initiate both 
a reach to the location indicated by the cue and a saccade to a prespecified 
location that was constant within a given experimental block.
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of the locations initially occupied by the mask elements (i.e., 
either the movement-goal location or one of the movement-
irrelevant locations). At a random time between 200 ms before 
and 600 ms after the onset of the movement cue, 11 of the  
12 mask stimuli changed into distractors (digital 2s and 5s), 
while 1 mask stimulus changed into the probe letter (a digital E 
or 3). The probe display was presented for 80 ms, and then the 
12 masks reappeared. After finishing the eye or hand move-
ment, participants reported whether they had perceived an  
E or a 3. Responses were made by nonspeeded button presses 
with the left hand. The probe appeared at the movement-goal 
location with 50% probability and elsewhere (a movement-
irrelevant location) on the other 50% of trials; the probe never 
appeared directly beside the movement-goal location.

A total of 10 observers took part in the saccade-only task, 
and 11 observers took part in the reach-only task. Each  
participant performed at least four experimental blocks of 192 
trials each.

Results
Because the probe was presented at variable times within the 
experimental sequence, we were able to analyze the time course 
of attentional deployment to the probe locations. For each time 
point (every 30 ms), we calculated the proportion of probe dis-
criminations that were correct. The probe-discrimination rate 
for probes located at the movement goal, whether a saccade 
goal or a reach goal, increased gradually over time before  
the movement onset (Fig. 2a). In the saccade-only task, when 
the probe appeared at the saccade target, discrimination perfor-
mance improved to a level significantly above chance at around 
80 ms after movement-cue onset, t(9) = 3.30, p < .01; after that 
time, probe discrimination was always better than chance, all  
ps < .05. In the reach-only task, when the probe was at the reach 
goal, discrimination performance improved to a level signifi-
cantly above chance at around 140 ms after movement-cue 
onset, t(10) = 3.25, p = .01, and was better than chance for all 
times afterward. Immediately before movement onset (mean 
saccade latency = 250 ms, SEM = 6 ms; mean reach latency = 
295 ms, SEM = 12 ms), probe-discrimination rates for probes at 
the saccade and reach goals were comparable, p > .05. Partici-
pants performed at chance levels in discriminating probes at 
movement-irrelevant locations.

These findings demonstrate that before a saccade or reach 
started, attention shifted to the location of the movement goal, 
resulting in above-chance probe discrimination at that loca-
tion. In contrast, participants performed at chance levels when 
reporting the identity of a probe at a location to which no 
action was directed.

Experiment 2
In this experiment, participants performed a combined- 
movement task, making simultaneous eye and hand move-
ments to two separate locations (except for a few trials in 

which both movements were directed to the same location). 
Again, we measured attentional allocation by having partici-
pants report the identity of a probe.

Method
In this task, saccade target was kept constant (at the clock 
position of 2, 4, 8, or 10 o’clock) for each block of 190 trials, 
and before each block, participants were instructed verbally 
about the location of the saccade target. Stimuli and timing 
were the same as in Experiment 1. When the movement cue 
appeared, participants were asked to make two movements 
simultaneously: a reach to the cued location and a saccade to 
the remembered location. We used a fixed saccade target 
because even when a saccade can be prepared for a known 
location, the attention shift to the target is obligatory (Deubel 
& Schneider, 2003). We used four different spatial distances 
between the saccade and the reaching goals: no elements (sac-
cade and reach directed to the same location), one element 
(reach target next to the saccade target), three elements, or five 
elements. The probe appeared at the saccade target on 33% of 
the trials, at the reach target on 33% of the trials, and at one of 
the other (movement-irrelevant) locations on 33% of the trials. 
Ten observers participated in the study. Each participant per-
formed at least six experimental blocks, covering each saccade 
target location at least once.

Results
Mean saccade latency in this task was 288 ms (SEM = 16 ms); 
mean reach latency was 300 ms (SEM = 20 ms). Figure 2b 
shows participants’ discrimination performance for probes 
appearing at various times before and after saccade onset. It is 
striking that probe-discrimination performance increased for 
probes at the saccade target and probes at the reach target at 
about the same time relative to saccade onset. Indeed, before 
the saccades started, the probe-discrimination rates were com-
parable for probes at the saccade target and probes at the reach 
target at each time point, all ps > .05 (repeated measures 
t tests), which indicates that attention was allocated to the 
two movement goals in parallel. In contrast, participants per-
formed at chance levels in discriminating probes at movement-
irrelevant locations.

Having found evidence for the parallel allocation of atten-
tion to the two movement targets, we next tested whether the 
combined-movement task (Experiment 2) exacted a cost (or 
provided a benefit) in discriminating the probe in comparison 
with the single-movement conditions (Experiment 1; Fig. 2c). 
Discrimination performance for probes at the saccade target 
was approximately the same whether participants made only a 
saccade or made both a reach and a saccade (77% vs. 75%),  
p > .05 (independent-samples t test). Similarly, for probes at 
the reach target, there was no difference in discrimination  
performance between the single-movement and combined-
movement tasks (73% vs. 72%), p > .05.
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Thus, when simultaneous eye and hand movements were 
planned, there was no reduction in the attentional resources 
available for these two systems. This is surprising given that it 
has been shown previously that planning a saccade leaves few 
attentional resources for other, covertly attended locations 

(Montagnini & Castet, 2007). However, it seems that prepar-
ing a second action—with another effector system—is not 
subject to this fundamental limitation. We also observed that 
participants were better at discriminating the probes if the eye 
and the hand movements were directed to the same location 

–300 –200 –100 0 100 200 300 –300 –200 –100 0 100 200 300

40

50

60

70

80

90

Time From Probe Onset to Movement Onset (ms)

C
or

re
ct

 D
is

cr
im

in
at

io
n 

(%
)

40

50

60

70

80

90

C
or

re
ct

 D
is

cr
im

in
at

io
n 

(%
)

a Probe Location
Saccade Target
Reach Target
Movement-Irrelevant Location (Saccade Task)
Movement-Irrelevant Location (Reach Task)

Time From Probe Onset to Saccade Onset (ms)

b
Probe Location
Saccade Target
Reach Target
Movement-Irrelevant Location

Saccade Only Reach Only Combined Movement

50

60

70

80

90

Task

C
or

re
ct

 D
is

cr
im

in
at

io
n 

(%
)

c
Probe Location
Saccade Target
Reach Target
Movement-Irrelevant Location
Common Target−2 Effectors

Fig. 2. Discrimination performance in Experiments 1 and 2. The graph in (a) plots the percentage of correct performance in Experiment 1 as a function 
of task and probe location (at the movement goal or a movement-irrelevant location) for probes appearing at various times before and after movement 
onset. The vertical arrows indicate the average times when the reach and saccade cues were presented, respectively. The vertical dashed line indicates 
the time of movement onset. The graph in (b) plots the percentage of correct performance in Experiment 2 (combined-movement task) as a function of 
probe location (at a movement goal or a movement-irrelevant location) for probes appearing at various times before and after saccade onset. The small 
vertical arrow indicates the average time when the movement cue was presented. The vertical dashed line indicates the time of saccade onset. The graph 
in (c) compares discrimination rates from these two experiments for probes presented less than 100 ms before movement onset. Results are shown 
separately for probes at the saccade target, at the reach target, at a movement-irrelevant location, and at the location of both a saccade and a reach. 
Error bars denote standard errors of the mean.
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rather than to two different locations (Fig. 2c). This pattern 
was found both for the comparison between probes at a sepa-
rate eye movement goal and probes at a common target (75% 
vs. 85%, respectively), t(6) = –2.56, p = .04, and for the com-
parison between probes at a separate reach goal and probes at 
a common target (72% vs. 85%, respectively), t(6) = –3.44, 
p = .01. This increase in the probe-discrimination rate shows 
that the processes for selecting eye and hand targets can act 
synergistically and indicates that separate attentional resources 
are used in the selection of eye and hand targets.

We next examined the degree to which the attentional 
selection of a saccade target and the attentional selection of a 
reach target are dynamically independent. We split each par-
ticipant’s data by median saccade latency. The short-latency 
saccades started on average 112 ms (SEM = 6 ms) earlier than 

the long-latency saccades, and this temporal difference was 
reflected in the time course of attentional allocation (Fig. 3a). 
It took participants 105 ms longer to reach the performance 
level of 75% correct probe discrimination on trials with long 
saccade latencies than on trials with short saccade latencies 
(difference determined by fitting probe discrimination for 
probes at the various onsets with a sigmoidal function, sepa-
rately for trials with short- and long-latency saccades). In 
other words, attention shifted to the saccade location earlier 
when saccade latencies were short and later when saccade 
latencies were long. During the interval from 100 to 200 ms 
after presentation of the movement cue, participants were bet-
ter at discriminating probes presented at the saccade location 
if saccade latencies were short than if they were long (Fig. 3a). 
These results demonstrate the close relationship between 
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Fig. 3. Independence of attention for eye and hand movements in Experiment 2. A median split was used to categorize each participant’s 
performance data into trials with short-latency saccades and trials with long-latency saccades. The vertical arrows denote the mean latencies 
of short- and long-latency saccades. The vertical dashed lines indicate the onset of the movement cue. The line graph in (a) shows probe 
discrimination as a function of probe onset (relative to the movement cue) and saccade latency for probes at the saccade target. The bar graph 
shows mean probe-discrimination performance for short- and long-latency saccades for probes at saccade targets presented 100 to 200 ms after 
the movement cue. The line graph in (b) shows probe discrimination as a function of probe onset and saccade latency for probes at the reach target. 
The bar graph shows mean probe-discrimination performance for short- and long-latency saccades for probes presented at reach targets 100 to 
200 ms after the movement cue. Error bars denote standard errors of the mean. The asterisk indicates a significant paired comparison (p < .05).
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attentional allocation and initiation of a saccade. (We found a 
comparable result when we analyzed the saccade-only task in 
Experiment 1; in contrast, we did not observe this effect for 
reaching movements in the reach-only task.)

In contrast, the time course of attentional allocation for 
probes at the reach goal was the same for trials with short- and 
long-latency saccades, and was thus independent from atten-
tional allocation to the saccade location (Fig. 3b). Attention 
did not shift faster to the reaching location if saccade latencies 
were short than if they were long. In other words, no matter 
how early or late attention was allocated to the saccade goal, 
this did not affect attentional allocation at the reach goal. This 
finding suggests that attentional allocation to one location is 
dynamically independent of attentional allocation to the other.

One could object that the selective processing of the sac-
cade and reach goals in this experiment may have resulted 
from a strategic allocation of attention because the probe was 
more likely to appear at the saccade and reach goals than at the 
movement-irrelevant locations. To exclude this possibility, we 
ran a control experiment with 7 participants. In this experi-
ment, the probe was presented with equal probability at any  
of the 12 stimulus locations. The probes were shown 140 to 
180 ms after the onset of the movement cue (i.e., within the 
last 200 ms before saccades and reaches started). We found the 
same pattern of results as before: If the probe was presented at 
one of the movement-irrelevant locations, probe discrimina-
tion was at chance level (52%). Participants performed better 
if the probe was presented at the saccade (68%) or reach (68%) 
target and best if the probe appeared at a location to which 
both the saccade and the reach were directed (85%). Analyses 
in which probe onset was matched across the experiments 
revealed that the results from the control experiment closely 
mirrored the findings of Experiment 2. In conclusion, the 
results from the control experiment rule out the possibility that 
the previous findings were due to participants strategically 
attending to locations where the probe was most likely to 
appear.

Experiment 3
It could be argued that instead of allocating attention in paral-
lel to the two movement goals, participants may have shifted 
their attention to the saccade target on some trials and to the 
reach target on other trials. Therefore, in Experiment 3, we 
presented two probes at the same time in a same/different 
judgment task. The probes were shown for only 80 ms, a dura-
tion that is presumably too short to allow a shift of attention 
from one location to another. Rather, we assumed that this task 
could be performed successfully only if participants allocated 
their attention in parallel to the saccade and the reach goals.

Method
The stimulus sequence and procedure were the same as in the 
combined-movement task (Experiment 2) except that two 

probes were shown: One of them was always at one of the 
movement goals, and the other was either at the second move-
ment goal (50% of trials) or at a movement-irrelevant location 
(50% of trials). Participants reported whether the two probes 
were the same or different (rather than identifying the probes). 
Six of the 10 observers who participated in Experiment 2 par-
ticipated in this experiment. Each participant performed two 
blocks of 192 trials.

Results
Participants performed better than chance only when the 
probes were presented at the two movement goals (63%), 
t(5) = 3.34, p = .02. If the probability of identifying the probe 
at the saccade goal is p1 and the probability of identifying the 
probe at the reach goal is p2, then the probability of correctly 
identifying stimuli appearing at the two locations simultane-
ously (as in a same/different task) can be calculated as fol-
lows: (p1 × p2) + (1 – p1) × (1 – p2). We used each participant’s 
data from Experiment 2 to calculate his or her probability of 
correctly identifying the two probes in Experiment 3. There-
fore, for each participant, we had the predicted probe- 
discrimination probability (from data in Experiment 3) and 
the observed probe-discrimination probability (the data in 
Experiment 2). The observed discrimination rate of 63% was 
indeed not different from the predicted discrimination rate of 
62%, p > .05 (repeated measures t test), a result confirming 
that participants allocated their attention to the two locations 
in parallel.

Experiment 4
Experiment 4 was aimed at confirming the dynamic indepen-
dence of attentional allocation to eye and hand movement tar-
gets. In this experiment, two movement cues were presented 
centrally, one after the other: The first cue indicated the reach 
target, and the second cue indicated the saccade target. The 
cues appeared with a stimulus onset asynchrony (SOA) of 150 
or 200 ms. If attention is allocated independently to the two 
movement goals, the delay in attentional allocation would be 
expected to differ between the two SOA conditions.

Method
The stimuli and procedure were the same as in Experiment 2 
except for the following. On each trial, a reach movement cue 
was presented for 100 ms, and participants had to reach to the 
indicated location. Either 50 or 100 ms after the offset of the 
first cue, a second movement cue appeared for 100 ms; this 
cue indicated the saccade location. Thus, the SOA between the 
first and second movement cues was either 150 or 200 ms. The 
distance between the saccade target and the reach target was 
either two or four items. Six observers participated in this 
experiment. Each participant performed at least four blocks of 
144 trials.
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Results

Attention shifted to the reach goal after the first movement cue 
and to the saccade target after the second movement cue (Fig. 
4). There was no difference in probe-discrimination rates at the 
reach goal between the two SOA conditions at any of the time 
points before reach onset, all ps > .05 (repeated measures t test). 
In contrast, probe-discrimination performance at the saccade 
target was modulated by SOA. The probe-discrimination rate at 
the saccade target rose above chance level about 80 ms later for 
the longer-SOA condition (SOA = 200 ms) than for the shorter-
SOA condition (SOA = 150 ms). Note that for the 150-ms SOA 
condition, probe discrimination at the saccade location was far 
above chance before the reach movement started (mean reach 
latency = 272, SEM = 15 ms). This means that the selection of 
the saccade target did not wait for the onset of the reach, but 
rather depended on the onset of the saccade cue. These results 
demonstrate the temporal independence of attentional alloca-
tion to the two movement targets and rule out the possibility that 
the parallel allocation of attention observed in Experiment 2 
was due to the precuing of the saccade target.

General Discussion
In a series of experiments, we found that when participants 
made simultaneous eye and hand movements to separate loca-
tions, attention was allocated in parallel to the two locations, 

with no cost arising from the need to plan two movements 
instead of one. Therefore, even though the eye and hand sys-
tems are linked, attentional limits do not constrain selection of 
targets for simultaneous eye and hand movements. Further-
more, we demonstrated that delaying eye movement led to a 
delay in the attentional shift to the corresponding saccade tar-
get but left the attentional deployment to the reach target unaf-
fected. This finding indicates that the attentional control 
mechanisms for the eye and hand are dynamically indepen-
dent. Given these results, we propose that separate, effector-
specific attentional controllers, instead of a unitary attentional 
system, are involved in distributing visual attention to multiple 
task-relevant locations.

Our experimental findings are perfectly in line with the pre-
dictions of the premotor theory of visual attention (Rizzolatti, 
Riggio, & Sheliga, 1994). This theory suggests the existence 
of multiple spatial pragmatic maps, one specific to each effec-
tor system. Neurons in these maps become activated when a 
movement is prepared, and attention results as a consequence 
of the activity of the pragmatic maps.

The alternative hypothesis is that movement goals for sac-
cades and reaches are selected by a single, shared system repre-
senting a unitary map of action-relevant or salient objects (e.g., 
Itti & Koch, 2000). Indeed, the existence of such maps has been 
proposed for both frontal eye fields and the lateral intraparietal 
area, which are also implicated in the selection of saccade  
goals (Goldberg, Bisley, Powell, & Gottlieb, 2006; Moore, 
Armstrong, & Fallah, 2003). However, the assumption that 
these specific areas represent all salient objects is incompatible 
with the finding that these regions mainly represent potential 
saccade targets, and do not represent reach targets (Snyder et al., 
1997). Also, our observation that the selection processes for eye 
and hand movement goals interact synergistically when the two 
effectors are directed to a common target is best explained by 
assuming that selection of eye movement goals and selection of 
hand movement goals occur in separate systems, rather than in 
a common, effector-agnostic system. Thus, both our results and 
current neurophysiological findings seem to indicate that the 
selection of movement goals is effector-specific and applies to 
only the objects that are relevant for the particular type of action. 
Interactions between the selection systems, such as the observed 
synergistic interaction when eye and hand movement goals 
were shared, may then occur through backward connections 
converging onto earlier visual areas (Moore et al., 2003).

Although our results have shown that the selection of eye 
and hand movement targets can be independent, a number of 
studies have found considerable cross talk between these move-
ment systems. For example, saccade amplitudes influence reach-
ing amplitudes (van Donkelaar, 1997), gaze is anchored to the 
reaching goal while people are reaching (Neggers & Bekkering, 
2000), and people are likely to look where they choose to  
reach (Horstmann & Hoffmann, 2005). Cross-coupling has also 
been demonstrated in single-cell recording studies showing that 
eye-position signals modulate reach-related activity in parietal 
cortex (Batista, Buneo, Snyder, & Andersen, 1999) and that 
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hand-position signals modulate saccade-related activity in fron-
tal cortex (Thura, Hadj-Bouziane, Meunier, & Boussaoud, 
2008). We interpret these findings as showing that eye and hand 
movement systems keep track of each other, so that the eye 
knows where the hand will go and vice versa. These interactions 
may in principle occur at various stages of sensorimotor pro-
cessing. However, our findings suggest that eye-hand coupling 
does not result from a common attentional selection mecha-
nism, but probably follows from interactions at later processing 
stages.

We also demonstrated that attention can be transiently allo-
cated to multiple locations. Whereas classical theories of atten-
tion assumed a single focus of selection, and this idea has been 
reinforced recently (Dubois, Hamker, & VanRullen, 2009), our 
data reveal that multiple foci of attention are possible when 
actions are planned. This idea is in line with other recent studies 
showing that when a sequence of eye or hand movements to 
multiple targets is prepared, attention spreads in parallel to all 
action-relevant goals, establishing spatially separate attentional 
foci (Baldauf & Deubel, 2010; Godijn & Theeuwes, 2003). 
These findings are in stark contrast to those obtained using tasks 
that involve intentional attention shifts: When making a sac-
cade, people are worse at discriminating visual stimuli pre-
sented at locations other than the saccade goal (Tibber, Grant, & 
Morgan, 2009; Wilder, Kowler, Schnitzer, Gersch, & Dosher, 
2009). Similarly, planning goal-directed pointing or simple but-
ton presses reduces performance in tasks requiring attentional 
shifts to other locations (Brisson & Jolicoeur, 2007; Gherri & 
Eimer, 2010; Wilder et al., 2009). Although attentional alloca-
tion seems to compete with movement planning in tasks involv-
ing intentional shifts of attention, attentional resources can be 
distributed to multiple targets without evidence of resource lim-
itations during the planning of combined eye and hand move-
ments, as shown here, as well as during the preparation of 
movement sequences. This suggests a dissociation between 
attentional shifts that occur for the purpose of action preparation 
and those that are involved in purely perceptual tasks.

In conclusion, we have demonstrated that selective atten-
tion is allocated in parallel to the targets of eye and hand 
movements, and we propose that the attentional control mech-
anisms for these two effector systems are largely independent. 
This finding highlights the flexibility of the visuomotor sys-
tem in being able to simultaneously select and process multi-
ple objects relevant for different actions and suggests that 
signals from separate sources are related to target selection for 
different effectors.
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Abstract 

We investigated the effects of visuo–spatial attention on movement kinematics by employing a 

dual–task paradigm. Participants had to grasp cylindrical objects of different sizes (motor task) 

while simultaneously identifying a target digit presented at a different spatial location within a 

rapid serial visual presentation (perceptual task). The grasping kinematics in this dual–task 

situation were compared with those measured in a single task condition. Likewise, the 

identification performance was also measured in a single–task condition. Additionally, we kept 

the visual input constant across conditions by asking participants to fixate. Without instructions 

about the priority of tasks (Experiment 1) participants showed a considerable drop of 

identification performance (perceptual task) in the dual–task condition. Regarding grasping 

kinematics, the concurrent perceptual task resulted in a less accurate adaptation of the grip to 

object size in the early phase of the movement, while movement times and maximum grip 

aperture were unaffected. When participants were instructed to focus on the perceptual task 

(Experiment 2), the identification performance stayed at about the same level in the dual–task 

and the single–task conditions. The perceptual improvement was however associated with a 

further decrease in the accuracy of the early grip adjustment. We conclude that visual attention 

is needed for the effective control of the grasp kinematics, especially for a precise adjustment of 

the hand to object size when approaching the object.  
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Introduction 

Before initiating a goal–directed grasping movement, the target object has to be selected from 

the visual scene. Visual attention is the mechanism which underlies this kind of selective 

processing. In short, visual attention fulfills two important functions: On the one hand, attention 

supports perception by facilitating the detection of certain stimuli (Posner, 1980), and on the 

other hand, visual attention is involved in the selection of objects that are relevant for 

goal–directed actions, thereby helping to specify the spatial parameters of a movement 

(Neumann, 1987; Allport, 1987).  

It has been proposed that both mechanisms (“selection for perception” and “selection for 

action”) share a common attentional resource (Schneider, 1995). So far, this theory is mainly 

supported by the finding that selectional processes preparing a spatio–motor action bind the 

attentional mechanisms in visual perception to the movement target. For example, while 

preparing a pointing or grasping movement, visual discrimination performance is increased at 

the selected movement positions, whereas the discrimination performance is reduced close to 

chance level at positions which are not associated with an upcoming movement (e.g., Deubel, 

Schneider, & Paprotta, 1998; Deubel & Schneider, 2004; Schiegg, Deubel, & Schneider, 2003; 

Baldauf, Wolf, & Deubel, 2006). Thus, the sensorimotor system seems to selectively allocate 

attention to relevant movement–related positions in space when planning a movement. Note 

that attention can be distributed between several objects of interest in parallel, for instance when 

obstacles have to be taken into account (Deubel & Schneider, 2004), or movements are 

performed bimanually (Baldauf & Deubel, 2008). Although there are many studies showing 

that visual attention is deployed to the goal positions of the movement well in advance leaving 

only little processing capacity for action-irrelevant items in the visual field, there are 

considerably less studies looking for the complementary effects of an attentional task on 

movement kinematics.  
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Many everyday activities involve simultaneous cognitive tasks and motor control activities, 

and can obviously be well performed by healthy humans (e.g., grasping a coffee mug while 

talking on the phone). On the one hand, it could be argued that some motor tasks, such as 

eye–movements or grasping, are immune to interference since they are assumed to occur 

“automatically”, thus not requiring central cognitive resources (e.g., Shiffrin and Schneider, 

1977; 1984; for an overview, see Norman and Shallice, 2000). On the other hand, assuming that 

the attentional capacity available is limited (Broadbent, 1958; 1982), performing two tasks at 

the same time could be expected to result in interferences. These inconsistent predictions on the 

occurrence of interferences between attentional and motor tasks are also reflected in the 

research examining the effects of dividing attention on smooth pursuit eye–movements. 

Whereas some researchers observed impairments in the accuracy of smooth pursuit 

eye–movements when an attentionally demanding secondary task had to be performed (Chen, 

Holzman, & Nakayama, 2002; Hutton & Tegally, 2005), other researchers reported an even 

enhanced pursuit performance when employing a dual task paradigm (van Gelder, Lebedev, 

Liu, & Tsui, 1995; Kathmann, Hochrein, & Uwer, 1999). The latter, rather counterintuitive 

finding was explained by proposing that pursuit eye tracking is a highly automatic process that 

is performed best in the absence of controlled attention (Kathmann et al., 1999).  

In contrast to the extensive research done on interference effects between eye movements 

and visual attention, studies investigating attention–related effects on pointing and grasping 

movements have primarily focused on the problem of whether and how the presence of a 

distractor in the workspace object modifies the movement kinematics (e.g., Bonfiglioli & 

Castiello, 1998; Castiello, 1996; Kritikos, Bennett, Dunai, & Castiello, 2000; Tipper, Lortie, & 

Baylis, 1992; Tipper, Howard, & Jackson, 1997; Jackson, Jackson, & Rosicky, 1995). The 

findings of these studies suggest that distractor objects only interfere with movements when 

they become task–relevant (therefore attracting more attention) and share similar properties 

with the target object. For example, in the study of Castiello (1996), participants had to count 
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how often a distractor object was illuminated while executing a grasping movement (covert 

attention). When the distractor object was a large object, maximum grip aperture was larger 

than when the distractor object was a small object, although the size of the target object 

remained constant. Thus, it was concluded that task–irrelevant properties of the distractor are 

automatically processed activating in parallel a motor program for the distractor object which in 

turn causes the observed interference effects. In short, this shows that when attention has to be 

divided between a distractor and a target object, the grasp parameterization is influenced by the 

distractor’s properties. The assumption that grasping requires attentional resources is further 

supported by recent studies conducted in our lab showing that the introduction of a secondary 

(motor) task can lead to sequencing effects in grasp pre–shaping (Hesse & Deubel, 2010). In a 

free-viewing condition, grip aperture was not adapted to the size of the target object unless a 

concurrently executed pointing movement (performed with the other hand) was finished. 

However, when fixation was required, both tasks (grasping and pointing) could be well 

performed in parallel.  

In all the studies discussed so far, the secondary task was always another motor task, and 

when distractors were used they were related to the grasping movement. In this study, we 

applied a dual–task paradigm in order to test whether a pure visual task requiring attentional 

resources interferes with grasp programming and execution. Therefore, we asked participants to 

simultaneously perform a grasping movement to a target object while trying to detect a target 

digit in a rapid serial visual presentation of digits presented at a different spatial location. In 

order to avoid the effects of overtly changing attention between the perceptual and the motor 

tasks, participants were asked to keep fixation when performing both tasks. We were especially 

interested in the question of whether grasp kinematics were altered when a simultaneous 

perceptual task (requiring attention) had to be performed. We additionally examined the 

complementary effects of the grasping movement on the visual identification performance. 

Finally, the perceptual and motor performance reached in the dual–task conditions (grasping 
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and identifying) were compared to the performance reached in matched perceptual and 

visuo-motor single–task conditions, respectively. 

Experiment 1 

Methods 

Participants 

Twelve undergraduate and graduate students of the Ludwig–Maximilians–University Munich 

(five men; mean age = 28, age range: 21–47) participated in the experiment. They were paid 8 

Euro per hour of participation. All participants were right–handed by self report, had normal or 

corrected–to–normal visual acuity, and were naive with respect to the purpose of the study. The 

experiments were done with the understanding and written consent of each participant and 

conformed to the Declaration of Helsinki. 

Apparatus and stimuli 

Three black wooden rings served as target objects. All rings had an inner annulus of 25 mm, but 

differed in their outer diameters (diameters 50, 55, and 60 mm).  

Participants sat comfortably on an adjustable chair within a dimly lit room. They looked 

straight at a transparent Plexiglas pane (34 cm x 30 cm x 0.5 cm) which was placed vertically on 

the tabletop at a viewing distance of 50 cm (see Figure 1A). A chin rest was used to maintain a 

constant head position throughout the experiment. In every trial two rings of different size were 

attached to the Plexiglas pane. The rings were vertically aligned with a distance of 8.5 cm 

between their centers (see Figure 1B). At a distance of 100 cm behind the pane a video projector 

was installed projecting onto the back of the Plexiglas to which a transparent foil and a light 

gray paperboard were attached. Three holes were cut in the paperboard allowing the projector to 
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project at the position of the inner annuli and the position of fixation. The fixation location was 

placed centrally between the rings and 5.5 cm to their left to prevent interference with grasping 

movements that were performed with the right hand. The starting position of the hand was 

marked by a pin which was affixed on the table top. The distance between starting pin and target 

ring was 38 cm for the lower and 42 cm for the upper target position.  

The projector was used to present the fixation cross and the attentional (visual) stimuli in the 

annuli of both rings. The visual stimuli consisted of a rapid serial visual presentation (RSVP) of 

digits (between 1 and 9). The digits were white projected on a gray background for 50 ms with 

a blank interval of 75 ms between each presentation. The size of the digits was 2.7 of visual 

angle. The size and the presentation duration of the digits in the RSVP were determined in a 

pilot study adjusting the digits such that participants achieved on average an identification 

performance of approximately 85%.  

Trajectories of the grasping movements were recorded using a Polhemus Liberty 

electromagnetic motion tracking system at a sampling rate of 240 Hz. The Polhemus Liberty 

tracking system provides 6-degrees-of-freedom (position and orientation) information at a 

static accuracy of 0.8 mm RMS for the x, y and z positions and 0.15 deg for sensor orientation. 

The Polhemus sensors were attached to the nails of the thumb and the index finger of the right 

hand (using adhesive pastels: UHU-patafix, UHU GmbH, Bühl, Germany and medical tape). 

Prior to the experiment a calibration procedure was used to align the Cartesian coordinate 

system (x,y,z) of the Polhemus system such that the start position on the table corresponded 

with the point of origin (0,0,0). Also, the orientation signals of the sensors attached to index 

finger and thumb were calibrated to a standard orientation. By considering the individual 

thickness of index finger and thumb, the orientation information allowed us to calculate the 

grasp touch points of thumb and index finger relative to the sensors, for each sample recorded 

during the experiment. During the experiment participants wore liquid–crystal shutter glasses 
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(Milgram, 1987), which rapidly suppress vision by changing from a transparent to an opaque 

state. 

Procedure 

Participants began each trial with the index finger and thumb of the dominant right hand located 

at the starting position. Before the beginning of each trial the shutter glasses turned opaque and 

the experimenter arranged the objects on the Plexiglas pane. After the experimenter had placed 

both rings, he/she initiated the trial manually by pressing a key. When the shutter glasses 

became transparent participants looked at the fixation cross located to the left of the objects. 

Simultaneously the presentation of the RSVP in both annuli began. After the fixation period 

which lasted for 1s, the fixation cross turned into an arrow cuing either the upper or the lower 

annulus. Depending on the block, the cue indicated to the participants at which target location 

they had to detect the target digit and/or to which target they had to direct their grasping 

movement, respectively. There were three different task blocks: 1) grasping baseline: In this 

block the cue indicated to the participants which ring they had to grasp. The RSVPs could be 

ignored and no target digit was presented. 2) perception baseline: In this block the cue indicated 

to the participants to which annulus they had to direct their attention. Black target digits were 

presented in both annuli and participants had to report the digit that was presented in the cued 

annulus. No grasping movements were required in these trials. 3) dual–task condition: In this 

block, participants had to do both, grasping the target ring while simultaneously directing the 

attention to the opposite annulus reporting the black target digit presented within the RSVP. 

The cue indicated to the participants to which annulus they had to direct their attention. In the 

perceptual baseline and dual–task conditions the target digit (which had to be identified by the 

participants) appeared randomly 200 ms, 350 ms or 500 ms after the cue presentation (that 

signalled the beginning of the movement). We chose different presentation times in order to 

prevent participants from predicting the occurrence of the target digit during the experiment. 
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Furthermore, we aimed at presenting the target during the time the movement was initiated 

since the movement programming phase is supposed to be most crucial for the distribution of 

attentional capacities (Schiegg et al., 2003; Baldauf & Deubel, 2010). The mean RT associated 

with cued prehension is approximately 450 ms according to Jakobson and Goodale (1991). The 

RSVP was restricted such that the two digits occurring simultaneously in both ring locations 

were never identical in one pass. In all blocks participants were instructed to keep fixation at 

cue location for the whole duration of the trial. After three seconds, the shutter glasses turned 

opaque and the experimenter returned the objects and prepared the next trial.  

 

Insert Figure 1 about here 

In the trials which required grasping a target ring, participants grasped the ring with index 

finger and thumb (precision grip), and then put the object in front of them on the tabletop. When 

participants had to report the target digit, they did so in the end of each trial. The reported digit 

was then entered by the experimenter sitting next to the participant. If participants did not 

perceive the target they were instructed to guess. Furthermore, they were instructed to start their 

movements immediately after the cue was presented and to do both tasks in the dual–task block 

as accurately as possible.  

There were six different combinations of ring sizes (see Figure 1C) and two possible target 

positions (up and down). In each trial the combinations of target rings and cued location were 

determined pseudo–randomly. In the baseline trials each combination was presented two times 

resulting in 24 trials. Thus, in the grasping baseline each target size was actually grasped 8 

times. In the perception baseline the target letter was presented 8 times in each ring size and the 

three presentation times were assigned randomly to the 24 trials (each presentation time 

occurring eight times but independent of the combination of ring sizes). In the dual–task trials 

each combination of the six ring sizes and the two cued locations (“up” vs. “down”) was 
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presented five times resulting in 60 trials (i.e. each ring size was grasped 20 times). Again the 

presentation times of the target letter were assigned randomly with each delay occurring 20 

times during the 60 trials, and each presentation time occurring at least 5 times for each object 

size.  

Before starting each block, six practice trials were executed for familiarization with the task. 

The sequence of blocks was counterbalanced across participants. Before the experiment started 

the position of the digits in the rings was individually adjusted such that participants perceived 

the digits as presented in the middle of the annuli.  

Data Processing 

The visual identification performance and the kinematics of the grasping movements measured 

in the dual–task condition were compared with the performance in the baseline conditions 

respectively. The percentage of correctly identified target digits was used as indicator for the 

perceptual performance and compared between the dual–task and the perceptual baseline 

condition. Furthermore, we determined how often, in trials in which the target digit was 

reported erroneously, the reported digit corresponded to the digit which presented opposite to 

the cued location to which the grasping movement was directed. 

In order to determine the effects of the perceptual task on grasping movements we compared 

certain kinematic parameters between the dual–task condition and the grasping baseline 

condition. The finger trajectories were filtered off-line using a second-order Butterworth filter 

that employed a low-pass cut–off frequency of 15 Hz. Movement velocities were determined by 

differentiating the position signal of the markers. Movement onset was defined by a velocity 

criterion. The first frame in which the wrist exceeded a velocity threshold of 0.1 m/s was taken 

as movement onset. Reaction time (RT) was defined as the time between the cue presentation 

and movement onset. The first frame in which the velocity of the wrist dropped below a 

threshold of 0.1m/s was taken as the touch of the object. Movement time (MT) was defined as 
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the time between movement onset and touch of the object. Furthermore, we determined the 

approach to the target location by measuring the trajectory of the fingers, calculated as the 

virtual midpoint between index finger and thumb, along the y-axis and z-axis (see Figure 1 for 

axis assignments). The trajectory data was determined every 20 ms from movement onset. 

Additionally, several parameters related to the grasp component of the movement were 

quantified. Maximum grip aperture (MGA) was defined as the maximum distance in 3D 

between the calculated grasp positions of the thumb and the index finger during MT. Moreover, 

the time when MGA was reached was determined. Finally, in order to determine how well  the 

aperture was adjusted to the size of the object over time we first computed the size of the 

aperture as mean values binned over 10 samples (42 ms) from movement onset. Then we 

conducted a linear regression analysis in order to determine the slope of the function relating 

object size to aperture size over time. This provided a sensitive measure of the adjustment of 

grip aperture to the specific objects sizes during the grasp.  

Since we were mainly interested in the effects of object size on grasp kinematics in the 

baseline conditions (grasping only) and in the dual–task conditions (grasping and simultaneous 

perceptual task), the grasping data was averaged over the two ring positions (up and down) and 

the different ring combinations. Furthermore, we checked in a pre–analysis for the effects of 

presentation time of the target digit on grasping kinematics and perceptual performance (see the 

sections on the pre–processing of the data). Since the presentation time was found to show no 

major effects on our dependent variables, the data was averaged over all presentation times, and 

then further analysed using repeated measures analysis of variance (3x2 ANOVA) with the 

factors ring size (50 mm, 55 mm, 60 mm) and task (baseline condition vs. dual–task condition). 

A significance level of =0.05 was used for the statistical analyses. If the sphericity assumption 

was violated, the degrees of freedom were adjusted using the Greenhouse–Geisser correction 

(Greenhouse & Geisser, 1959). Values are presented as means  standard errors of the mean.  
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Results 

Perception 

Pre–analysis on the effects of target presentation time 

In order to test for the effects of the different presentation times of the target letter on the 

perceptual performance, we applied a repeated–measures ANOVA with the factor presentation 

time (200 ms, 350 ms, 500 ms) to the data collected in the perceptual baseline and in the 

dual–task conditions. The perceptual performance in the baseline conditions was unaffected by 

the presentation time, F(2,22)=0.9, p=.79. In the dual–task conditions, there was a slight 

tendency for a better identification performance when the target was presented later (58.3% 

4.1% for presentation after 200 ms, 64.3% 4.0% after 350 ms, and 67.1% 3.5% after 500 

ms). However, the finding failed to reach significance, F(2,22)=2.7, p=.09. In the following 

analyses we merged the data over all presentation times.  

 

Baseline vs. Dual–task condition 

Regarding the identification performance in the visual attention task we were interested in how 

the additional grasping task affected the performance compared to the baseline condition in 

which no concurrent movement was required. The identification performance was averaged 

over all ring combinations, ring sizes, and presentation times in both conditions. On average, 

participants identified 84.4% 3.4% of the digits correctly in the baseline condition. This 

performance dropped significantly in the dual–task conditions, t(11)=6.8, p<.001, in which 

participants only identified 63.1% 3.2% of the target digits correctly (see Figure 2). When we 

examined the erroneous trials more closely, it turned out that participants reported the digit 

which was presented in the opposite annulus significantly more often in the dual–task 

conditions than in the baseline conditions, t(11)=3.3, p=.007. In the baseline conditions the 
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opposite digit was reported in 12.0% 5.1% of the erroneous trials which corresponded 

approximately to the chance level (11.1%). In contrast, in the dual–task conditions the opposite 

digit was reported in 26.3% 4.3% of all erroneous trials. This data is in line with previous 

findings showing that movements directed to a certain location in space bind attentional 

resources, resulting in a reduced ability to allocate attention to other positions in space (Deubel 

& Schneider, 2004; Baldauf et al., 2006; Baldauf & Deubel, 2010). 

 

Insert Figure  2 about here 

 

Grasping 

Pre–analysis on the effects of target presentation time 

To test whether the time of target presentation affected grasping kinematics, we applied a 

repeated–measures ANOVA with the factor presentation time (200 ms, 350 ms, 500 ms) to the 

data collected in the dual–task condition. No significant effect of presentation time was 

observed on any of the variables of interest: MGA: F(2,22)=1.4, p=.28, time to MGA: 

F(2,22)=1.1, p=.36, MT: F(2,22)=1.3, p=.29, and RT: F(2,22)=1.5, p=.25. For the following 

analyses we merged the data over all presentation times. 

 

Baseline vs. Dual–task condition 

Transport  

Figure 3a shows the mean movement paths of the hand (calculated as the virtual mid–point 

between index finger and thumb) in y–direction and two–dimensionally in y–z space (from the 

start position to the target location) averaged over the different ring sizes and ring positions. 

Surprisingly, the trajectory in the baseline and the dual–task trials are virtually identical. Thus, 

superficially there seems to be no indication that the approach to the target object was affected 

by the simultaneously performed attention task. This conclusion is supported by the MT data. 



14 

The MTs were neither affected by the size of the object to grasped, F(2,22)=0.2, p=.79 nor by 

the task, F(1,11)=2.0, p=.19. There was no interaction effect (p=.91). It took participants on 

average 614ms 13ms in the baseline condition to perform the movement, and 594ms 16ms 

in the dual–task conditions. Thus, contrary to our expectations, MTs were not prolonged when 

an additional attention task had to be performed. Regarding the RTs, we found a tendency for 

prolonged movement initiation times in the dual–task compared to the baseline task, 

F(1,11)=4.8, p=.05. On average, participants initiated their movement after 385ms 21ms in 

the baseline conditions and after 429ms 17ms in the dual–task conditions, while there was no 

effect of object size and no interaction (both p>.48). This result is in line with the finding that 

doing two tasks simultaneously results in dual–task costs, typically reflected in an increase in 

error rates and reaction times as compared to doing only one task at a time (Pashler, 1994; 

Schubert, 2008).  

 

Insert Figure  3 about here 

Pre–shaping 

In a second step we questioned whether the perceptual task affects the grasp pre–shaping. We 

had hypothesized that an attentional task may prevent the early perceptual processing of the 

grasp target, such that the movement–relevant parameters of the object, i.e. its size, could not be 

integrated during the early movement phase. A very reliable and commonly used measure to 

quantify the adjustment of the grip to object size is MGA (Smeets & Brenner, 1999). As 

expected, a 3 (object size) x 2 (task: baseline vs. dual–task) repeated–measures ANOVA 

revealed a significant effect of object size, F(2,22)=81.6, p<.001. On average the size of MGA 

was 65.7mm 1.5mm for the small object, 70.1mm 1.7mm for the medium sized object and 

73.3mm 1.6mm for the large object. However, we observed no significant main effect of task, 

F(1,11)=0.05, p=.82 and no interaction effect (p=.53). This finding indicates that the MGA was 

equally well adapted to object size in both conditions suggesting no effect of the perceptual task 
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on grip scaling. Regarding the timing of MGA we found, however, a small but significant effect 

of task, F(1,11)=8.2, p=.02. On average MGA was reached after 482ms 22ms in the baseline 

conditions and after 525ms 21ms in the dual–task conditions. There was no effect of object 

size and no interaction (both p>.36). Thus, although the MGA was about the same size for the 

different objects in the baseline and in the dual–tasks, it was reached a bit later when a 

perceptual task had to be performed simultaneously. This finding prompted us to look more 

closely at the adjustment of the grip over time.  

For this purpose, we calculated the size of the aperture in time–bins of 10 samples (42 ms). 

Figure 4A shows the aperture profiles for the different object sizes in the baseline and the 

dual–task conditions. In both conditions the aperture shows a smooth opening over time. A 

closer look at the figure reveals that the fingers open a bit slower in the dual–task conditions and 

that the aperture profiles seem to separate later for the different object sizes. To examine this 

observation in more detail, we calculated the slope of the function relating object size to 

aperture size using linear regression analysis. This measure reflects the integration of object 

size in the grip adjustment over time. Firstly, we tested again for the effects of presentation time 

of the target letter on grip scaling in the dual–task conditions. Therefore, we applied a 

repeated–measures ANOVA with the factors presentation time (200 ms, 350 ms, 500 ms) and 

time bin to the data collected in the dual–task condition. Again there was no significant effect of 

presentation time (p=.80) and no significant interaction between presentation time and time bin 

(p=.25). As expected, the main effect of time bin was highly significant, F(19,209)=17.9, 

p<.001. On basis of these findings, we averaged the data in the dual–task conditions over all 

presentation times. 

Figure  5 shows the average grip scaling over time in the baseline condition and in the 

dual–task conditions. The slopes increased much slower in the dual–task condition which 

required reporting the target digit presented within the RSVP, than in the baseline conditions in 

which no perceptual task was performed. The repeated–measures ANOVA with the factors task 
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and time-bin revealed a significant interaction effect, F(19,209)=2.1, p=.007, suggesting that in 

both tasks the slopes changed differently over time. As expected there was a significant effect 

of time, F(19,209)=61.4, p<.001, reflecting the increase of the slopes over the course of the 

movement. The main effect of condition failed to reach the level of significance, F(1,11)=4.6, 

p=.06. However, we would not have assumed that the slopes between the baseline and the 

dual–task conditions vary per se but that the slopes increase later and/or slower in the dual–task 

condition compared to the baseline condition as confirmed by the interaction effect. When 

calculating the differences between conditions at each time point using paired–samples t-tests, 

four comparisons became significant.  

Insert Figure 4 about here 

Insert Figure 5 about here 

Experiment 2 

The results of Experiment 1 show that whereas the perceptual performance suffers considerably 

when doing a simultaneous motor task, the effects of the attention task on the motor 

performance are more subtle. Surprisingly, neither movement times nor the trajectories 

changed when the perceptual task had to be performed. The only indication that the perceptual 

task interfered with the motor planning was found in the adjustment of the grip aperture to 

object size. One reason why grasping kinematics remained relatively unaffected by the 

secondary task might have been that participants prioritized performing the grasping task over 

the perceptual task, since the consequences of failing in the motor task were more relevant (e.g. 

dropping the object). If the decrease in motor performance is due to the imposed cognitive 

demands, increasing the level of difficulty of the perceptual task should result in a further 

decrease of the grasping performance. Thus, we conducted a second experiment in which we 

made the perceptual task more difficult and additionally instructed participants to try to keep 
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their recognition performance in the dual task as good as in the baseline condition (i.e. to set 

priority to the perceptual task). 

Methods 

Participants 

The same twelve participants as in Experiment 1 participated in this experiment. Again, all 

participants were naive with respect to the purpose of the study. 

Stimuli and Procedure 

The apparatus and the stimuli were identical to those used in Experiment 1. We only varied the 

difficulty of the perceptual task by increasing the speed of the RSVP and decreasing the size of 

the digits. The digits were again presented for 50 ms but a shorter blank interval of 55 ms 

between each presentation was used. The size of the numbers now was 2.1 degrees of visual 

angle. In addition we varied the instruction given to the participants: When doing the dual–task 

block participants were asked to keep their identification performance as good as possible. As 

in Experiment 1, the dual–task block consisted of 60 trials. Moreover, we measured the 

perceptual baseline in which participants were asked to report the target number presented in 

the previously cued target annulus without performing a grasping movement. The data was 

analyzed identically to Experiment 1. The grasping kinematics observed in the dual–task were 

compared to the grasping baseline measured in Experiment 1 using a 2 (task) x 3 (object size) 

repeated–measures ANOVA. The order of blocks was counterbalanced across participants. 

Results 

Perception 
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Pre–analysis on the effects of target presentation time 

As in Experiment 1, we tested for the effects of the different presentation times of the target 

digit on the perceptual performance in the perceptual baseline and in the dual–task conditions. 

For this purpose, we applied a repeated–measures ANOVA with the factor presentation time 

(200 ms, 350 ms, 500 ms) to the data. In both conditions (baseline and dual–task) the perceptual 

performance was unaffected by the time of target presentation (both p>.35). Thus, we merged 

the data of all presentation times for further analyses. 

 

Baseline vs. Dual–task condition 

Regarding the identification performance in the visual attention task, we were interested in 

whether our instruction to maintain a good identification performance reduced the performance 

differences between the baseline and the dual–task conditions as observed in Experiment 1. The 

identification performance was averaged over all ring combinations and ring sizes in both 

conditions. On average, participants correctly identified 73.0% 3.2% of the digits in the 

baseline condition (the drop of recognition performance compared to Experiment 1 reflects the 

increased difficulty of the task). Amazingly, this performance stayed at about the same level in 

the dual–task conditions, t(11)=0.18, p=.86, in which participants identified 72.4% 3.5% of 

the target digits correctly (see Figure 2). This result demonstrates that the participants were well 

able to set different priorities to the perceptual task if asked to do so. As in Experiment 1 there 

was an increased probability to report the digit which was presented in the opposite annulus in 

the dual–task conditions (22.2% 2.9%) as compared to the perceptual baseline conditions 

(14.4% 4.0%). In contrast to Experiment 1 this trend did not become significant, t(11)=1.9, 

p=.08. 

 

Grasping 

Pre–analysis on the effects of target presentation time 
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As in Experiment 1, we tested for the effects of target presentation time on grasping kinematics 

in the dual–task condition by applying a repeated–measures ANOVA with the factor 

presentation time (200 ms, 350 ms, 500 ms) to the data. No significant effect of presentation 

time was observed for time to MGA, MT, and RT (all p>.55). There was, however, a significant 

effect of presentation time on the size of MGA, F(2,22)=5.2, p=.02. Post–hoc comparisons 

showed that the size of MGA was smaller when the target occurred after 500 ms than when the 

target was presented after 200 ms. For further analyses we merged the data of all presentation 

times. 

 

Baseline vs. Dual–task condition 

Transport 

As in Experiment 1, the movement times were unaffected by performing the perceptual task, 

even when its difficulty was increased. On average, movements took 638ms 22ms which was 

not significantly different from the MTs observed in the baseline conditions of Experiment 1, 

F(1,11)=0.72, p=.42. Again there was a marginal effect of the perceptual task on RTs when 

comparing them to the RTs of the baseline condition of Experiment 1, F(1,11)=3.8, p=.07. On 

average, participants initiated their movements after 454ms 25ms. Again, RTs and MTs were 

unaffected by the size of the object (all p>.37). 

 

Pre–shaping 

Regarding the size of MGA, we found no significant difference between the, now more 

difficult, dual–task condition and the baseline condition as measured in Experiment 1, 

F(1,11)=1.7, p=.22. As expected, the repeated–measures ANOVA with the factor ring size 

(small, medium, large) showed that the size of MGA was significantly affected by object size, 

F(2,22)=67.2, p<.001. On average the size of MGA was 69.4mm 3.1mm for the small object, 

73.4mm 3.3mm for the medium sized object, and 76.4mm 3.1mm for the large object. On 



20 

average the MGA was reached after 557ms 26ms in this experiment. Unlike in Experiment 1 

this value did not differ significantly from the baseline condition, F(1,11)=3.7, p=.08. There 

was no effect of object size on the timing of MGA (p=.37).  

As shown in Experiment 1, the more meaningful parameter than the size and timing of 

MGA was however the adaptation of the grip to the object size over time. Again, we checked 

first for the effects of presentation time of the target letter on grip scaling in the dual–task 

conditions. For this purpose, we applied a repeated–measures ANOVA with the factors 

presentation time (200 ms, 350 ms, 500 ms) and time bin to the data collected in the dual–task 

condition. As in Experiment 1, there was no significant main effect of presentation time (p=.45) 

and no interaction between presentation time and time bin (p=.40). The main effect of time bin 

was highly significant, F(19,209)=40.8, p<.001, however. For further analyses, the data was 

averaged over all presentation times in the dual–task conditions. 

Figure 4B depicts the averaged aperture profiles when grasping objects of different sizes. In 

comparison to the findings of Experiment 1 the aperture profiles separate even later in this 

experiment (visual inspection of the figure reveals that during the first 350 ms the aperture 

opening is virtually identical for all object sizes). This observation is further supported by the 

calculation of the slopes of the function relating grip aperture to object size. Figure 5 shows that 

the grip adjustment was indeed further impaired by making the perceptual task more difficult 

and asking participants to prioritize this task over grasping. The repeated–measures ANOVA 

revealed again a significant interaction effect between time and task, F(19,209)=3.5, p<.001. 

Moreover, the main effects of time, F(19,209)=80.5, p<.001, and task F(1,11)=7.5, p=.02 were 

significant, thus indicating that the slopes increased over time but were significantly lower than 

in the baseline condition. Post–hoc tests indicated that all differences between the fourth (147 

ms) and eleventh (441 ms) time bin were significantly lower than in the baseline conditions.  



21 

Discussion 

It has repeatedly been shown that visual attention is allocated to the target positions of reaching 

and grasping movements when preparing an action, suggesting a coupling between selection for 

action and selection for perception in these tasks (Deubel et al., 1998; Schiegg et al., 2003; 

Baldauf & Deubel, 2008). The purpose of this study was to examine whether there is also an 

inverse effect of withdrawing visual attention from a grasping task on movement kinematics.  

The main finding across both experiments was that a demanding secondary task requiring 

visual attention led to an impairment of the early adjustment of grip aperture to object size. 

Interestingly, the effect of the perceptual task on grasping kinematics was limited to the 

manipulation component of the movement. Neither the movement trajectory nor movement 

times - both measures related to the transport component of the movement - changed when 

participants were asked to perform a simultaneous identification task. This finding could be 

related to the proposition that the transport and the manipulation components of a grasping 

movement are controlled by two independent, though temporally coupled, visuo-motor 

channels (Jeannerod, 1981; 1984). Studies investigating the effects of paying (covert) attention 

to distractor objects reported that interference effects only occurred when target and distractor 

involved the programming of different parameters for the same grasping component. For 

example, Castiello (1996) found that the size of a distractor object that had to be attended 

covertly selectively influenced the size of the grip aperture when grasping a target object (for 

similar results see also Kritikos et al., 2000). Complementary, when covert attention had to be 

paid to a moving distractor, interference effects were observed in the transport component only 

(Bonfiglioli & Castiello, 1998). However, to our knowledge no study has yet shown that even a 

purely visual task, being of no direct relevance for the reach–to–grasp movement, influences 

the accuracy of movement programming and execution. One possible reason why we observed 

a selective impairment in the adjustment of the manipulation component in our study might be 
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that we varied the size of the target object from trial to trial, whereas the objects were presented 

at constant locations (“up” or “down”). It is possible that participants quickly learned the 

trajectories towards these locations and automatized the transport component of the movement. 

Automatic movement control is performed without controlled attention and is thus less 

susceptible to interference processes. Moreover, there is evidence from anatomical and lesion 

studies in humans and monkeys that the transport and the manipulation components are 

controlled by different neural structures of the brain (e.g., Jeannerod, Arbib, Rizzolatti, & 

Sakata, 1995; Taira, Mine, Georgopoulos, Murata, & Sakata, 1990; Castiello, 2005). 

Furthermore, the effects on grasping kinematics were limited to the early phase of the grip 

adaptation. The adaptation of the MGA to object size (which occurs in the second half of the 

movement between 60% and 75% of movement time; see, Jeannerod, 1981; 1984; Smeets and 

Brenner, 1999) was largely unaffected by the secondary perceptual task. This finding is 

possibly a direct consequence of the dual–task paradigm since the target digit was always 

presented at the beginning of the movement (at the latest 500 ms after cue–presentation). 

Assuming that it took participants approximately 400 ms to initiate the movement, most of the 

visuo–perceptual processing was done during the movement initiation phase and shortly after. 

Thus, computational resources had to be shared between the tasks during movement 

preparation. Close to the end of the movement the target digit was already identified, and 

resources were freed and could fully be used to perform the grasping task. The finding also 

suggests that movement programming takes place during the movement initiation phase as 

withdrawing attention at this time results in a higher inaccuracy in the specification of some 

kinematic parameters.  

A second interesting finding of this study was that a concurrent grasping movement resulted 

in a significant drop of performance in the perceptual task (compared to the single task 

condition). In other words, when no instructions were given regarding the priority of the tasks 

(Experiment 1), we observed a strong decrement in the perceptual performance whereas the 
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changes in grasping kinematics were less conspicuous. Thus, participants seemed to prioritize 

the visuo-motor over the perceptual task, if not instructed otherwise. Similar findings have been 

reported in dual–task paradigms investigating the relation between cognitive tasks and walking 

performance (e.g., Li, Lindenberger, Freund, & Baltes, 2001), although effects in these studies 

were primarily confined to elderly people. However, compared to walking and postural control, 

grasping is a fine motor skill and therefore possibly more easily disturbed by a secondary task. 

One potential reason why participants try to keep their performance up in the grasping task 

might be that inaccuracies in this task have direct negative consequences, such as dropping or 

breaking the object. In comparison, reporting a wrong number in the perceptual task is not 

associated with any immediate consequence for the participant.  

Besides, in the dual–task conditions, participants tended to report the target presented at the 

grasping location more frequently than chance level would predict. This finding gives 

additional evidence that during grasping some attention is automatically deployed to the 

position of the grasp, facilitating the visuo–spatial discrimination performance at this location 

(Schiegg et al., 2003; Baldauf & Deubel, 2010). Here, we were able to demonstrate that this 

effect is accompanied by a withdrawal of attention from positions that are not related to the 

grasp, even occurring when these grasp–unrelated positions would actually require attention in 

order to perform a secondary task successfully. This finding is in line with the propositions of 

the Visual Attention Model (VAM) of Schneider (1995) suggesting that “selection–for–action” 

and “selection–for–perception” are performed by a common visual attention mechanism. That 

is, visual recognition of one target is assumed to delay the motor selection of another target, and 

vice versa.  

Finally, we showed in the second experiment that participants were able to keep their 

identification performance in the dual–task condition as good as in the single–task condition 

when they were instructed to focus on the perceptual task. This result gives further evidence 

that humans can flexibly shift attention between tasks depending on instructions (Kelly, Janke, 
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& Shumway-Cook, 2010). However, the enhanced perceptual performance was only achieved 

at the expense of an additional accuracy impairment regarding the early grip adaptation to 

object size.  

Taken together, our findings show that there are dual task costs when a grasping movement 

and a perceptual task that requires visual attention are performed simultaneously, indicating 

that both tasks compete for limited computational resources (Broadbent, 1958; 1982; Baldauf & 

Deubel, 2010). Hence, grasping seems to be a process which requires some attentional 

capacities, challenging the proposition that such movements are performed completely 

automatized. The allocation of attention to action–irrelevant items in the visual field leads to a 

poorer adaptation of the grasp to the object’s properties which might partly explain why 

humans tend to drop objects more often when they are distracted. 
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Figure Legends 

1.  A: Schematic drawing of the experimental set–up used (not drawn to scale). B: 

Arrangement of the stimuli on the Plexiglas pane (front view) C: All six possible ring 

combinations. Each ring-combination could be cued in either “up” or “down” indicating 

to the participant which object to grasp and/or which location to attend in the perceptual 

task.  

2.  Identification performance in the perceptual baseline conditions and in the dual–task 

conditions of Experiment 1 (no instructions as to task priority), and in Experiment 2 

(instruction to set priority to the perceptual task). Chance level was 11.1%. Error bars 

depict  1 SEM between subjects.  

3.  A: Averaged movement trajectories in y-direction for the dual–task and baseline 

conditions as a function of time. B: Averaged movement path in y–z–direction for the 

dual–task and baseline conditions plotted separately for the upper (solid lines) and the 

lower (dashed lines) target position.  

4.  A: Experiment 1: Averaged aperture profiles when grasping objects of different sizes in 

the baseline condition (solid lines) and in the dual–task conditions (dashed lines) as a 

function of time. B: Experiment 2: Averaged aperture profiles when grasping objects of 

different sizes in the dual–task condition. In this experiment participants were instructed 

to focus on the perceptual task.  

5.  Adjustment of the grip scaling (i.e. slope of the function relating grip aperture to object 

size) in the baseline condition and in the dual–task conditions of Experiment 1 and 2, 

plotted as a function of time.  
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Abstract. We present a novel method that, given a sequence of syn-
chronized views of a human hand, recovers its 3D position, orientation
and full articulation parameters. The adopted hand model is based on
properly selected and assembled 3D geometric primitives. Hypothesized
configurations/poses of the hand model are projected to different cam-
era views and image features such as edge maps and hand silhouettes are
computed. An objective function is then used to quantify the discrepancy
between the predicted and the actual, observed features. The recovery of
the 3D hand pose amounts to estimating the parameters that minimize
this objective function which is performed using Particle Swarm Opti-
mization. All the basic components of the method (feature extraction,
objective function evaluation, optimization process) are inherently paral-
lel. Thus, a GPU-based implementation achieves a speedup of two orders
of magnitude over the case of CPU processing. Extensive experimental
results demonstrate qualitatively and quantitatively that accurate 3D
pose recovery of a hand can be achieved robustly at a rate that greatly
outperforms the current state of the art.

1 Introduction

The problem of effectively recovering the pose (3D position and orientation) of
human body parts observed by one or more cameras is interesting because of
its theoretical importance and its diverse applications. The human visual sys-
tem exhibits a remarkable ability to infer the 3D body configurations of other
humans. A wide range of applications such as human-computer interfaces, etc,
can be built provided that this fundamental problem is robustly and efficiently
solved [1]. Impressive motion capture systems that employ visual markers [2] or
other specialized hardware have been developed. However, there is intense inter-
est in developing markereless computer-vision based solutions, because they are
non-invasive and, hopefully, cheaper than solutions based on other technologies
(e.g., electromagnetic tracking).

The particular problem of 3D hand pose estimation is of special interest be-
cause by understanding the configuration of human hands we are in a position

R. Kimmel, R. Klette, and A. Sugimoto (Eds.): ACCV 2010, Part III, LNCS 6494, pp. 744–757, 2011.
� Springer-Verlag Berlin Heidelberg 2011
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to build systems that may interpret human activities and understand important
aspects of the interaction of a human with her/his physical and social environ-
ment. Despite the significant amount of work in the field, the problem remains
open and presents several theoretical and practical challenges due to a number
of cascading issues. Fundamentally, the kinematics of the human hand is com-
plicated. Complicated kinematics is hard to accurately represent and recover
and also yields a search space of high dimensionality. Extended self-occlusions
further complicate the problem by generating incomplete and/or ambiguous
observations.

1.1 Related Work

A significant amount of literature has been devoted to the problem of pose re-
covery of articulated objects using visual input. Moeslund et al [1] provide a
thorough review covering the general problem of visual human motion capture
and analysis. The problems of recovering the pose of the human body and the
human hand present similarities such as the tree-like connectivity and the size
variability of the articulated parts. However, a human hand usually has con-
sistent appearance statistics (skin color), whereas the appearance of humans is
much more diverse because of clothing.

A variety of methods have been proposed to capture human hand motion.
Erol et al [3] present a review of such methods. Based on the completeness of
the output, they differentiate between partial and full pose estimation methods,
further dividing the last class into appearance-based and model-based ones.

Appearance-based methods estimate hand configurations from images directly
after having learnt the mapping from the image feature space to the hand con-
figuration space [4,5,6,7]. The mapping is highly nonlinear due to the variation
of hand appearances under different views. Further difficulties are posed by the
requirement for collecting large training data sets and the accuracy of pose esti-
mation. On the positive side, appearance based methods are usually fast, require
only a single camera and have been successfully employed for gesture recognition.

Model-based approaches employ a 2D or 3D hand model [8, 9, 10, 11]. In the
case of 3D hand models the hand pose is estimated by matching the projection
of the model to the observed image features. The task is then formulated as
a search problem in a high dimensional configuration space, which induces a
high computational cost. Important issues to be addressed by such methods
include the efficient construction of realistic 3D hand models, the dimensionality
reduction of the configuration space and the development of techniques for fast
and reliable hand posture estimation.

This paper presents a novel, generative method that treats the 3D hand pose re-
covery problem as an optimization problem that is solved through Particle Swarm
Optimization (PSO). Under the taxonomy of [3], the present work can be cate-
gorized as a full, model-based pose estimation method that employs a single hy-
pothesis. The method may integrate observations from an arbitrary number of
available views without requiring special markers. This is clearly demonstrated by
our decision to consider all free problem parameters jointly and simultaneously.
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As a direct consequence, contrary to the work of [10], our formulation of the prob-
lem allows for a clear and effortless treatment of self-occlusions. PSO has been
already applied for human pose recovery in [12], however this is done in a hier-
archical fashion in contrast to our joint optimization approach. Additionally, the
method of [12] is not directly applicable to hand pose recovery because stronger
occlusions must be handled given weaker observation cues.

Being generative, the approach explores an essentially infinite configuration
space. Thus, the accuracy of estimated pose is not limited by the size and content
of the employed database, as e.g. in [7]. To the best of our knowledge, this is
the first work that demonstrates that PSO can be applied to the problem of 3D
hand pose recovery and solve it accurately and robustly. This is demonstrated
in sequences with highly complex hand articulation where the hand is observed
from relatively distant views. Additionally, it is demonstrated that the careful
selection of inherently data parallel method components permits the efficient,
near real-time 3D hand pose estimation and gives rise to the fastest existing
method for model-based hand pose recovery.

The rest of this paper is organized as follows. Section 2 describes in detail
the proposed method. Section 3 presents results from an extensive quantitative
and qualitative experimental evaluation of the proposed method. Finally, Sec. 4
summarizes the paper by drawing the most important conclusions of this work.

2 Methodology

The proposed method can be summarized as follows. Observations of a human
hand are acquired from a static, pre-calibrated camera network. For each obser-
vation, skin color detection and edge detection are performed to extract reference
features. A 3D model of a human hand is adopted that consists of a collection
of parameterized geometric primitives. Hand poses are represented by a total of
27 parameters that redundantly encode the 26 degrees of freedom of the human
hand. Given the hand model, poses which would reproduce the observations are
hypothesized. For each of them, the corresponding skin and edge feature maps
are generated and compared against their reference counterparts. The discrep-
ancy between a given pose and the actual observation is quantified by an error
function which is minimized through Particle Swarm Optimization (PSO). The
pose for which this error function is minimal constitutes the output of the pro-
posed method at a given moment in time. Temporal continuity in hand motion
is assumed. Thus, the initial hypotheses for current time instance are restricted
in the vicinity of the solution for the previous time instant. The method incorpo-
rates computationally expensive processes which cannot be adequately handled
by conventional CPU processing. However, the exploitation of the inherent data
parallelism of all the required components through a GPU powered implementa-
tion, results in near real-time computational performance. The following sections
describe in more detail the components outlined above.
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Fig. 1. Hand model with colored parts. Each color denotes a different type of geometric
primitive (blue for elliptic cylinders, green for ellipsoids, yellow for spheres and red for
cones).

2.1 Observation Model

The proposed hand pose recovery method operates on sequences of synchronized
views acquired by intrinsically and extrinsically calibrated cameras. A set of
images acquired from a set of such cameras at the same moment in time is called a
multiframe. If Mi = {I1, I2, . . .} is a multiframe of a sequence S = {M1,M2, . . .}
then Ij denotes the image from the j-th camera/view at the i-th time step. In
the single camera case, a sequence of multiframes reduces to an image sequence.

An observation model similar to [10] is employed. For each image I of a
multiframeM , an edge map oe(I) is computed by means of Canny edge detection
[13] and a skin color map os(I) is computed using the skin color detection method
employed in [14]. As a convention, the label of 1 indicates presence and the label
of 0 indicates the absence of skin or edges in the corresponding maps. For each
edge map oe(I), a distance transform od(I) is computed. For each image I, maps
O(I) = {os(I), od(I)} constitute its observation cues.

2.2 Hand Model

The model of hand kinematics used in this work is based on [15]. The kinematics
of each finger, including the thumb, is modeled using four parameters encoding
angles. More specifically, two are used for the base of the finger and two for
the remaining joints. Bounds on the values of each parameter are set based on
anatomical studies (see [15] and references therein). The global position of the
hand is represented using a fixed point on the palm. The global orientation is
parameterized using the redundant representation of quaternions. This parame-
terization results in a 26-DOF model encoded in a vector of 27 parameters.

The hand consists of a palm and five fingers. The palm is modeled as an el-
lipsoid cylinder and two ellipsoids for caps. Each finger consists of three cones
and four spheres, except for the thumb which consists of two cones and three
spheres (see Fig. 1). All required 3D shapes used in the adopted hand model
consist of multiple instances of two basic geometric primitives, a sphere and
a truncated cylinder. These geometric primitives, subjected to appropriate
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homogeneous transformations, yield a model similar to that of [9]. Each transfor-
mation performs two different tasks. First, it appropriately transforms primitives
to more general quadrics and, second, it applies the required kinematics. Using
the shape transformation matrix

Ts =

⎛
⎜⎜⎝
e · sx 0 0 0

0 e · sy 0 0
0 0 sz 0
0 0 1 − e e

⎞
⎟⎟⎠ , (1)

spheres can be transformed to ellipsoids and cylinders to elliptic cylinders or
cones. In Eq.(1), sx, sy and sz are scaling factors along the respective axes. The
parameter e is used only in the case of cones, representing the ratio of the small
to the large radius of the cone before scaling (if not transforming to a cone,
e is fixed to 1). Having a rigid transformation matrix Tk computed from the
kinematics model, the final homogeneous transformation T for each primitive
(sphere or cylinder) is

T = Tk · Ts. (2)

A non-trivial implementation issue (see Sec. 2.5) is the correct computation of
surface normals. For given normals −→ni of the two primitives in use, and given
homogeneous transformation T , the computation of the new surface normals −→ni ′
can be performed according to [16] using the equation −→ni ′ = (T−T)3×3 ·−→ni . A3×3

denotes the upper-left 3 by 3 submatrix of A.
Having a parametric 3D model of a hand, the goal is to estimate the model

parameters that are most compatible to the observed images/image features
(Sec. 2.1). To do so, we compute comparable image features from each hypothe-
sized 3D hand pose (see Sec. 2.5). More specifically, given a hand pose hypothesis
h, an edge map re(h) and a skin color map rs(h) can be generated my means
of rendering. The reference implementation of the rendering process is very sim-
ilar to that of [9]. The informative comparison between each observation and
corresponding hypotheses is detailed in Sec. 2.3.

2.3 Hypothesis Evaluation

The proposed method is based on a measure quantifying how compatible a given
3D hand pose is to the actual camera-based observations. More specifically, a
distance measure between a hand pose hypothesis h and the observations of
multiframe M needs to be established. This is performed by the computation
of a function E(h,M) which measures the discrepancies between skin and edge
maps computed in a multiframe and the skin and edge maps that are rendered
for a given hand pose hypothesis:

E(h,M) =
∑
I∈M

D(I, h,C(I)) + λk · kc(h). (3)

In Eq.(3), h is the hand pose hypothesis, M is the corresponding observation
multiframe, I is an image in M , C(I) is the set of camera calibration parameters
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corresponding to image I and λk is a normalization factor. The function D of
Eq.(3) is defined as

D(I, h, c) =
∑
os(I) ⊗ rs(h, c)∑

os(I) +
∑
rs(h, c) + ε

+ λ

∑
od(I) · rs(h, c)∑
re(h, c) + ε

, (4)

where os(I), od(I), rs(h, c), re(h, c) are defined in Sec. 2.1. A small term ε is
added to the denominators of Eq.4) to avoid divisions by zero. The symbol ⊗
denotes the logical XOR (exclusive disjunction) operator. Finally, λ is a constant
normalization factor. The sums are computed over entire feature maps. The
function kc adds a penalty to kinematically implausible hand configurations.
Currently, only adjacent finger inter-penetration is penalized. Therefore, kc is
defined as

kc(h) =
∑

p∈pairs

{
−φ(p) φ(p) < 0
0 φ(p) ≥ 0

, (5)

where pairs denotes the three pairs of adjacent fingers, excluding the thumb,
and φ denotes the difference between the abduction-adduction angles of those
fingers. In all experiments the values of λ and λk were both set to 10.

2.4 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is an optimization technique that was intro-
duced by Kennedy et al [17]. It is an evolutionary algorithm since it incorporates
concepts such as populations, generations and rules of evolution for the atoms of
the population (particles). A population is essentially a set of particles which lie
in the parameter space of the objective function to be optimized. The particles
evolve in runs which are called generations according to a policy which emulates
“social interaction”.

Canonical PSO, the simplest of PSO variants, was preferred among other
optimization techniques due to its simplicity and efficiency. More specifically,
it only depends on very few parameters, does not require extra information on
the objective function (e.g., its derivatives) and requires a relatively low number
of evaluations of the objective function [18]. Following the notation introduced
in [19], every particle holds its current position (current candidate solution, set
of parameters) in a vector xt and its current velocity in a vector vt. Moreover,
each particle i stores in vector pi the position at which it achieved, up to the
current generation t, the best value of the objective function. Finally, the swarm
as a whole, stores in vector pg the best position encountered across all particles
of the swarm. pg is broadcasted to the entire swarm, so that every particle is
aware of the global optimum. The update equations that are applied in every
generation t to reestimate each particle’s velocity and position are

vt = K(vt−1 + c1r1(pi − xt−1) + c2r2(pg − xt−1)) (6)

and
xt = xt−1 + vt, (7)



750 I. Oikonomidis, N. Kyriazis, and A.A. Argyros

where K is a constant constriction factor [20]. In Eqs. (6), c1 is called the
cognitive component, c2 is termed the social component and r1, r2 are random
samples of a uniform distribution in the range [0..1]. Finally, c1 + c2 > 4 must
hold [20]. In all performed experiments the values c1 = 2.8, c2 = 1.3 and K =

2∣∣∣2−ψ−
√
ψ2−4ψ

∣∣∣
with ψ = c1 + c2 were used.

Typically, the particles are initialized at random positions and their velocities
to zero. Each dimension of the multidimensional parameter space is bounded
in some range. If, during the position update, a velocity component forces the
particle to move to a point outside the bounded search space, this component
is zeroed and the particle does not perform any move at the corresponding
dimension. This is the only constraint employed on velocities.

In this work, the search space is the 27-dimensional 3D hand pose parame-
ter space, the objective function to be minimized is E(M,h) (see Eq.(3)) and
the population is a set of candidate 3D hand poses hypothesized for a single
multiframe. Thus the process of tracking a hand pose requires the solution of a
sequence of optimization problems, one for each of the acquired multiframes. By
exploiting temporal continuity, the solution over multiframe Mt is used to gener-
ate the initial population for the optimization problem ofMt+1. More specifically,
the first member of the population href for Mt+1 is the solution for Mt; The rest
of the population consists of perturbations of href . Since the variance of these
perturbations depends on the image acquisition frame rate and the anticipated
jerkiness of the observed hand motion, it has been experimentally determined
in the reported experiments. The optimization for multiframe Mt+1 is executed
for a fixed amount of generations/iterations. After all generations have evolved,
the best hypotheses hbest is dubbed as the solution for time step t+ 1.

2.5 Exploiting Parallelism

A reference implementation of the proposed method was developed in MATLAB.
A study of the computational requirements of the method components revealed
that PSO and skin color detection are very fast. The computations of edge maps
and their distance transforms are relatively slow but these tasks along with skin
color detection are only executed once per multiframe. The identified compu-
tational bottlenecks are the rendering of a given 3D hand pose hypothesis and
the subsequent evaluation of Eq.(3). More specifically, the hand model consists
of a series of quadrics for which ray casting is used for rendering [9]. Addition-
ally, since multiple quadrics overlap on the projection plane, pixel overwriting
will occur and z-buffering is required so as to produce correct edge maps. The
computation of Eq.(3) is a matter of pixel-wise multiplication and summation
over entire images. The whole process is computationally expensive and prevents
real-time performance. Reasonable PSO parameterizations where particles and
generations range in the orders of tens, correspond to more than 4 minutes of
processing time per multiframe.

GPU accelerated observation models have been employed in the past (e.g.
[21]). In contrast to previous work, we provide a detailed description of a GPU
implementation that exploits parallelism beyond the point of straightforward
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Fig. 2. Back-projection error computation flowchart. Observations of a human hand
and hypothesized 3D poses are compared. Reference features are extracted from mul-
tiframes by means of skin color detection and edge detection. Artificial features are
generated for the 3D pose hypotheses by means of rendering and edge detection. The
three main GPU steps are annotated: geometry rendering, cue-map generation and
cue-map reduction.

image processing and rendering. Our GPU implementation targets the accelera-
tion of the two performance bottlenecks, i.e., rendering and evaluation. The rest
of the tasks are also susceptible to acceleration (e.g. [22,23,24]) but this was not
considered in this work. The final implementation used the Direct3D rendering
pipeline to accelerate the computationally demanding tasks and MATLAB to
perform the rest of the tasks as well as overall task coordination.

Rendering and evaluation of Eq.(3) are decomposed in three major GPU com-
putation steps: geometry rendering, cue-map generation and cue-map reduction
(see Fig. 2). Multiple particles are evaluated in large batches instead of sin-
gle particles. This design choice defines a fine parallelization granularity which
makes GPUs the optimal accelerator candidate.

Geometry rendering. The goal of the geometry rendering step is to simul-
taneously render multiple hand hypotheses in a big tiled rendering. Multiple
renderings, instead of sequences of single renderings, were preferred in order
to maximally occupy the GPU cores with computational tasks. The non-trivial
issues to address are geometry instancing and multi-viewport clipping.
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Hardware instancing [24] is used to perform multiple render batches efficiently.
Efficiency regards both optimal GPU power exploitation and minimal memory
usage. Batch rendering of multiple hand configurations essentially amounts to
rendering of multiple instances of spheres and cylinders. However, the respective
geometric instantiations are not required to be explicit. Hardware geometry in-
stancing can be used in order to virtually replicate reusable geometry and thus
make instantiation implicit.

A specialized pixel shader is used in order to perform custom multi-viewport
clipping. Multiple viewports are required to be simultaneously rendered. How-
ever, conventional rendering pipelines do not account for multiple viewports,
except for the case of sequential renderings. Unless multi-viewport clipping was
performed, out of bounds geometry would expand beyond the tiles and spoil
adjacent renderings.

The information that is transferred from CPU to GPU are the projection
matrices c for each tile and the view matrix T for each primitive. The output of
this rendering is the map rs(h, c), per pixel depth and per pixel normal vectors,
encoded in four floating point numbers.

Cue-map generation. During cue-map generation, the output of the geom-
etry rendering step is post-processed in order to provide cue-maps rs(h, c),
re(h, c), os(I) ⊗ rs(h, c) and oe(I) · re(h, c) of Eq.(3). Cue-map rs(h, c) passes
through this stage since it is computed during geometry rendering (see Fig. 2).
Cue-map re(h, c) is computed by thresholding the discontinuity in normal vec-
tors for a cross-neighborhood around each pixel. Cue-maps os(I) ⊗ rs(h, c) and
oe(I) · re(h, c) are trivially computed by element wise operations between the
operands.

Cue-map reduction. In the cue-map reduction step, scale space pyramids are
employed to efficiently accumulate values across tiles. The expected input is an
image that encodes maps rs(h, c), re(h, c), os(I) ⊗ rs(h, c) and oe(I) · re(h, c)
and the expected output is the sum over logical tiles of these maps. The pyra-
mids are computed by means of sub-sampling, which is a very efficient GPU
computation. Once the sums have been accumulated, the computation of Eq.(3)
is straightforward.

3 Experimental Evaluation

The quantitative and qualitative experimental validation of the proposed method
was performed based on both synthetic and real-world sequences of multiframes.

3.1 Quantitative Evaluation Based on Synthetic Data

The quantitative evaluation of the proposed method was based on synthetic
sequences of multiframes which make possible the assessment of the proposed
method against known ground truth. Towards this end, the hand model pre-
sented in Sec. 2.2 was animated so as to perform motions as simple as waving
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Fig. 3. Performance of the proposed method for different values of selected parameters.
In the plots of the top row, the vertical axis represents the mean score E. In the plots of
the bottom row, the vertical axis represents mean error in mm (see text for additional
details). (a),(b): Varying values of PSO particles and generations for 2 views. (c),(d):
Same as (a),(b) but for 8 views. (e),(f): Increasing number of views. (g),(h): Increasing
amounts of noise.

and as complex as object grasping. A synthetic sequence of 360 poses of the mov-
ing hand was created. Each pose was observed by 8 virtual cameras surrounding
the hand. This results in a sequence of 360 multiframes of 8 views, which consti-
tute the input to the proposed method. The required cue maps were synthesized
through rendering (see Sec. 2.2).

The performed quantitative evaluation assessed the influence of several factors
such as PSO parameters, number of available views (i.e., multiframe size) and
segmentation noise, over the performance of the proposed method. Figure 3 illus-
trates the obtained results. For each multiframe of the sequence, the best scoring
hand pose hbest using the specified parameter values was found. Figures 3(a), (c),
(e) and (g) provide plots of the score E(hbest,M) (averaged for all multiframes
M) as a function of various experimental conditions. Similarly, Figs. 3(b), (d),
(f) and (h) illustrate the actual error in 3D hand pose recovery in millimeters, in
the experimental conditions of Figs. 3(a), (c), (e) and (g), respectively. This er-
ror was computed as follows. The five fingertips as well as the center of the palm
were selected as reference points. For each such reference point, the Euclidean
distance between its estimated position and its ground truth position was first
calculated. These distances were averaged across all multiframes, resulting in a
single error value for the whole sequence.

Figures 3(a) and (b) show the behavior of the proposed method as a func-
tion of the number of PSO generations and particles per generation. In this
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experiment, each multiframe consisted of 2 views with no noise contamination.
It can be verified that varying the number of particles per generation does not
affect considerably the error in 3D hand pose recovery. Thus, the number of
generations appears to be more important than the number of particles per
generation. Additionally, it can be verified that the accuracy gain for PSO pa-
rameterizations with more than 16 particles and more than 25 generations was
insignificant. Figures 3(c), (d) are analogous to those of Figs 3(a),(b), except
the fact that each multiframe consisted of 8 (rather than 2) views. The error
variance is even smaller in this case as a consequence of the increased number
of views which provides richer observations and, thus, more constraints. The
accuracy gain for PSO parameterizations with more than 16 particles and more
than 25 generations is even less significant.

In order to assess the behavior of the method with respect to the number
of available views of the scene, experiments with varying number of views were
conducted. Figures 3(e) and (f) show the behavior of the proposed method as a
function of the size of a multiframe. For the experiments with less than 8 views,
these were selected empirically so as to be as complementary as possible. More
specifically, views with large baselines and viewing directions close to vertical
were preferred. In these experiments, 128 PSO particles and 35 generations were
used, and no segmentation noise was introduced in the rendered skin and edge
maps. The obtained results (Figs. 3(e) and (f)) show that the performance im-
provement from one view to two views is significant. Adding more views improves
the results noticeably but not significantly.

In order to assess the tolerance of the method to different levels of segmenta-
tion errors, all the rendered silhouette and edge maps were artificially corrupted
with different levels of noise. The type of noise employed is similar to [7]. More
specifically, positions are randomly selected within a map and the labels of all
pixels in a circular neighborhood of a random radius are flipped. The aggregate
measure of noise contamination is the percentage of pixels with swapped labels.
In the plots of Figs. 3(g) and (h), the horizontal axis represents the percentage of
noise-contaminated pixels in each skin map. Edge maps were contaminated with
one third of this percentage. The contamination was applied independently to
each artificial map rs and re. In this experiment, 128 PSO particles and 35 PSO
generations were used, and multiframes of eight views were considered.The plots
indicate that the method exhibited robustness to moderate amounts of noise and
failed for large amounts of noise. The exhibited robustness can be attributed to
the large number of employed views. Since the noise of each view was assumed
to be independent from all other views, the emerged consensus (over skin de-
tection and edge detection) managed to cancel out low-variance noise. Figure 3
also demonstrates that the design choices regarding the objective function E
(Sec. 2.3) are correct. This can be verified by the observed monotonic relation
between E and the actual 3D hand pose estimation error.

Finally, Table 1 provides information on the runtime of these experiments. The
table shows the number of multiframes per second for various parameterizations
of the PSO (number of generations and number of particles per generation) and
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Table 1. Number of multiframes per second processed for a number of PSO generations
and camera views for 16/128 particles per generation

Generations 2 views 4 views 8 views

10 7.69/2.48 4.22/1.26 2.14/0.63
15 7.09/1.91 3.65/0.97 1.85/0.49
20 6.23/1.55 3.19/0.79 1.62/0.39
25 5.53/1.31 2.85/0.67 1.44/0.33
30 5.00/1.13 2.59/0.57 1.30/0.29
35 4.55/1.00 2.34/0.50 1.18/0.25
40 4.18/0.89 2.15/0.45 1.09/0.23

Fig. 4. Sample frames from real-world experiments. Left: four views of a multiframe
of a cylindrical grasp. Right: Zoom on hands; Rows are from the same multiframe and
columns correspond to the same camera view.

various number of views. The entry in boldface corresponds to 20 generations,
16 particles per generation and 2 views. According to the quantitative results
presented earlier, this setup corresponds to the best trade-off between accuracy
of results, computational performance and system complexity. This figure shows
that the proposed method is capable of accurately and efficiently recovering the
3D pose of a hand observed from a stereo camera configuration at 6.2Hz. If 8
cameras are employed, the method delivers poses at a rate of 1.6Hz.

3.2 Experiments with Real World Images

Real-world image sequences were acquired using a multicamera system which is
installed around a 2 × 1m2 bench and consists of 8 Flea2 PointGrey cameras.
Cameras are synchronized by a timestamp-based software that utilizes a ded-
icated FireWire 2 interface (800MBits/sec) which guarantees a maximum of
125μsec temporal discrepancy in images with the same timestamp. Each camera
has a maximum framerate of 30 fps at highest (i.e. 1280×960) image resolution.
The workstation where images are gathered has a quad-core Intel i7 920 CPU,
6 GBs RAM and an Nvidia GTX 295 dual GPU with 894GFlops processing
power and 896 MBs memory per GPU core.
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Several sequences of multiframes have been acquired, showing various types
of hand activities such as isolated motions and hand-environment interactions
including object grasping. Figure 4 provides indicative snapshots of 3D hand
pose estimation superimposed on the original image data. Videos with results of
these experiments are available online1.

4 Discussion

In this paper, we proposed a novel method for the visual recovery of 3D hand
pose of a human hand. This is formulated as an optimization problem which
is accurately and robustly solved through Particle Swarm Optimization. In an
effort to propose a method that is both accurate and computationally efficient,
appropriate design choices were made to select components that exhibit data
parallelism which is exploited by a GPU based implementation. The experimen-
tal evaluation in challenging datasets (complex hand articulation, distant hand
views) demonstrates that accurate pose recovery can be achieved at a framerate
that greatly outperforms the current state of the art. The individual constituents
of the proposed method are clearly separated. It is quite easy for changes to be
made to the objective function, the optimization method or the hand model with-
out affecting the other parts. Current research if focused on considering more
compact search spaces through the use of dimensionality reduction techniques.
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215821 project GRASP. The contributions of Asimina Kazakidi and Thomas
Sarmis (members of the CVRL/ICS/FORTH) are gratefully acknowledged.
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Abstract

Due to occlusions, the estimation of the full pose of a human hand interacting with an object

is much more challenging than pose recovery of a hand observed in isolation. In this work we

formulate an optimization problem whose solution is the 26-DOF hand pose together with the

model parameters and pose of the manipulated object, that jointly best explain the incompleteness

of hand observations resulting from occlusions due to hand-object interaction. Thus, occlusions

is not a curse we bypass but a feature we exploit. The proposed method is the first that provides

accurate and fast solution to this problem. Additionally, it is the first to demonstrate that hand-

object interaction is not necessarily a complicating factor but a context that can be exploited

effectively for hand pose estimation. Extensive quantitative and qualitative experiments with

simulated and real world image sequences as well as a comparative evaluation with a state-of-

the-art method for pose estimation of isolated hands, support the above findings.

Key words: Multiple objects tracking, Occlusion, Object permanence

1. Introduction

The estimation of the full pose of hands from markerless visual observations is a problem

whose solution is of fundamental importance in numerous applications including but not limited

to the visual perception of grasping and manipulation, sign language understanding, etc. As it

is common to many interesting problems, a lot of challenges are associated with it. A number



of cascading issues such as the dimensionality of the problem, the incomplete and/or ambiguous

observations due to scene clutter and the requirement for accurate estimates in real time, hinder

a practical and effective solution.

Full DOF hand pose recovery during hand-object interaction is an even more difficult prob-

lem due to the induced hand-object occlusions. We aim at exploiting contextual information to

benefit from these occlusions. In a hand-object interaction scenario, the hand together with the

object constitute indispensable components of an integral context. Intuition suggests that any

effort to estimate the state of the hand or of the object in isolation, is bound to be suboptimal,

exactly because it does not exploit the whole spectrum of available information.

In this work, it is assumed that hand-object interaction is observed by a multicamera system.

In each of the acquired views, edge and skin color maps form 2D cues of the presence of a

hand. The presence of an object and the associated object-hand occlusions result in missing

observations of the performing hand. As an example, consider the situation depicted in Fig. 1.

Depending on the viewpoint and the actual hand-object configuration, certain parts of the hand

are occluded. Clearly, this incomplete observation of the hand provides important evidence on the

type and pose of the manipulated object. Conversely, attributing missing hand observations (skin

color, hand edges) to the presence of a manipulated object permits a more accurate estimation

of the pose of the partially observed hand. The tight coupling between “what the hand tells

about the object” and “what the objects tells about the hand”, suggests that we should identify

simultaneously the hand configuration and the object 3D model and pose that best explain the

observed scene holistically. We exploit this coupling by formulating an optimization problem

whose solution is the full DOF hand pose and the object model and pose that best explain the

available hand-object observations but also the lack of them. In that sense, occlusions are turned

into a cue that contributes effectively to the solution of the problem.

1.1. Related work

The recovery of the full 3D structure of articulated objects such as humans and hands presents

a lot of challenges. Several approaches have been proposed that address various aspects of the

problem such as its dimensionality, the incomplete and/or ambiguous observations due to scene
2



Figure 1: Top row, and bottom left: Three views of a hand grasping an object. Skin regions appear in red and edges in
black. The hand is partially occluded by the object in all views. The incomplete skin and edge maps of the hand facilitate
the generation of a hypothesis for a hand manipulating a compact sphere. At the same time, given this hypothesis, the
3D pose of the hand can be estimated more accurately. Bottom right: the output of the proposed approach superimposed
in one of the frames.

clutter, its computational requirements, etc. Moeslund et al. [12] provide a review of research

to the general problem of visual human motion capture and analysis. A review that is specific

to the problem of human hand motion estimation is provided in [7]. Related methods can be

categorized as partial or full pose estimation methods, depending on the level of detail they

provide regarding the observed hand.

Another categorization identifies appearance-based and model-based methods. Appearance-

based methods estimate hand configurations by learning a direct mapping of image features to

the hand configuration space [3, 19, 23, 18]. Model-based approaches employ a 2D or a 3D

hand model [16, 20, 21, 6, 13]. In the case of 3D hand models the hand pose is estimated by

matching the projection of the model to the observed image features. The task is then formulated

as a search problem in a high dimensional configuration space, which typically induces a high

3



computational cost. A common characteristic of all the methods mentioned above is that they

consider human hands in isolation. Thus, in the context of hand-object interaction, their accuracy

in hand pose estimation is compromised due to the induced hand-object occlusions that affect

drastically the completeness of hand observations.

Given the significant role of context in human visual recognition [14], several researchers

have attempted to exploit contextual constraints in solving computer vision problems. For exam-

ple Rabinovich et al. [15] exploit scene context in the problem of object detection while Marsza-

lek et al. [11] do the same for understanding actions. More closely related to our problem, a

few recent works [10, 8, 24, 25, 17] consider context for classifying human-object interaction

activities. The related methods can be classified based on whether they refer to the human body

or hand and also on whether they provide a detailed 3D model of the actor (human body or hand)

and the object. Thus, [8, 24, 25] study the full human body while in interaction with objects.

From these, only [25] provides detailed information on human body pose. Kjellstrom et al. [10]

consider hand-object interactions but only for classifying them, without providing a detailed 3D

human hand and object model. Finally, Romero et al. [17] propose an appearance based method

for estimating the pose of a hand interacting with an object. However, occlusions are treated as

a complicating factor that needs to be tolerated and no information on the object is provided. A

method that exploits context to provide a detailed 3D model for both hands and objects seems to

be missing from the current literature. The proposed method is trying to fill this gap.

Towards this direction, in this work we extend the approach in [13] by considering jointly

the hand and the manipulated object. In [13], a generative, multiview method for 3D hand pose

recovery is presented. In each of the acquired views, reference features are computed based

on skin color and edge detection. A 26-DOF 3D hand model is adopted. For a given hand

configuration, skin and edge feature maps are rendered and compared directly to the respective

observations. The discrepancy of a given 3D hand pose to the observations is quantified by an

objective function that is minimized through Particle Swarm Optimization (PSO). The whole

approach is implemented efficiently on a GPU. In the proposed approach, we do not only seek

for the optimal hand model that explains the available hand observations but rather the joint hand-

4



object model that best explains both the available and the missing hand/object observations. It

is demonstrated that the aforementioned conceptual difference is very important in solving more

accurately a more complex and interesting problem.

To the best of our knowledge, the proposed method is the first to demonstrate that hand-

object interaction is not necessarily a complicating factor towards estimating the configuration of

a hand. On the contrary, this contextual information can be exploited effectively towards solving

the problem more accurately. Additionally, it is the first model based method that provides full,

accurate 26-DOF hand pose estimation during hand-object interaction. As a valuable additional

result, the method provides a parametric 3D model of the manipulated object together with its 3D

position and orientation. This is achieved by exploiting the hand-object occlusions and despite

the lack of an explicit object appearance model. The approach explores an essentially infinite

configuration space. Thus, its accuracy is not limited by the size and content of the database

of hand configurations, as e.g. in [18]. The above findings are supported by qualitative and

quantitative experiments with both simulated and real world image sequences as well as by a

comparative evaluation with the method in [13].

2. Hand-object pose estimation (HOPE)

The problem of joint hand-object pose estimation is formulated as a multidimensional opti-

mization problem. In the following, we present in detail the basic building blocks of the proposed

method for joint Hand-Object Pose Estimation (HOPE), with emphasis on the employed obser-

vation model, joint hand-object 3D model, hypothesis evaluation mechanism and optimization

method.

2.1. Computed visual cues

The proposed method operates on sequences of synchronized views acquired by intrinsically

and extrinsically calibrated cameras. A set of images acquired from these cameras at the same

moment in time is called a multiframe. If Mi = {I1, I2, . . .} is a multiframe of a sequence S =

{M1,M2, . . .}, I j denotes the image from the j-th camera/view at the i-th time step. For each

5



Figure 2: Graphical illustration of the employed 26-DOF 3D hand model, consisting of 37 geometric primitives. The
same type of geometric primitives appear in the same color (yellow for elliptic cylinders, red for ellipsoids, green for
spheres and blue for cones).

image I of a multiframe M, an edge map oe(I) is computed through Canny edge detection [4]

and a skin color map os(I) is computed using the method presented in [2]. As a convention, the

label 1 indicates presence and the label 0 indicates absence of skin or edges in the respective

maps. For each edge map oe(I), a distance transform od(I) is computed. For each image I, maps

O(I) = {os(I), od(I)} constitute its observation cues.

2.2. Joint hand-object model

The proposed approach employs a model m = (h, o) that represents jointly a hand h and

the manipulated object o. The hand model h consists of a palm and five fingers. The palm

is modeled as an ellipsoid cylinder and two ellipsoids for caps. Each finger consists of three

cones and four spheres, except for the thumb that consists of two cones, an ellipsoid and three

spheres (see Fig. 2). The resulting total of 37 3D geometric primitives of the hand model are

different parameterizations of an ellipsoid and a truncated cylinder. The assembly of appropriate

homogeneous transformations of these two geometric primitives yield a hand model similar to

that of [20].
6



Hand kinematics is based on [1]. The kinematics of all five fingers is modeled using four

parameters encoding angles, two for the base of the finger and two for the remaining joints.

Ranges of parameter values are determined based on anatomical studies [1]. The position of

a fixed point on the palm defines the global position of the hand. The global orientation is

parameterized using the redundant representation of quaternions. This parameterization results

in a 26-DOF model encoded in a vector of 27 parameters.

For representing an object, in principle, any parametric model o can be used. The represen-

tation of the most common handheld objects such as cuboids, ellipsoids and cylinders requires

3, 3 and 2 intrinsic shape parameters, respectively. More complex parametric shape models like

superquadrics require as many as 6 parameters. Regardless of the intrinsic shape parameteriza-

tion, seven additional parameters are required, 3 for 3D position and 4 for a quaternion-based

representation of 3D orientation. In this work, we provide experimental results with ellipsoids,

cuboids and cylinders. Nevertheless, there is no inherent limitation that prevents the method

from being able to handle more complex object models, provided that this does not increase the

dimensionality of the problem prohibitively.

The joint hand-object model m = (h, o) consists of the concatenation of the parameters of

the hand and the object model. Interestingly, some of the model parameters are coupled. As a

concrete example, the global position of the hand and the global position of the object are coupled

in a hand-object interaction scenario, in the sense that the object cannot be located arbitrarily far

from the object.

2.3. Evaluation of hand-object model hypotheses

Given a joint parametric hand-object model m = (h, o), the goal is to estimate the parameters

that are most compatible to the observed image features (Sec. 2.1). To do so, we first compute

comparable image features from each hypothesized hand-object model. More specifically, an

edge map re(m) and a skin color map rs(m) can be generated my means of rendering. The

reference implementation of the rendering process is very similar to that of [20]. The implicit

assumption made at this point is that, although the appearance of the object is unknown, it cannot

contain skin-colored pixels. Thus, the hand component h of m contributes to the skin color map
7



rs(m) by setting visible hand pixels to 1, while the object component o of m contributes to the

skin color map rs(m) by setting map pixels to 0. Experimental results have verified that the

presence of a moderate number of skin-colored pixels on the object’s surface does not affect the

accuracy of the method.

Hypothesis evaluation is based on a measure quantifying the compatibility of a given hand-

object model m to the actual camera-based observations. Towards this end, a distance measure

between a hand-object hypothesis m and the observations of multiframe M needs to be estab-

lished. Similarly to [13], this is performed by the computation of a function O(m,M) which

measures the discrepancies between the skin and edge maps computed in a multiframe M and

the skin and edge maps that are rendered for m:

O(m,M) =
∑
I∈M

D(I,m,C(I)) + λkW(h). (1)

In Eq.(1), I is an image in M, C(I) is the set of camera calibration parameters corresponding to

view/image I and λk is a normalization factor. The function D is defined as

D(I,m, c) =

∑
os(I) ⊗ rs(m, c)∑

os(I) +
∑

rs(m, c) + ε

+λ

∑
od(I) · rs(m, c)∑

re(m, c) + ε
, (2)

where os(I), od(I), rs(m, c), re(m, c) are defined in Sec. 2.1. A small term ε is added to the de-

nominators of Eq.(2) to avoid divisions by zero. The symbol ⊗ denotes the pixelwise logical

XOR of its binary image mask operands. Finally, λ is a constant normalization factor. In all

experiments the values of the normalization factors λ and λk were set to 10. The sums are com-

puted over entire feature maps. The function W adds a penalty to kinematically implausible hand

configurations such as adjacent finger inter-penetration. Thus, W is defined as

W(h) =
∑
p∈P


−φ(p) φ(p) < 0

0 φ(p) ≥ 0
, (3)

8



where P denotes the three pairs of adjacent fingers, excluding the thumb, and φ denotes the

difference between the abduction-adduction angles of those fingers. Ideally, function W should

also penalize hand-object configurations that are kinematically impossible in the sense that hand

parts share the same physical space with the manipulated object. Although this is a possibly

valuable constraint, it is not exploited in the current implementation of HOPE.

2.4. Optimization

The minimization of the objective function of Eq.(1) is achieved through Particle Swarm

Optimization (PSO). Introduced by Kennedy et al. [9], PSO achieves optimization through a

policy which emulates “social interaction” of a population of atoms (particles) that evolves in

a number of generations. A population is essentially a set of particles that lie in the parameter

space of the objective function to be optimized.

Following the notation introduced in [22], every particle holds its current position (current

candidate solution, set of parameters) in a vector xt and its current velocity in a vector vt. More-

over, each particle i stores in vector pi the position which corresponds to the best evaluation of its

objective function up to the current generation t. Finally, the swarm as a whole, stores in vector

pg the best position encountered across all particles of the swarm. pg is broadcasted to the entire

swarm, so that every particle is aware of the global optimum. In every generation t, the velocity

of each particle is updated according to

vt = K(vt−1 + c1r1(pi − xt−1) + c2r2(pg − xt−1)) (4)

and its position xt according to

xt = xt−1 + vt. (5)

In the above equations, K is a constant constriction factor [5], c1 is called the cognitive compo-

nent, c2 is termed the social component and r1, r2 are random samples of a uniform distribution

in [0..1]. Finally, c1 + c2 > 4 must hold [5]. In all performed experiments the values c1 = 2.8,

c2 = 1.3 and K = 2/|2 − ψ −
√
ψ2 − 4ψ| with ψ = c1 + c2 were used.
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The search space is a multidimensional cuboid. The particle positions are initialized ran-

domly and the particle velocities are set to zero. If, during the position update, a velocity com-

ponent forces the particle to move outside the search space, this component is zeroed and the

particle does not perform any move at the corresponding dimension. The final outcome of the

PSO is the model parameters p∗, i.e., the particle with the best score across all generations.

The search space of HOPE is the joint hand-object model parameter space m. Given a hand

model represented by 27 parameters and an object model represented by d parameters, the over-

all problem needs to be solved in a (27 + d)-dimensional space. The objective function to be

minimized is O(m,M) (see Eq.(1)) and the population is a set of candidate 3D hand-object con-

figurations hypothesized for a single multiframe. The resulting solution m∗ = (h∗, o∗) represents

the best guess of the algorithm for the joint hand and object model.

To cope with the tracking of the hand-object configuration in time, a series of optimization

problems needs to be solved, one for each of the acquired multiframes. By exploiting temporal

continuity, the solution for multiframe Mt−1 is used to generate the initial population for the

optimization problem of Mt. More specifically, the first member of the population mre f for

Mt is the solution for Mt−1; The rest of the population consists of perturbations of mre f . The

optimization for multiframe Mt is executed for a fixed amount of generations/iterations. After all

generations have evolved, the best hypothesis m∗ is dubbed as the solution for time step t.

3. Experimental Evaluation

The proposed method has been validated extensively based on both synthetic and real-world

sequences of multiframes. First, we demonstrate the accuracy and the computational perfor-

mance of the proposed hand-object pose estimation (HOPE) method on a synthetically rendered

data set where hands perform different grasps on a variety of objects (see Sec. 3.1). We also

compare the performance of HOPE to that of the method in [13], hereafter abbreviated as PEHI

(Pose Estimation of Hands in Isolation). A final experiment with synthetic data involves the

application of HOPE to a data set showing hands in isolation. The goal of this experiment is to

show that HOPE can also estimate the pose of hands in isolation effectively, as a special case.
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Besides the synthetic data, we also provide qualitative evidence on how the HOPE and PEHI

algorithms perform on real sequences of multiframes (see Sec. 3.2). Although ground truth

information is not available for these sequences, indicative results confirm the superiority of

HOPE over PEHI which is in accordance with the experimental results over synthetic data.

3.1. Experiments on synthetic data

Experiments with synthetically produced sequences of multiframes were performed to make

possible the assessment of the proposed method based on ground truth data. To that end, we sim-

ulated different grasps of three different objects (an ellipsoid, a cylinder, and a box) performed

by the employed hand model (Sec. 2.2). The interaction of the hand with each of these three ob-

jects was observed by 8 virtual cameras surrounding the scene. This resulted in three sequences

consisting of 116 multiframes of 8 frames, each. The required cue maps (edges, skin color) were

synthesized through rendering (see Sec. 2.2).

For the quantitative evaluation of the method, an error metric quantifying the discrepancy

between a true hand pose and an estimated hand pose is required. This metric was computed as

follows. The five fingertips as well as the center of the palm were selected as reference points. For

each such reference point, the Euclidean distance between its estimated position and its ground

truth position is first calculated. For a given set of PSO parameters, these distances are averaged

across all multiframes of each sequence, and all sequences. This results in a single error valueD

for the whole dataset under the specific PSO parameters.

Figures 3(a), (b) and (c) illustrate the estimated error D of the HOPE method as a function

of the PSO parameters and the number of available views (i.e., multiframe size). In Fig. 3(a),

D is plotted as a function of the number of PSO generations and particles per generation, for

multiframes consisting of 2 views. D takes values between 13mm and 65mm. It can be verified

that for more that 30 PSO generations and more than 32 particles per generation the error in 3D

hand pose recovery for HOPE does not vary considerably and it is in the order of 15mm.

Figure 3(d) is analogous to that of Fig. 3(a) for the PEHI algorithm. In this case, the mean

error D does not decrease monotonically as a function of particles. This is attributed to the

incomplete/occluded hand observations that undermine the convergence of PEHI.D now ranges
11



Table 1: Estimated/actual parameters for the object models in the experiments with synthetic data.

Object Estimated/Actual parameters (in mm)
Cylinder Radius: 127/128, Height: 54/55
Ellipsoid X: 55/55, Y: 86/85, Z: 129/128
Box X: 77/77, Y 128/129, Z: 153/156

between 55mm and 120mm. It can be verified that for more that 30 PSO generations and more

than 32 particles per generation the error in 3D hand pose recovery for PEHI is in the order

of 80mm. For these parameters, the error of PEHI is on average 4.75 times larger than that of

HOPE, thus HOPE clearly outperforms PEHI.

Figures 3(b) and (e) are similar to those of Figs. 3(a) and (d), except the fact that each multi-

frame now consists of 8 rather than 2 views. D takes values between 8mm and 60mm for HOPE

and between 11mm and 76mm for PEHI. For more that 30 PSO generations and more than 32

particles per generation the error of PEHI is 1.4 times larger than that of HOPE, thus HOPE

still performs considerably better. However, the addition of more views, some of which pro-

vide more complete observations of hand-object interaction, narrows down the difference in the

performance of the two algorithms.

In order to assess the behavior of the method with respect to the number of available views of

the scene, additional experiments with a varying number of views were conducted. Figures 3(c)

and (f) show the behavior of HOPE and PEHI as a function of the size of a multiframe. For the

experiments with less than 8 views, these were selected empirically to be as different as possible.

PSO optimization involved 64 particles running for 40 generations. The obtained results show

that the performance improvement from one view to two views is significant for both algorithms.

In all cases, HOPE performs better than PEHI.

Overall, the experiments in Fig. 3 show a consistent superiority of HOPE over PEHI which

is dominant in the case of a limited number of available views. This is important because it

allows for a practical joint hand-pose estimation by a multicamera system consisting of much

less cameras and thus in a system with less costs, complexity and requirements for computational

resources.
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Table 2: Average multiframe processing times (in sec) for HOPE and PEHI running for 40 generations, 64 parti-
cles/generation and varying number of multiframe sizes.

Algorithm 2 cameras 4 cameras 8 cameras
HOPE 1.06 2.10 4.35
PEHI 1.02 2.05 4.13

Besides its superiority in hand pose estimation, HOPE also estimates the model parameters

of the manipulated object. The average positional error of object detection across all sequences

of multiframes in the experiments of Fig. 3 is 2mm (Euclidean distance between true position and

estimated one) and the average orientation error is 3 deg. Table 1 shows the actual and estimated

object parameters. The later are averaged for all the multiframes of the sequence that depicts

the corresponding object. It can be verified that for all types of objects, the estimated model

parameters are very close to the ground truth.

Table 2 summarizes the per multiframe processing time2 for different multiframe sizes and

for runs of 40 PSO generations and 64 particles per generation for both HOPE and PEHI. Each

entry is the average value over 116 multiframes. For both algorithms, the processing time is

almost linear to the number of views. It can also be observed that HOPE is only 2%− 5% slower

than PEHI.

Finally, we applied both HOPE and PEHI to a synthetic image sequence (400 multiframes, 8

frames/multiframe) showing non-rigid motion of hands in isolation. Figure 4 plots the mean error

D as a function of the number of the employed views. For both algorithms, 40 PSO generations

and 64 particles per generation were used. For HOPE, a cylindrical object has been hypothesized.

The result shows that the performance of the two algorithms is comparable, a fact that indicates

the capability of HOPE to track hands observed in isolation. Expectedly, HOPE estimated the

presence of very small objects (size in the order of a few mms).

3.2. Experiments on real image data

Real-world image sequences were acquired using a multicamera system (Fig. 5) installed

around a 2×1m2 bench and consisting of 8 synchronized and calibrated Flea2 PointGrey cameras.

2Experiments run on the computational infrastructure presented in Sec.3.2.
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Table 3: Estimated/actual parameters for the object models in the experiments of Fig. 6.

Object Estimated/actual parameters (in mm)
Cylinder Radius: 54/53, Height: 118/131
Ellipsoid X: 127/116, Y: 127/116, Z: 123/116
Box X: 71/67, Y 145/150, Z: 97/93

Each camera has a maximum framerate of 30 f ps, at 1280 × 960 image resolution. However,

the core processing is performed on 256 × 256 windows centered around the rendered hand-

object edges of the previous multiframe solution. The workstation where images are gathered

and processed is equipped with a quad-core Intel i7 920 CPU, 6 GBs RAM and an Nvidia GTX

295 dual GPU with 894 GFlops processing power and 896 MBs memory per GPU core.

Three sequences of multiframes have been acquired, each showing a hand grasping and ma-

nipulating a spherical (301 multiframes), a cylindrical (261 multiframes), and a box (251 multi-

frames) object. Figure 6(a) provides sample results obtained by applying HOPE (top row) and

PEHI (bottom row) to a specific multiframe of the sphere sequence. Since the hand is mostly oc-

cluded by the sphere in all views, HOPE estimates the hand configuration correctly while PEHI

fails completely. Similar results were obtained in the case of the cylinder sequence which shows

a hand grasping and turning up-side down a cylindrical object. Instead of providing sample views

of a single multiframe, Fig. 6(b) shows four frames acquired from the same camera in different

moments in time. HOPE manages to track the configuration of the hand throughout the whole

sequence while PEHI looses track of the hand as soon as the later becomes severely occluded by

the object. Figure 6(c) shows a similar result for the box sequence.

The lack of ground truth information does not permit a quantitative assessment of the accu-

racy in hand pose estimation on these sequences. However, in Table 3, we compare the object

shape parameters estimated by HOPE to the actual, physically measured ones. The estimated

parameters are averaged for all multiframes of a given sequence. The standard deviation of these

parameters is in the order of a few millimeters. It can be verified that the error in object shape

estimation is satisfactory.

For HOPE, we also run a simple classification experiment. More specifically, for the sphere

14



Table 4: The mean value of the objective function of HOPE and its standard deviation when optimization searches for
cylinders, ellipsoids and cuboids for a sequence showing an ellipsoid (sphere).

Cylinder Ellipsoid Cuboid
Mean value 0.41 0.35 0.48
Stdev. 0.09 0.08 0.14

sequence (see Fig. 6(a) and (b)), we run HOPE assuming a cuboid, an ellipsoid and a cylinder.

Table 4 shows the mean value and the standard deviation of the objective function of HOPE in

all the multiframes of the sequence. As it can be verified, the hypothesis of an ellipsoid better

explains the observed scene. In fact, 90.5% of the multiframes were better explained by the

ellipsoid, 9.5% by the cylinder and none by the cuboid.

Finally, Fig.7, shows sample snapshots from the results obtained on a sequence of a hand per-

forming fine manipulation of an elongated cuboid. Visual inspection confirms that the accuracy

of HOPE is quite satisfactory, despite the observed complex hand-object interaction.

Sample videos out of these experiments are provided as supplemental material to this sub-

mission. More videos with results together with the original benchmark datasets will become

available online.

4. Discussion and conclusions

In a hand-object interaction scenario, the observation of hands provides information that is

important to understanding the state of the object and vice versa. In this paper, we demonstrated

that by considering jointly the hand and the object, it is possible to better understand aspects of

both. More specifically, the optimization over the parameters of a joint hand-object 3D model

results in full hand pose estimation that is performed more accurately compared to methods that

consider the hand in isolation. On top of that, a parametric expression of the manipulated ob-

ject is also computed. The defined joint optimization problem is solved through Particle Swarm

Optimization which proves very competent in handling the complex, multidimensional and mul-

timodal objective function of this problem. From a computational point of view, the proposed

approach has only a minor overhead over the case of treating hands in isolation. Results from ex-
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tensive experiments on simulated data demonstrated the potential of the method against ground

truth, but also comparatively to the results of a state-of-the-art hand pose estimation method that

considers hands in isolation. Experiments in real world sequences provide evidence that the pro-

posed method performs well in challenging cases of complex hand articulation and hand-object

interaction. Ongoing research considers more flexible 3D models of a hand and also aims at

exploiting the fact that a hand and an object cannot share the same physical space (see Sec. 2.3).

Additionally, we investigate the potential of HOPE to support the understanding of the semantics

of human grasping and manipulation activities.
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Figure 3: Mean errorD for hand pose estimation (in mm) for HOPE (left column) and PEHI (right column) for different
PSO parameters and number of views. (a),(d): Varying PSO particles and generations for 2 views. (b),(e): Same as
(a),(d) for 8 views. (c),(f): Increasing number of views, 40 generations, 64 particles/generation.
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Figure 4: Performance of HOPE and PEHI on a synthetic sequence of multiframes that shows hands in isolation. For
both algorithms, D is plotted as a function of the number of employed views. 64 PSO particles and 40 generations have
been used in both cases.

Figure 5: Camera setup for the experiments with real data.
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(a) Sphere, frame #103, 4 views, HOPE (top), PEHI (bot.)

(b) Cylinder, 4 frames, view #2, HOPE (top), PEHI (bot.)

(c) Box, 4 frames, view #1, HOPE (top), PEHI (bot.)

Figure 6: Sample frames from the results obtained by HOPE and PEHI in real-world experiments. For HOPE the
projection of the estimated 3D object model is shown in pink color.
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Figure 7: Snapshots from an experiment where a hand performs a complex manipulation of an elongated cuboid.
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Particle Filter-Based Fingertip Tracking with Circular Hough
Transform Features

Martin Do Tamim Asfour Rüdiger Dillmann

Abstract

In this work, we present a fingertip tracking frame-
work which allows observation of finger movements
in task space. By applying a multi-scale edge extrac-
tion technique, an edge map is generated in which low
contrast edges are preserved while noise is suppressed.
Based on circular image features, determined from the
map using Hough transform, the fingertips are accu-
rately tracked by combining a particle filter and a sub-
sequent mean-shift procedure. To increase the robust-
ness of the proposed method, dynamical motion mod-
els are trained for the prediction of the finger displace-
ments. Experiments were conducted on various image
sequences from which statements on the performance
of the framework can be derived.

1 Introduction
Towards an intuitive and natural interface to ma-

chines, markerless human observation has become a
major research focus during the past years. Regard-
ing coarse granular human tracking incorporating the
torso, arms, head, and legs, considerable progress has
been achieved whereas human hand tracking still re-
mains an unresolved issue, although the hand is con-
sidered to be one of the most crucial body parts re-
garding the interaction with other humans and the en-
vironment.

Regarding markerless tracking and detection of hu-
man body parts, most systems have limited sensor ca-
pabilities which in common case are limited to a stereo
camera setup. Full hand tracking approaches in joint
angle space have been proposed in [1],[2],[3]. However,
due to the highly complex structure of the hand whose
motion involves 27 DoF, tracking can be only achieved
at a low frame rate or on multiple views from different
perspectives.

Using stereo vision, a reasonable solution lies in re-
ducing dimensionality of the problem by shifting from
joint angle space into task space. In [4], a finger track-
ing approach based on Active contours is presented for
air-writing. The target to be tracked consists of a con-
tour which is laid around the pointing finger. As a
result, since no reliable statement can be made on the
actual fingertip position, one has to assume that finger
pose is not changing.

Hence, based on curvature properties, in [5] finger-
tips are detected within a contour which is extracted
from skin blob tracking. A more elaborate approach
is presented in [6] where particles are propagated from
the center of the hand to positions close to the con-
tour. Intersection of the contour with line segments at
particles and examination of the transitions between
non-skin and skin-area indicate whether a particle rep-
resents a fingertip. However, this method is specifically
designed to detect tips of stretched fingers. Based on

multi-scale color features [7] introduces a hierarchical
representation of the hand consisting of blobs of dif-
ferent sizes with each blob representing a part of the
hand. The blob features are matched with a number
hierarchical 2D models each incorporating a specific
finger pose. Therefore, tracking is accomplished under
the assumption that the local finger poses regarding
the hand remains fixed. In order to implement con-
tinuous fingertip tracking method, we would like to
rely on prominent features which can be extracted at
any time of an image sequence. In [8] for detecting
a guitarist’s fingertips, circular features are proposed
which are localized by performing a circular Hough
transform. For the same application, [9] defined semi-
circular templates which are used to find the fingers’
positions.

In our work, we adopt the concept of circular fea-
tures to tackle the more complex problem of track-
ing fingertips of freely moving hand, where overlap
of finger and palm occur frequently leading to diffi-
culties regarding the robust extraction of these fea-
tures. For tracking, we combined particle filtering with
a mean-shift algorithm. In addition, a dynamical mo-
tion model for predicting was trained to enhance the
robustness of the proposed framework.

The paper is organized as follows. Section 2 de-
scribes the feature extraction consisting of a edge de-
tection step and the Hough transform. Details on the
tracking procedure performed on the resulting map are
given in Section 3. Subsequently, first experiments
with the framework are explained in Section 4. In Sec-
tion 5, the work is summarized and notes to future
works are given.

2 Feature Extraction
In order to generate the edge image, a skin color

segmentation is performed for extracting the hand and
finger regions. Morphological operators are applied on
the segmented image to eliminate noise and to produce
a uniform region. To detect the edges in this prepro-
cessed image, image gradients are calculated on various
scales.

2.1 Multi-Scale Edge Extraction
Considering the problem of fingertip tracking, due to

small intensity variances between different parts of the
hand, e.g. the fingernail and the skin, respectively, the
finger regions and the palm, it is desired to detect edges
where contrast can vary over a broad range. Depending
on the parameters, applying standard algorithms, such
as the Canny edge detectors on a wider scale, leads to
an edge image where numerous, false edges occur. To
preserve low contrast edges in certain areas while re-
ducing noise close to high-contrast edges, based on the
work of [10], we implemented a filter approach consist-
ing of a steerable Gaussian derivative filter on multiple



Figure 1. Left: Original input image. Cen-
ter/Left: Color segmented image. Center/Right:
Edge image using Canny detector. Right: Edge
image using the method proposed in Section 2.1.

scales. The basis filter for x is defined as follows:
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k(x,y;σk) =
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k(x,y;σk) is defined analogously. To determine the

scale at which a gradient can be reliably estimated,
the magnitude of the filter response rx

k(x,y;σk) and
r

y
k(x,y;σk), obtained by convolution of the image I with

the filters from Eq. 1, is checked against a noise thresh-
old. While the magnitude can be calculated according
to:
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the threshold is set by following function:

ck =

√
−2ln(1− (1−α)R)

2σ2
k

√
2π

sl . (3)

with sl representing the standard deviation and α the
significance level for an image with R pixels which de-
fines an upper boundary for allowed misclassification
of image pixels. To take into account local intensity
and contrast conditions, we focus on local signal noise
in a specific region rather than on global sensor noise.
Therefore, Eq. 3 depends on the local standard devia-
tion sl calculated within a 2σmax

k ×2σmax
k -neighborhood

where σmax
k denotes the largest scale being examined.

Hence, we calculate each gradient at the minimum re-
liable scale σmin

k where the likelihood of error due lo-
cal signal noise falls below a standard tolerance. This
guarantees that a more accurate gradient map is esti-
mated which is less sensitive to signal noise and errors
caused by interference from nearby structures. The
edge image obtained from the map is depicted in Fig. 1.

2.2 Hough Transformation for Circle Detection

The circle features representing the N fingertips are
detected by applying a Hough transform with radius r.
For each edge point (x,y) with known direction in the
form of a rotation angle θ , a vote is assigned to possible
circle feature positions (u,v) in two-dimensional Hough
space IH according to:

IH(u,v) = IH(u,v)+1 (4)

with u = x±rcos(θ) and v = y±rsin(θ). Unfortunately,
curves around the fingertips do not always feature per-
fect circular arcs. To cope with noisy and slightly de-
formed curves, the voting is performed for a set of radii

R = {−m1.1r, . . . ,m1.1r} with m ∈N whereby a range of
pixels along the edge tangent is considered during the
voting process. In order to increase the robustness of
the tracking algorithm, a density distribution is formed
in Hough space by convolving IH with a Gaussian ker-
nel G(u,v; r

2
).

Since the hand motion occurs in 3D Euclidean space,
a fixation of r is only valid if movement of the fingertip
in direction of the z-axis of a camera is excluded during
the tracking. Adaptation of r in each frame, allows to
track fingers in all directions. Based on the generated
density distribution in frame t a radius estimate r̂t is
determined by applying an Expectation Maximization
algorithm. Further details are given in Section 3.3.

3 Tracking Fingertips

3.1 Prediction

Providing a prediction on the movement of the ob-
jects to be tracked increases the robustness of a statis-
tical tracking framework. We train dynamical motion
models in the form of a second-order auto-regresssive
(AR) process as proposed in [4], which is described as
follows:

qt − q̄ = A1(qt−1 − q̄)+A2(qt−2 − q̄)+b0ωk (5)

where qt ∈ R
D denotes the current configuration, q̄

the mean configuration, and ωk ∈ [0,1]. To learn the
AR parameters A1, A2 ∈ R

D×D and b0 ∈ R
D, training

data is provided in the form of a configuration se-
quence Q = {q′0, . . . ,q

′
M} whereas the sequence is gener-

ated by manual labeling of fingertips in each frame of
a recorded image sequence.

Two AR models are trained to provide predictions
for the local fingertip movement concerning a static
hand pose as well as the movement of the hand it-
self. Based on the assumption that the motion of each
finger is influenced by the motion of the neighbored
fingers, the first model is trained with training data
whose instances q′i ∈Q with D = N consists of the length

of v
j, j+1
t = p

j+1 mod N
t − p

j
t between the fingertips j and

j +1 mod N:

q′i( j) = ‖v
j, j+1
t ‖ j = 1, . . . ,N. (6)

For finger j, this leads to following displacement vector:

v̄t( j) =
q

j
t −q

j
t−1

q
j
t−1

v
j, j+1
t −

q
j−1
t −q

j−1

t−1

q
j−1

t−1

v
j−1, j
t . (7)

The second model which considers the global move-
ment of the average position of all fingertips pmean is
trained with a data set formed of q′i = pmean with D = 2

resulting into a overall displacement:

v̂t( j) = q
j
t + v̄t( j). (8)

Due to the coupled fingertip movements, the models
behave well resulting in reasonable prediction of the
finger displacements which supports the state estima-
tion in the ensuing tracking procedure.

3.2 Particle Filter Tracking

For the proposed fingertip tracking framework, a
state hypothesis s of a particle (s,w) consists of the



N fingertip positions of the hand with each position
being denoted by the coordinates (x,y) within the im-
age. Particle filtering is an iterative algorithm where,
first, at time t samples are drawn from a set of pre-
vious particles Xt−1 = {(si

t−1,w
i
t−1)} proportionally to

their likelihood wi
t−1. Subsequently, from each drawn

sample a new state hypothesis si
t is generated. Adding

a Gaussian random variable ω and the displacement
vector v̂ j from Eq. 8, si

t can be written as:

si
t = si

t−1 + v̂t +ω. (9)

To determine a particle set Xt , for each si
t the likeli-

hood wi
t is computed. In order to compute the weights

for the new set of particles, one has to approximate
the likelihood function p(zt |st) with zt representing the
current observation. Our approximation of p(zt |st) is
based on two cues: a contour and a distance cue. The
contour cue is derived by exploiting the external energy
functional Eimg of a contour Ci

t obtained by connecting
the single points in si

t according the finger order. The
Eimg is determined in terms of an edge image ZE

t which
is constructed by drawing lines between the a set of
maximum bins ZV

t that can be found in IH . As a re-
sult, the likelihood function can be written as:

pc(zt |st) ∝ wc(st) = exp

{−Eimg(Z
E
t ,Ct)

σ2
c

}
. (10)

The distance cue is calculated from the Euclidean dis-
tance between si

t and ZV
t which consists of the sum of

minimal distances between si
t( j) and ZV

t . Based on this
cue, the likelihood function can be defined as

pd(zt |st) ∝ wd(st) = exp

{
−∑

N
j=1 min(‖st( j)−ZV

t ‖)
Nσ2

d

}
.

(11)

The final likelihood function is constructed from Eq. 10
and Eq. 11, hence, we define the computation of
weights as follows:

wi
t =

√
wc(s

i
t)wd(s

i
t)

∑
M
k=1

√
wc(s

k
t )wd(s

k
t )

. (12)

One obtains a current state estimate of the fingertip
configuration by evaluating the following sum:

st =
M

∑
i=1

wi
ts

i
t . (13)

Figure 2. Left: Original input image. Center:
Visualization of the Hough space. Right: Gener-
ated contour for the particle filter tracking. The
particle with the highest likelihood (black dot-
ted line) and the particle with the lowest (white
dotted line) are depicted.

Further details concerning the particle filter algorithm
can be found in [11].

3.3 Mean-Shift

To obtain more accurate position estimates, a mean-
shift algorithm is applied to move the estimated finger-
tip position pn = st(n) towards the peak of local den-
sity distribution. We adopted the EM-like mean-shift
algorithm proposed in [12] which in addition provides
the possibility to estimate the covariance of the local
density distribution. The covariance estimation allows
us to adapt the radius r corresponding to the current
circular image features. Hence, taking into account
movement in the depth of the camera, for tracking cir-
cular features in Hough space one has to incorporate
an adaptation of radius rt . Under the assumption that
the distribution can be modeled as a Gaussian, we want
to find parameters p̂n and Vd representing center and
covariance matrix of the distribution that maximize
following function:

f (p̂n,Vd) =
M

∑
j=1

G(p j; p̂n;Vd)IH(p j). (14)

which can be solved iteratively by, first, calculating λ j

according to:

λ j =
G(p j; p̂n;Vd))IH(p j)

∑
M
j=1 G(p j; p̂n;Vd)IH(p j)

(15)

and then determining a new estimation for center
which can be written as:

p̂i+1
n =

M

∑
j=1

λ j p j (16)

whereas a covariance matrix estimation is obtained by
evaluating following term:

V i+1
n = c

M

∑
j=1

λ j(p j − p̂i
n)(p j − p̂i

n)
T (17)

whereas c is a constant. If convergence is achieved, the
radius is determined from the covariance matrix.

4 Results

The proposed fingertip tracking framework was ap-
plied on several image sequences which were captured
with a static stereo camera setup and a resolution of
R = 640×480 pixels. For edge extraction, the method
presented in Section 2.1 is applied with σk = 4,2,1,0.5

and α = 0.5. Currently, initialization of the tracking is
done manually by defining a region In

H where finger n is
to be found. Using the Hough transform with different
radii constructed with m = 3, The maximum bin in Ii

H
is labeled as finger n according to the finger order n =
{T humb = 0, Index = 1,Middle = 2,Ring = 3,Pinkie = 4}.

Taking into account the predicted displacements
of the fingers, the particle filter tracking algorithm
with minimum 600 particles shows good performance.
Around 3 mean-shift iterations needed to achieve con-
vergence, The number of iterations for the subsequent
mean-shift algorithm depends on the numbers of par-
ticles meaning less particles more mean-shift iterations



Figure 3. Images of the tracking results. The up-
per row depicts simultaneous closing of the fin-
gers, while the lower row shows sequential flexing
of the fingers. The fingertips are labeled as fol-
lows: Thumb (green), index (light blue), middle
(dark blue), ring (pink), and pinkie (red).

vice versa. Exploiting the combination of both, reason-
able accuracy of ≈ 7 pixels mean deviation is achieved
for translation movements. For a rotation, opening and
closing movement, the error increases up to 20 pixels.
These measurements are depicted in Fig. 4. The track-
ing procedure fails if a finger is lost, which is the case
if the movements are too fast.

In case of failure, currently, a very rudimentary re-
initialization is performed consisting of a search for
maximum bins in the vicinity of the last known es-
timation and arranging of the fingers according ac-
cord position polar space, assuming that fingers are
arranged clockwise, respectively counter clockwise, de-
pending on the hand that is observed. Since this as-
sumption is not valid for several finger poses, hence,
this might lead to mislabeling.

Since this algorithm operates on monocular images,
for each view a tracking instance is created whereas the
3D positions of the fingers are calculated by exploiting
epipolar geometry. The presented framework is capa-
ble of online tracking of fingertip motion with a frame
rate of 15 Hz on a 2.40 GHz dual core CPU. Sam-
ple images during the tracking process are depicted in
Fig. 3.

5 Conclusion

In this work, we have presented a fingertip track-
ing which allows observation of fine granular human
actions such as grasping in an efficient manner. Us-
ing Hough transform and a combination of particle
filter and mean-shift tracking, circular features repre-
senting the fingertips could be localized and tracked.
Currently, the proposed framework is applied for cap-
turing human grasping movements for online imitation
learning using the on-board systems, a pair of stereo
cameras, of a robot.

However, in the experiments we conducted, we were
able to observe that the error on the localization of
the fingertips increases, when the hand performs move-
ments which go beyond translation. These can be led
back to the use of a single dynamical motion model
for the prediction. In the near future, the local fin-
gertip prediction module will be implemented in the
form of a net of multiple intertwined motion models
in order to provide better predictions. Concerning the
motion model of the hand, we realized that it needs
to be extended by an angular dimension to cover the
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Figure 4. Error plot for a sequence of four hand
and finger movements: Translation of the hand,
rotation of the hand, close and open movement
incorporating flexing the fingers.

rotation of the hand. To enable full online observa-
tion of the human upper body the fingertip tracking
will be integrated into a upper body tracker and its
implementation will be improved to raise its efficiency.
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Background modeling algorithms are commonly used in camera setups for foreground object detection.
Typically, these algorithms need adjustment of their parameters towards achieving optimal performance
in different scenarios and/or lighting conditions. This is a tedious process requiring considerable effort by
expert users. In this work we propose a novel, fully automatic method for the tuning of foreground detec-
tion parameters in calibrated multicamera systems. The proposed method requires neither user interven-
tion nor ground truth data. Given a set of such parameters, we define a fitness function based on the
consensus built from the multicamera setup regarding whether points belong to the scene foreground
or background. The maximization of this fitness function through Particle Swarm Optimization leads
to the adjustment of the foreground detection parameters. Extensive experimental results confirm the
effectiveness of the adopted approach.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

As digital cameras become cheaper, multicamera setups or
camera networks are becoming commonplace. Calibrated multi-
view setups are associated with some strong assumptions and
their intrinsic/extrinsic calibration is a tedious process. Neverthe-
less, their ability to reduce occlusion effects and appearance ambi-
guities leads to more robust performance of computer vision
algorithms, a fact that typically outweighs their disadvantages.
Several multicamera-based applications such as semi-automated
surveillance [8], target tracking [17], 3D video recording [18,23],
human motion modeling [4,28] and sports analysis [9] perform
object detection, most commonly using some background model-
ing-based foreground detection method. Thus, such methods con-
stitute important ingredients of modern multiview computer
vision systems.

A common drawback of several existing foreground detection
methods is that their performance critically depends on several
parameters that require considerable expertise in order to be ad-
justed properly. Unfortunately, there is no universal parameter
set that can generalize optimally across the different conditions
that may be encountered. In the typical case, different scenarios
that exhibit variable degree of occlusions (e.g., crowded scenes),
stopped targets, clutter motion (e.g., flowing water) and global or
local illumination changes, require different tuning of the algo-
rithm towards high quality results. Despite its great importance,
ll rights reserved.

Vassilika Vouton, GR-700-13
proper parameter tuning is often overlooked resulting in subopti-
mal foreground detection output. The need for adaptive parameter
tuning is even more pronounced when dealing with online, real-
time applications that capture endless video streams (e.g., auto-
mated surveillance) where the environmental and other conditions
might change considerably over time.

One of the few approaches that deal with this problem is the
one adopted by White and Shaw [27], which presents a method
that optimizes background subtraction with respect to given
ground truth. More specifically, the goal is to optimize two basic
parameters of a background subtraction algorithm [24] that is ap-
plied to an image sequence acquired by a single camera. The re-
quired ground truth consists of manually defined foreground
silhouettes. The F measure [22] between the silhouettes calculated
by the background subtraction algorithm and the ground truth sil-
houettes constitutes the fitness function of a given parameter set.
Finally, Particle Swarm Optimization (PSO) is employed to maximize
this fitness function by searching over the space of possible back-
ground subtraction parameters.

In this work, we propose a novel method for automatically tun-
ing the foreground detection parameters, utilizing information
taken by a multicamera setup. In contrast to White and Shaw
[27], the proposed method does not require user intervention at
any point of the process and does not assume the availability of
ground truth measurements. Thus, it can be applied to the auto-
matic tuning of foreground detection performed on any system
that captures endless video streams where ground truth informa-
tion is not available. Similar to White and Shaw [27], we employ
PSO to optimize a fitness function that is defined over a multidi-
mensional foreground detection parameter space.

http://dx.doi.org/10.1016/j.cviu.2010.09.003
mailto:argyros@ics.forth.gr
http://dx.doi.org/10.1016/j.cviu.2010.09.003
http://www.sciencedirect.com/science/journal/10773142
http://www.elsevier.com/locate/cviu
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Instead of using ground truth silhouette images, we employ
confidence maps that are calculated through the fusion of the fore-
ground images estimated by the multicamera setup. At each step,
one such map is produced for every camera of the configuration.
Each confidence map consists of scores that represent the cumula-
tive confidence in the multicamera setup regarding whether a pixel
belongs to the foreground or not. For each and every camera, the
fitness function measures the similarity of the foreground estimate
to the confidence map. The fundamental idea behind the definition
of the fitness function is that if several cameras agree that a certain
point in the scene belongs to the foreground, then this is likely to
be so. False positives and false negatives may exist in the process.
Nevertheless, it is very unlikely that a consensus will be build
around them. As in [27], PSO is used to maximize the fitness func-
tion. PSO suggests foreground detection parameters that produce
new confidence maps which, in turn, suggest new parameters.
The termination of this iterative process provides the parameter
vector found to achieve the greatest fitness. Through a series of
experiments, we show that both the defined fitness function and
optimization process are very suitable for effectively solving the
problem of unsupervised adjustment of foreground detection
parameters.

The main contributions of this work are (1) the definition of
multicamera consensus and the resulting confidence maps in the
optimization of the foreground detection parameters, (2) the unsu-
pervised solution of the problem of parameter tuning as opposed
to the previous supervised methods requiring ground truth infor-
mation, and (3) a thorough experimental study of the behavior of
the proposed approach with a detailed investigation of various fac-
tors that may affect its performance.

The remainder of this paper is organized as follows. In Section 2
the foreground detection algorithm that is used throughout this
work is presented. It has to be noted that the selection of the par-
ticular method is based on its popularity and performance [3]. Nev-
ertheless, the proposed method can, in principle, be applied to any
other background subtraction/foreground detection method. Sec-
tion 3 defines the confidence maps that guide the optimization
process. Section 4 presents the employed optimization algorithm.
Section 5 provides a detailed description of the proposed algo-
rithm. Experiments and results are presented in Section 6. Finally,
a brief summary and conclusions is given in Section 7.
2. Background modeling and foreground detection

Background modeling and foreground detection is a way to de-
tect moving objects in views acquired by static cameras. The great
importance of such methods has given rise to several approaches.
According to Piccardi [21], such methods typically operate at the
pixel level. The simplest ones directly subtract the average, median
or running average of a number of frames from the current view.
Other methods use kernel density estimators and mean-shift based
estimation [10,12]. In [20], the notion of eigen-background is
defined.

One of the best performing methods is the one proposed by
Stauffer and Grimson [24] that models the appearance of each
image pixel as a mixture of Gaussians. Because of its effectiveness
and popularity [3], our work considers this method as the basis of
the proposed, unsupervised parameter optimization approach.
More specifically, we employ the variant proposed by Zivkovic
[29]. For the sake of self completeness, an introduction to this
method is provided.

Given a sequence of images, let~xðtÞ be a pixel of image I(t) at time
t in some colorspace (i.e., RGB). The background model is estimated
from a training set XT = {x(t), . . . ,x(t�T)} where T determines the time
period for which the model’s history is extended. Each pixel is
modeled as a M component Gaussian Mixture Model (GMM) given
by

p̂ð~xjXT ; fbÞ ¼
XM

m¼1

p̂mNð~x; ~̂lm; r̂2
mIÞ; ð1Þ

where ~̂l1; . . . ; ~̂lM are the estimates of the means and r̂1; . . . ; r̂M are
the estimates of the variances of the GMM components. fb denotes
the fact that the recent history contains observed values belonging
to both the foreground (f) and the background (b). Given a new data
sample ~xðtÞ at time t, the recursive update equations of mixing
weights, means and variances are:

p̂m  p̂m þ a oðtÞm � p̂m
� �� acT ; ð2Þ

~̂lm  ~̂lm þ oðtÞm ða=p̂mÞ~dm; ð3Þ
r̂2

m  r̂2
m þ oðtÞm ða=p̂mÞ ~dT

m
~dm � r̂2

m

� �
; ð4Þ

where~dm ¼~xðtÞ � ~̂lm, a is the constant that represents an exponen-
tially decaying envelope utilized to attenuate the effect of past data
and cT a small bias factor, typically set to 0.01 (see Zivkovic [29] for
details). A sample is close to a GMM component if its Mahalanobis
distance from the mode is smaller than a certain threshold, typically
set equal to three standard deviations. Based on this, the ownership
oðtÞm for a newly arrived sample is set to 1 for the GMM component
with the larger mixing weight among all the components that their
distances from the sample is less than the predefined threshold and
0, otherwise. The squared distance from the mth component is com-
puted by D2

mð~xðtÞÞ ¼~dT
m
~dm=r̂2

m. Updates of pms must be followed by a
normalization so that they add up to one.

Background modeling starts with one GMM component cen-
tered on the first sample. While the new samples that arrive are
not within three standard deviations from the existing modes of
the GMM, new components are generated with p̂Mþ1 ¼ a; ~̂lMþ1 ¼
~xðtÞ and r̂Mþ1 ¼ r0 where r0 is the initial variance. During updates,
if a mixing weight cpm becomes negative, the corresponding mix-
ture component is removed from the GMM and the mixing weights
of the remaining components are normalized to sum to one. More-
over, if a newly imported component forces the total number of
components to increase beyond a certain threshold, the compo-
nent with the smallest mixing weight assigned to it is excluded
from the mixture.

Given that the components of the mixture are sorted in a
descending order of their mixing weights, it is assumed that the
background can be modeled by the set B of the largest GMM com-
ponents as:

pð~xjXT ; fbÞ �
XB

m¼1

p̂mN ~x; b~lm;r2
mI

� �
; ð5Þ

where

B ¼ arg min
j

jj
Xj

m¼1

p̂m > ð1� cf Þ
( )

ð6Þ

and cf is the maximum allowable sum of mixing weights of the
GMM components modeling the foreground.

Following the above analysis, an observed pixel is part of the
background, if it is found to be close to one of these B Gaussian
components. Otherwise, this pixel is assigned the foreground label.
An example outcome of this foreground detection method is
shown in Fig. 1.

3. Multiview camera setup

The foreground detection method presented in Section 2 oper-
ates on an image sequence acquired by a single, static camera.



Fig. 1. (a) A frame of Inria’s Dancer sequence and (b) foreground detection output. White and black pixels correspond to foreground and background, respectively.

K. Tzevanidis, A. Argyros / Computer Vision and Image Understanding 115 (2011) 105–116 107
The straightforward approach to performing foreground detection
in a multicamera setup is to employ it independently in each of the
acquired views. A basic idea behind this work is that the joint
observation of a given 3D space by a set of cameras can be used
to provide information that may guide the joint optimization of
the foreground detection parameters. A given observed 3D point,
either belongs to the scene foreground or scene background. Thus,
the visual hull [15] estimated through volume intersection [16] can
be used to compute the multiview configuration consensus regarding
the foreground of a given scene.

More specifically, each camera of the configuration votes in a
common voxel space for occupied voxels by projecting an estima-
tion of its own foreground image on this space. The voxel space de-
scribes a discretization of the actual space. A voxel can be
considered, by a single view, as being occupied by some object or
not. This occupancy information is all that is required to calculate
the multicamera consensus regarding the objects present in the
scene. After the occupancies are calculated, the voxel space can
be back-projected to every view to calculate a set of confidence
maps, one per view. The use of voxel occupancies as a way to com-
bine information from multiple views has been proposed at [11]
where a probabilistic framework for fusing silhouette cues is
presented.

What follows, is a detailed presentation of how the multicam-
era consensus and the individual confidence maps are built.

3.1. Multicamera consensus

To calculate the multicamera consensus, a 3D voxel space of the
actual scene is defined. This space is sampled to create a 3D grid,
G = {G0,G1, . . . ,Gn} where each Gc = (Xc,Yc,Zc) is a 3D point. General
perspective projection of a 3D point (Xc,Yc,Zc,1) to a 2D point
(xc,yc, fc) on the ith view plane can be calculated given the corre-
sponding projection matrix Pi = Ci[RijTi] through

xc; yc; fcð ÞT ¼ Ci½RijTi� Xc;Yc; Zc;1ð ÞT ; ð7Þ
where Ci is the camera calibration matrix, Ri the rotation matrix and
Ti the translation vector with respect to a world-centered coordi-
nate system. In the general case, the cameras of a multiview config-
uration cannot be fully aligned on a common field of view (FOV), so
a number of 3D points will fall outside the FOV of some cameras.
For the view plane of camera i with dimensions wi � hi we define
the function Li(x,y) that labels the projections falling inside the
camera FOV as

Liðx; yÞ ¼
1 1 6 x 6 wi ^ 1 6 y 6 hi;

0 otherwise:

�
ð8Þ

Furthermore, we denote by Si the silhouette image (as the one
shown in Fig. 1b) taken from camera i, where Si(x,y) = 1 for
foreground pixels and Si(x,y) = 0 for background pixels. Occupancy
scores O(Xk,Yk,Zk) of 3D points of G are computed as

OðXk;Yk; ZkÞ ¼ 1 s ¼ l > jCj
2

0 otherwise

(
; 8k 2 ½0;n�: ð9Þ

In Eq. (9), jCj is the number of cameras used. l is termed the visibility
factor (see Fig. 2a) and s the intersection factor (see Fig. 2b). These
factors are defined as

l ¼
X
i2C

Li
xi

k

f i
k

;
yi

k

f i
k

 !
; s ¼

X
i2C

Si
xi

k

f i
k

;
yi

k

f i
k

 !
; ð10Þ

where ðxi
k=f i

k; y
i
k=f i

kÞ are the projections of (Xk,Yk,Zk) at view plane i.

3.2. Confidence maps

Confidence maps Ciðx; yÞ are computed for every view i by accu-
mulating the occupancy scores of the back-projections of the view
planes on every slice of the grid G. Slices are considered to be 3D
point sets of fixed Zc, with Zc taking discrete values in the range
of [Zmin,Zmax]. Therefore, confidence maps are calculated through:

Ciðx; yÞ ¼
X

Zmin6z6Zmax

OðX0;Y 0; zÞ ð11Þ

for every (x,y) such that 1 6 x 6 wi ^ 1 6 y 6 hi. Given the 3 � 4 pro-
jection matrix Pi ¼ ½pi

mn� of view i the projections X0 and Y0 of x and y
are calculated analytically as

Y 0 ¼ z xpi
23 � ypi

13 þm ypi
33 � pi

23

� �� �
ypi

12 � xpi
22 �m ypi

32 � pi
22

� �
þm ypi

34 � pi
24

� �þ xpi
24 � ypi

14

ypi
12 � xpi

22 �m ypi
32 � pi

22

� � ð12Þ

and

X0 ¼ Y 0 ypi
32 � pi

22

� �þ z ypi
33 � pi

23

� �þ ypi
34 � pi

24

pi
21 � ypi

31

; ð13Þ

where

m ¼ xpi
21 � ypi

11

pi
21 � ypi

31

: ð14Þ

After their calculation, the values of the confidence maps are nor-
malized to the range [0,1]. The closer a value is to 1, the higher
the estimated confidence that the corresponding pixel belongs to
a foreground object.

Fig. 3 shows examples of computed confidence maps. As can be
verified, confidence maps attenuate the holes in the silhouettes but
also the noise in the background. The intuition behind this result is
that although false positives and false negatives may exist in indi-
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Fig. 2. (a) A slice of the grid G for Zc = 0 cm. Different gray level values denote scene regions of variable visibility from a multiview configuration of eight cameras. Dark
regions are visible from one view while bright regions are visible from all the cameras. (b) A slice of the grid G is shown (for Zc = 100 cm). Each view projects on this slice its
captured silhouette. White areas correspond to silhouette intersections from all the views of the configuration.
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Fig. 3. (a) The confidence maps and silhouette images for a single frame across all views of an 8-camera configuration. In (b), the confidence map obtained in view 4 is shown
in greater detail. Brighter colors correspond to higher confidence values.
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vidual camera foreground detections, it is very unlikely that a
strong consensus is built around them. Thus, confidence maps rep-
resent more robustly the segmentation of a scene into foreground
and background, compared to the single view silhouette estimates.
4. Particle Swarm Optimization

Classical approaches on solving optimization problems are of-
ten based on the evaluation of the derivatives of the defined objec-
tive function. In real-world optimization problems, the analytical
expression of the objective function is not known or it is multi-
modal, i.e., has several local minima. Additionally, its derivatives
may not-even be defined at certain points of the parameter space.
To cope with such problems, derivative-free optimization algo-
rithms have been proposed. One such approach is Particle Swarm
Optimization (PSO) [14]. PSO is a population based stochastic opti-
mization method that utilizes swarm intelligence to find extrema
of nonlinear continuous functions (a.k.a. objective or fitness func-
tions). It is similar to other evolutionary techniques like Genetic
Algorithms [13] with the major difference of having no crossover
and mutation operators. PSO exhibits better performance com-
pared to several other optimization methods [1] and is very
efficient in terms of computational cost.
Particle Swarm Optimization is an attractive optimization
method for the problem at hand for several reasons. It performs
well with non-smooth, multimodal objective functions and re-
quires a relatively low number of objective function evaluations
[1]. It depends on a very few parameters and it scales well with
the number of parameters to be optimized. Finally, it is inherently
parallel, leaving room for parallel implementations that can drasti-
cally reduce the computation time required for optimization, espe-
cially when this is intended to be performed on-line.
4.1. Social optimization

PSO is based on social interactions between the atoms of a pop-
ulation in order to optimize a problem modeled with a specific fit-
ness function. The method is inspired by the social behavior
exhibited in flocks of birds and schools of fishes. As such, it handles
populations of particles that are defined in the optimization space.
A social network between individuals (i.e., particles) is defined.
The particles are candidate solutions that are initialized randomly.
The social network determines the interactions that can take place
(e.g., particles can only interact with their neighbors). During the
execution of the PSO algorithm, particles evaluate the fitness of
the candidate solutions that represent and store in memory the
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parameters achieving the optimum fitness values. Moreover, they
adjust their velocities through predefined update equations. Finally,
they move in the parameter space, i.e., update their positions
according to a random linear blending performed upon two velocity
vectors. One of these vectors points towards the particle’s local best
solution and the other towards the best solution in a neighborhood
of particles. This process evolves iteratively, where each iteration is
called a generation, until a termination criterion is met. Such criteria
include the convergence of the whole or of a portion of the particle
population to a single solution, the execution of an upper bound of
iterations, the achievement of a specific fitness score, etc.

A great number of PSO variants have been proposed. In this
work, the simplest form of the PSO algorithm, called canonical
PSO [7] has been employed. Other popular variants include the
fully informed PSO [19] as well as variants that define dynamic
neighborhood topologies [25] and those that utilize enhanced
diversity at updating [2]. Variants have also been defined by using
heuristic velocity update rules or by explicitly handling discrete
optimization problems [6].

4.2. Canonical PSO

In canonical PSO, the topology of the population reduces to only
one neighborhood. Following the notation introduced in [27], every
particle holds its current position (current candidate solution, set of
parameters) in a vector xt and its current velocity in a vector vt. More-
over, each particle stores in vector pi the position at which it
achieved, up to the current generation t, the highest fitness score. Fi-
nally, the swarm as a whole, stores in vector pg the best position
encountered across all particles of the swarm. pg is broadcasted to
the entire swarm, so every particle is aware of the current global
optimum. The update equations that are applied in every generation
t to reestimate the particle velocities and positions are

v t ¼ Kðv t�1 þ c1r1ðpi � xt�1Þ þ c2r2ðpg � xt�1ÞÞ ð15Þ
and

xt ¼ xt�1 þ v t; ð16Þ
where K is a constant constriction factor [5] defined as

K ¼ 2

2� w�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 � 4w

q���� ���� ; w ¼ c1 þ c2: ð17Þ

In Eqs. (15) and (17), c1 is called the cognitive component, c2 is
termed the social component and r1,r2 are random samples of a uni-
form distribution in the range [0,1]. Finally, c1 + c2 > 4 must hold [5].
In all performed experiments the values c1 = 2.8 and c2 = 1.3 were
used.

As mentioned earlier, the particles are initialized at random
positions and their velocities are initialized to zero. Each dimen-
sion of the multidimensional parameter space is bounded in some
range. If, during the position update, a velocity component forces
the particle to move to a point outside the bounded search space,
this component is zeroed and the particle doesn’t perform any
move at the corresponding dimension.

5. Optimization of foreground detection parameters

The proposed algorithm is an iterative procedure that utilizes
canonical PSO to search for the optimal parameter vector across
the parameter space of the foreground detection algorithm pre-
sented in Section 2. The optimal parameter vector is defined to
be the one that maximizes the similarity between silhouettes
and confidence maps across all available views. Each particle posi-
tion corresponds to a set of foreground detection parameter values.
During particle evaluation, a foreground detection instance is ini-
tialized using the particle’s position and applied to an image sub-
sequence to produce a set of silhouette estimates. The use of
sequences instead of single frames is mandatory because, by defi-
nition, the foreground detection algorithm requires a history of
observations in order to produce reliable results.

The proposed iterative optimization process consists of the fol-
lowing steps (a) calculation of the confidence maps based on the
current silhouette estimates, (b) optimization of the foreground
segmentation parameters using the computed confidence maps,
and (c) calculation of new silhouette estimates using the optimized
parameters. By iterating the above steps in a closed loop, both the
estimated parameters and the quality of the produced silhouettes
get improved. A similar idea in the field of Machine Learning is em-
ployed in the principle of generalized policy iteration [26]. The de-
fined fitness function measures the similarity between
confidence maps and silhouette estimates across a given image se-
quence and for every view. Silhouette estimates are computed as
reported in Section 2 from an instance of the foreground detection
algorithm that is initialized by the position vector of a given parti-
cle. Confidence maps are produced by the silhouette estimates and
the additional calibration information of the multiview configura-
tion, as detailed in Section 3.2.

More specifically, let St
i ðx; yÞ denote a point of the silhouette im-

age of frame t captured by camera i. Let also Ct
i ðx; yÞ denote the va-

lue of the confidence map for the same point. The distance DA,i,t

between silhouettes and confidence maps for a set of points A is
calculated as:

DA;i;t ¼
X

ðxp ;ypÞ2A

St
i ðxp; ypÞ � Ct

i ðxp; ypÞ
�� ��: ð18Þ

If we denote with Pt
fg;i the set of silhouette pixels of frame t of view i

(i.e., foreground pixels) and with Pt
bg;i the set of the background pix-

els, then the fitness function is defined as

F ¼
X

t2½0;T�
eð1�rt=2jCjÞ; ð19Þ

where

rt ¼
X
j2C

DPt
fg;j ;j;t

Pt
fg;j

��� ��� þ
DPt

bg;j ;j;t

Pt
bg;j

��� ���
0B@

1CA: ð20Þ

Algorithm 1 provides a summary of the computation of the fitness
function while Algorithm 2 provides a summary of the full optimi-
zation process.

Algorithm 1. Computation of the fitness function

Input: Particle P; T;Nc

Output: Fitness score F
F = 0
foreach l = 1,2, . . . ,T do

Compute silhouettes Si,"i 2 [1,Nc] (as described in Sec. 2);
Compute confidence maps Ci;8i 2 ½1;Nc� (Eq. (11));
Compute Pfg,i,l, Pbg,i,l, "i 2 [1,Nc];

rl ¼
P

i2½1;Nc �
DPfg;i;l

jPfg;i;l j þ
DPbg;i;l

jPbg;i;l j
� �

(Eq. (20));

F ¼ F þ eð1�rl=2jCjÞ;
return (F);
6. Experiments

The goal of the performed experiments is (a) to show whether
the proposed method can be applied successfully to image se-
quences acquired by a calibrated multiview configuration in order
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to automatically tune the foreground detection parameters and
produce optimal silhouette images in a totally unsupervised man-
ner and (b) to investigate the influence of several factors (i.e., PSO
parameters, noise level, camera number and topology, etc.) on the
quality of the obtained results.

6.1. Parameter selection

The performance of foreground detection is governed by the
learning rate parameter a (Eqs. (2)–(4)) that determines the speed
of the adaptation. A uniform update speed is enforced by setting
a = 1/T.

Algorithm 2. Optimization of the foreground detection
parameters.

Input: Number of PSO generations Ng, length of frame
sequence T, PSO population size Np, number of cameras Nc

Outpur: Optimal foreground detection parameter vector P�

Fmax = 0;
Initialize Nc � Np particles pi randomly (random xi,vi = 0);
foreach n = 1,2, . . . ,Ng do

Perform particle pi flight, "i 2 [1,Nc � Np] (Eq. (15));
Compute fitness Fi of pi,"i 2 [1,Nc � Np] (through Algorithm
1);
if Fi > Fmax then

Fmax = Fi;
P� ¼ pi;

Update velocity of pi, "i 2 [1,Nc � Np] (Eq. (16));
return (P�)

Another important parameter is the threshold Tb on the squared
Mahalanobis distance upon which it is decided if a given sample is
close to a background GMM component or not. It must be noted
that Tb is different from the threshold Tg that specifies whether a
sample belongs to any of the mixture components modeling either
background or foreground. According to Zivkovic [29], typical val-
ues are Tb ¼ 16rðtÞm and Tg ¼ 3rðtÞm for the mth component at time
step t.

In general, it is proposed that a total of four Gaussian compo-
nents are sufficient for the purposes of foreground detection.
Therefore, in our experiments this parameter did not vary. More-
over, let Tb = 1 � cf where it holds that 0 6 Tb 6 1. The threshold
Tb determines (see Eqs. (5) and (6)) the number of mixture compo-
nents that model the background. In order for the background
modeling to be valid, Tb must have a value that allows for the back-
ground to be modeled by at least one Gaussian component. Typi-
cally, cf = 0.1 which leads to Tb = 0.9. Finally, the initial variance
r0 of the newly imported components in the mixture, influences
the speed of adaptation. A typical value for this parameter is
r0 = 10.

As the parameters {a,Tb,Tg,r0} have a great impact on the final
result of the foreground detection process, they were selected as
the target variables of the proposed optimization process.

6.2. Experimental setup

The experimental validation of the proposed method was based
on two datasets. The first is the ‘‘Dancer” dataset1 of Inria’s 4D
repository. This dataset captures the movements of a female dancer
through a configuration of eight calibrated cameras. Each view cap-
tures 251 synchronized frames of size 780 � 582. The first 50 frames
contain only scene background and are provided for proper initiali-
1 Available for download at http://charibdis.inrialpes.fr/public/viewgroup/1.
zation of the background modeling process. From those, 49 frames
were omitted, so the resulting sequence starts with a single frame
showing the scene background in isolation. On top of the actual data,
the dataset comes with a set of preprocessed silhouettes (one per
frame). These data are not used in the optimization process but form
a basis for the quantitative evaluation of the non-supervised fore-
ground detection algorithm.

The second dataset2 is a synthetic, noise-free dataset, showing a
3D rendered model of a Kung-Fu girl in action. This has been ac-
quired by a virtual multiview setup of 25 cameras and contains
201 synchronized frames of image size 320 � 240. There is a single
frame showing the scene background in isolation. This dataset also
comes with a ground truth set of silhouettes that is produced auto-
matically by rendering the 3D model with no lights, resulting in a
white silhouette on a black background.

The description of the foreground detection method in [29] sug-
gests a parameter set that performs relatively well in the general
case. We refer to these parameters as typical parameters. Through-
out our experiments, we evaluate the typical parameters and the
parameters suggested by our methodology against the available
ground truth. This evaluation involves a comparison of the silhou-
ette images produced by a set of parameters against the available
ground truth silhouettes. More specifically, let X be the set of all
image pixels for all cameras and time instances. Then the measure
used for comparing the resulting silhouette images to ground truth
is:

q ¼ 1� DX

jXj ; ð21Þ

where

DX ¼
X

t2½0;T�

X
ðx;yÞ2X

jStðx; yÞ � Ttðx; yÞj ð22Þ

and Tt(x,y) denotes the ground truth available for point (x,y) at time t.
A value of q = 1 signifies silhouette images identical to the ground
truth and, therefore, perfect foreground detection parameters.
6.3. Dancer dataset

We present quantitative and qualitative results obtained from
the application of the proposed method on the dancer dataset. As
detailed in Section 6.1, the most critical foreground detection
parameters are a, Tb, Tg and r0. In a first experiment, we used a
population of 15 particles running PSO for 50 generations on the
4D parameter space {a,Tb,Tg,r0}. Each particle is evaluated on
the entire dancer sequence. We call this the exhaustive or the
all-frames experiment.

In a second experiment, the self-evaluation of each particle con-
sidered only the first 10 frames of the entire sequence. We call this
experiment the 10-frames experiment. In this case, a population of
eight particles run PSO for 20 generations on the 3D parameter
space of {Tb,Tg,r0}. The reason for excluding parameter a is that
a value of a that is optimal on the small, 10-frames time window,
cannot generalize well in a sequence of extended length. Therefore,
a was fixed to the typical value while PSO was set to jointly opti-
mize parameters Tb, Tg and r0.

The parameter vectors estimated in the two experiments were
evaluated on the entire sequence. The typical parameter vector
as well as the initialization parameter vector of the second exper-
iment were also evaluated. These four parameter vectors are listed
in Table 1. Table 1 also reports the mean fitness values across the
whole frame range of the sequence achieved by each parameter
2 Available for download at http://www.mpi-inf.mpg.de/departments/irg3/kungfu/.

http://charibdis.inrialpes.fr/public/viewgroup/1
http://www.mpi-inf.mpg.de/departments/irg3/kungfu/


Table 1
Evaluation of foreground detection parameters on the dancer sequence.

Parameter set Tb Tg r0 a Mean fitness value

Typical 16.0 9.0 11.0 0.0001 2283.29
Initialization 3.3 13.2 2.7 0.0001 211.71
10-frames best 18.6 19.0 37.0 0.0001 6389.85
All-frames best 11.9 16.7 41.6 0.0004 6613.91
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set. The detailed fitness graph for all parameter sets in all sequence
frames is shown in Fig. 4.

From these results, it can be verified that the parameter set re-
turned from the exhaustive experiment was the best, followed by
the parameter set resulting from the 10-frames experiment. Those
two sets achieved far better fitness scores than the typical param-
eters, having a marginal difference between them. Fig. 5 shows
how those fitness scores translate to ground truth similarity.

Two important conclusions can be drawn from these results.
First, there is a consistency between fitness function scores and
ground truth similarity scores, thus the fitness function is well de-
fined. Second, the results of the exhaustive experiment are very
similar to the results of the 10-frames experiment, leading to the
conclusion that the parameters found on the small training set
generalize very well for the rest of the sequence assuming that
there are no major changes in the environment. This is an impor-
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Fig. 4. Fitness curves of the four parameter vectors for the dancer dataset
experiments.
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(a)
Fig. 5. (a) Comparison of the silhouettes produced by each parameter vector to the groun
tant observation that can be exploited to avoid the significant addi-
tional computational overhead of optimizing a large population of
particles across many generations on the whole sequence at a
small quality pay-off. This also demonstrates that the proposed
method can be used for the automatic tuning of parameters on
streaming sequences using just a small number of frames to esti-
mate the proper parameters. Examples of the silhouette images
produced by applying the four different instances of foreground
detection on a specific view and frame together with the ground
truth are shown in Fig. 6. As it can be verified, the noise patterns
appearing in the images corresponding to the initialization and
typical parameter sets are missing from the image corresponding
to the optimal parameter set.

We furthermore isolated the particle that returned the optimal
position for the 10-frames experiment and we recorded its route
to this solution. The fitness of this particle as a function of gener-
ations is illustrated in Fig. 7. The plot indicates that the proposed
method requires approximately 15 generations to optimize the
parameters.
6.4. Kung-Fu girl dataset

We also conducted the 10-frames experiment on the Kung-Fu
girl dataset (8 particles, 20 generations, training set of 10 frames,
{Tb,Tg,r0} parameter space). Following the same approach as in
the case of the dancer dataset, we evaluated the three parameter
vectors shown in Table 2. The corresponding fitness graphs are
shown in Fig. 8a. Similarity to ground truth was computed as
shown in Fig. 8b. Finally, examples of silhouette images from the
three detection instances that correspond to the parameter sets
of the experiments are shown in Fig. 9.
6.5. Noise effects

The presence of noise in the input image is responsible for
increasing the number of detected foreground pixels. This is be-
cause color variations due to noise are more likely to manifest
themselves as foreground rather than as a significantly varying
background. This can be observed on the output of the typical
parameters for the dancer dataset (Fig. 6) where foreground pixels
are distributed, following a certain camera dependent noise pat-
tern, across the entire image area. Thus, in the dancer sequence
experiments, the proposed optimization seeks the optimal param-
eter set that also compensates for image noise. In the case of the
experiment with the synthetic, noise-free Kung-Fu girl dataset,
the algorithm just optimizes the similarity to the ground truth.
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Fig. 6. Example silhouettes calculated by the foreground detection algorithm for frame #110 of the dancer sequence as shown from camera #3 and for the four different
parameter sets. The ground truth silhouette is also provided as a reference.
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Fig. 7. The route of the initialization parameter set to the optimal position. Markers
are placed at the fitness scores that the particle achieved at each generation.

Table 2
Evaluation of foreground detection parameters on the Kung-Fu girl dataset.

Parameter Tb Tg r0 Mean fitness value

Typical 16.00 9.00 11.00 4322.30
Initialization 39.50 14.20 27.40 805.99
10-frames best 3.05 2.60 1.30 10489.90
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As it is shown in Fig. 9, the silhouette image produced with the best
parameter set is almost identical to the ground truth, without any
holes. On the contrary, the corresponding result for the dancer se-
quence contains some holes, as a result of the presence of noise.

A series of experiments were conducted to systematically mea-
sure the behavior of the proposed algorithm to various noise levels.
In these experiments we contaminated the original Kung-Fu girl
dataset with three different levels of Gaussian noise ðl1 ¼ 0;
r2
1 ¼ 0:0001Þ, ðl2 ¼ 0;r2

2 ¼ 0:00025Þ, ðl3 ¼ 0;r2
3 ¼ 0:0005Þ. Next,

we conducted the 10-frames experiment on the resulting datasets
and evaluated the results. Finally, we compared the results against
the typical parameters. Mean fitness values for the various noise
levels are shown in Table 3. Fitness and similarity graphs are shown
in Fig. 10, while silhouette examples with the corresponding ground
truth are shown in Fig. 11.

As it can be verified, although parameter optimization is
affected by noise, in all three cases the suggested parameters result
in silhouettes closer to the ground truth than those produced by
the typical parameter set. Moreover, for the case where
r2

1 ¼ 0:0001, we found that the typical parameters were very close
to the optimal parameters returned by the optimization procedure
(see Table 4). This might serve as an indication that the typical
parameters are tuned to deal with this particular level of image
noise. Another interesting observation is that as the noise level
increases, the optimization method automatically, but also reason-
ably, increases the parameter r0.
6.6. Camera placement and number of cameras

Another interesting problem dimension is the variability of the
obtained results with respect to the placement of the available
cameras and their number. The topology of the camera network
highly influences the results. More specifically, the method fails
to optimize the foreground detection parameters if the cameras
arrangement does not permit the accurate voting in the voxel
space. As an example, consider a configuration where cameras
are placed in one side of the foreground object, only. The fact that
large parts of the foreground object are not visible by any of the
cameras results in a voxel space that does not accurately represent
the object’s 3D structure. This produces inaccurate confidence
maps which, in turn, leads the parameter optimization process
far from its optimal values.

Provided that the cameras are placed in a way that surrounds
the foreground objects, the increase of the number of cameras does
not improve considerably the obtained results. In order to examine
the effects of the number of cameras on the performance of the
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Fig. 8. (a) Fitness curves for the Kung-Fu girl experiments, (b) comparison of the silhouettes produced by each parameter vector to the ground truth for the Kung-Fu girl
dataset.
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Fig. 9. Silhouettes calculated by the foreground detection algorithm for frame #127 of the Kung-Fu sequence (camera #14) for the three parameter vectors. The ground truth
silhouette is also provided.

Table 3
Mean fitness values for various levels of noise contamination of the Kung-Fu girl
sequence.

Parameter set r2
1 r2

2 r2
3

Typical 3661.52 412.25 231.62
10-frames best 3725.85 1473.76 859.30

K. Tzevanidis, A. Argyros / Computer Vision and Image Understanding 115 (2011) 105–116 113
method, we conducted experiments on the Kung-Fu girl dataset,
each time utilizing a different camera subset of the original 25-
camera configuration. Sixteen out of the 25 views have nodal
points arranged on a circle and optical axes pointing towards the
center of this circle. We considered 11 different camera subsets
with a number of cameras ranging between 6 and 16. In each case,
cameras were distributed as evenly as possible over the entire cir-
cle. For all the 11 configurations tested, the resulting fitness value
remained practically unchanged and equal to the one reported in
the full 25 cameras experiment presented in Section 6.4. Analogous
experiments with the dancer data set led to exactly the same
performance.
6.7. Optimization of individual camera parameters

In previous experiments a single parameter vector is optimized
and used for the entire camera set. This vector defines a low
dimensional search space for the optimization algorithm. It is
known that the canonical PSO algorithm performs very efficiently
in such low dimensional spaces where it only needs to utilize a
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Fig. 10. Fitness graphs for the 10-frames and the typical parameters experiments on the Kung-Fu girl dataset for various noise levels (left) and comparison with the ground
truth (right). Blue curves correspond to the 10-frames experiments and red curves to the typical parameters set.

3 http://developer.nvidia.com/object/cuda_2_3_downloads.html.
4 http://staff.science.uva.nl/zivkovic/Publications.
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small population of particles for few generations. We have further
examined the behavior of the proposed method on larger search
spaces. In a series of experiments the optimization method was
employed to optimize individual camera parameters. More specif-
ically, for an n camera setup, the parameter vectors had a dimen-
sion of 3n.

On the dancer dataset the total number of parameters to opti-
mize formed a vector of 24 dimensions (i.e., 8 cameras, 3 parame-
ters per camera). The optimization procedure for this experiment,
utilized 8 particles for 20 generations. The fitness and similarity-
to-ground-truth curves found to be identical to the ones produced
by the 10-frames experiment that was described in Section 6.3. A
similar experiment was also conducted for the Kung-Fu girl dataset
where 16 cameras were utilized resulting in a total parameter vec-
tor of 48 dimensions. For this experiment, the optimization algo-
rithm required 200 generations of an 8-particle population to
converge to results similar to the ones presented in Section 6.4.
6.8. Implementation and computational performance issues

The experiments were conducted on a PC with 6GB RAM, Intel
920 core i7 CPU and a Nvidia GTX 295 GPU. Confidence map com-
putation and multiview silhouette estimates were implemented on
GPU, using Nvidia’s CUDA framework.3 For the dancer dataset con-
fidence maps were calculated at a rate of roughly 250 frames per
second while on the Kung-Fu girl dataset we reached a rate of
800 frames per second. For foreground detection we employed
the publicly available4 CPU implementation of the method de-
scribed in [29]. Foreground detection calculations for one generation
of 8 particles and for the 10-frames experiment on the dancer data-
set took 62 s. On the Kung-Fu girl dataset the corresponding time
was 23 s.

http://developer.nvidia.com/object/cuda_2_3_downloads.html
http://staff.science.uva.nl/zivkovic/Publications
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Fig. 11. The silhouettes returned by the typical and and 10-frames best foreground detection instances for the three noise levels of the conducted experiments. Results
correspond to frame #138, view 8 of the Kung-Fu girl dataset.

Table 4
Parameter vectors estimated for the Kung-Fu dataset at various
noise levels.

Parameter set Tb Tg r0

Typical 16 9 11
r2

1 ¼ 0:00010 16.8 19.5 11.0

r2
2 ¼ 0:00025 33.5 23.7 13.0

r2
3 ¼ 0:00050 34.8 30.2 28.0

K. Tzevanidis, A. Argyros / Computer Vision and Image Understanding 115 (2011) 105–116 115
7. Conclusions

We presented a novel algorithm for optimizing, in an unsuper-
vised manner, the foreground detection parameters of a calibrated
multicamera configuration. The proposed method successfully ex-
ploits information regarding the consensus of the setup on what
constitutes foreground in an observed scene. By encoding this infor-
mation in a fitness function, Particle Swarm Optimization optimizes
the foreground detection parameters. Results showed a strong cor-
relation of the fitness curve with the similarity-to-ground-truth
curve, leading to the conclusion that the proposed definition of
the fitness function is a good choice for the specific task. It was also
shown that this method can be used, provided an efficient fore-
ground detection implementation, for online applications.

The most important advantage of the proposed algorithm is that
it does not require prior ground truth information or other kind of
supervision. As such, it can be used as a tool for automatically
adjusting the foreground detection parameters in frequently
changing environments. The data used to evaluate our method
have been captured in laboratory conditions. This has been moti-
vated by the availability of ground-truth for these data sets, which
is required for the quantitative evaluation of the proposed ap-
proach. It is expected that the benefits from the application of
the proposed method in uncontrolled environments (i.e. outdoors
surveillance) will be much greater due to the fact that, in such con-
ditions, there is no single parameter set that performs well on aver-
age. Current and future work includes the extension of this
approach to other interesting problems where multiview consen-
sus can be exploited towards relaxing the requirement for ground
truth data and/or supervision.
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Abstract. We present work on exploiting modern graphics hardware
towards the real-time production of a textured 3D mesh representation
of a scene observed by a multicamera system. The employed computa-
tional infrastructure consists of a network of four PC workstations each
of which is connected to a pair of cameras. One of the PCs is equipped
with a GPU that is used for parallel computations. The result of the
processing is a list of texture mapped triangles representing the recon-
structed surfaces. In contrast to previous works, the entire processing
pipeline (foreground segmentation, 3D reconstruction, 3D mesh compu-
tation, 3D mesh smoothing and texture mapping) has been implemented
on the GPU. Experimental results demonstrate that an accurate, high
resolution, texture-mapped 3D reconstruction of a scene observed by
eight cameras is achievable in real time.

1 Introduction

The goal of this work is the design and the implementation of a multicamera
system that captures 4D videos of human grasping and manipulation activities
performed on a desktop environment. Thus, the intended output of the target
system is a temporal sequence of texture mapped, accurate 3D mesh representa-
tions of the observed scene. This constitutes rich perceptual input that may feed
higher level modules responsible for scene understanding and human activity
interpretation.

From the advent of GPU programmable pipeline, researchers have made great
efforts to exploit the computational power provided by the graphics hardware
(i.e. GPGPUs). The evolution of GPUs led to the introduction of flexible comput-
ing models such as shader model 4.0 and CUDA that support general purpose
computations. Various GPU implementations of shape-from-silhouette recon-
struction have been presented in the recent literature [1, 2]. Moreover, following
past attempts on real-time reconstruction and rendering (e.g. [3, 4]), some recent
works introduce full 3D reconstruction systems [5, 6] that incorporate modern
graphics hardware for their calculations. The later implementations take as input
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segmented object silhouettes and produce as output voxel scene representations.
In contrast to these systems, the one proposed in this paper parallelizes the whole
processing pipeline that consists of foreground object segmentation, visual hull
computation and smoothing, 3D mesh calculation and texture mapping. The
algorithms implementing this processing chain are inherently parallel. We capi-
talize on the enormous computational power of modern GPU hardware through
NVIDIA’s CUDA framework, in order to exploit this fact and to achieve realtime
performance.

The remainder of this paper is organized as follows. Section 2 introduces the
system architecture both at hardware and software level. Section 3 details the
GPU-based parallel implementation of the 3D reconstruction process. Experi-
ments and performance measurements are presented in Sec. 4. Finally, Sec. 5
provides conclusions and suggestions for future enhancements of the proposed
system.

2 Infrastructure

2.1 Hardware Configuration

The developed multicamera system is installed around a 2 × 1m2 bench and
consists of 8 Flea2 PointGrey cameras. Each camera has a maximum framerate
of 30 fps at highest (i.e. 1280× 960) image resolution. The system employs four
computers with quad-core Intel i7 920 CPUs and 6 GBs RAM each, connected
by an 1 Gbit ethernet link. Figure 1 shows the overall architecture along with a
picture of the developed multicamera system infrastructure.

In our switched-star network topology, one of the four computers is declared
as the central workstation and the remaining three as the satellite workstations.
The central workstation’s configuration, includes also a Nvidia GTX 295 dual
GPU with 894GFlops processing power and 896 MBs memory per GPU core.
Currently, the developed system utilizes a single GPU core.

Each workstation is connected to a camera pair. Cameras are synchronized
by a timestamp-based software that utilizes a dedicated FireWire 2 interface
(800MBits/sec) which guarantees a maximum of 125µsec temporal discrepancy
in images with the same timestamp. Eight images sharing the same timestamp
constitute a multiframe.

2.2 Processing Pipeline

Cameras are extrinsically and intrinsically calibrated based on the method and
tools reported in [7]. The processing pipeline consists of the CPU workflow,
responsible for image acquisition and communication management and the GPU
workflow, where the 3D reconstruction pipeline has been implemented. Both
processes are detailed in the following.

CPU Workflow and Networking
Each workstation holds in its RAM a buffer of fixed size for every camera that
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Central Workstation

Satellite Workstations

(a) (b)

Fig. 1. The developed platform (a) schematic diagram (b) actual configuration.

is connected to it. Each buffer stores the captured frames after they have been
converted from Bayer Tile to RGB format. Moreover, prior to storing in buffer,
each image is transformed so that geometric distortions are cancelled out based
on the available calibration information. The rate of storing images into buffers
matches the camera’s acquisition frame rate. Image data are stored together with
their associated timestamps. To avoid buffer overflow as newer frames arrive,
older frames are removed.

Each time a new image enters a buffer in a satellite workstation, its times-
tamp is broadcasted to the central workstation. This way, at every time step the
central workstation is aware of which frames are stored in the satellite buffers.
The same is also true for central’s local buffers. During the creation of a multi-
frame, the central workstation selects the appropriate timestamps for each buffer,
local or remote. Then, it broadcasts timestamp queries to the satellite worksta-
tions and acquires as response the queried frames, while for local buffers it just
fetches the frames from its main memory. The frame set that is created in this
way constitutes the multiframe for the corresponding time step. The process is
shown schematically in Fig. 2.

GPU Workflow
After a multiframe has been assembled, it is uploaded on the GPU for further
processing. Initially, a pixel-wise parallelized foreground detection procedure is
applied to the synchronized frames. The algorithm labels each pixel either as
background or foreground, providing binary silhouette images as output. The
produced silhouette set is given as input to a shape-from-silhouette 3D recon-
struction process which, in turn, outputs voxel occupancy information. The oc-
cupancy data are then send to an instance of a parallel marching cubes algorithm
for computing the surfaces of reconstructed objects. Optionally, prior to mesh
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calculation, the voxel representation is convolved with a 3D mean filter kernel to
produce a smoothed output. Then, the texture of the original images is mapped
onto the triangles of the resulted mesh. During this step multiple texture coor-
dinate pairs are computed for each triangle. Each pair, projects the triangle’s
vertices at each view the triangle’s front face is visible from. A disambiguation
strategy is later incorporated to resolve the multi-texturing conflicts. Finally,
results are formatted into appropriate data structures and returned to the CPU
host program for further processing. In case the execution is intended for visual-
ization, the process keeps the data on the GPU and returns to the host process
handles to DirectX or OpenGL data structures (i.e. vertex and texture buffers).
These are consequently used with proper graphics API manipulation for onscreen
rendering. The overall procedure is presented schematically in Fig. 3.
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3 GPU Implementation

In this section, the algorithms implemented on the GPU are presented in detail.

3.1 Foreground Segmentation

The terms foreground segmentation and background subtraction refer to methods
that detect and segment moving objects in images captured by static cameras.
Due to the significance and necessity of such methods a great number of ap-
proaches have been proposed. The majority of these approaches define pixel-wise
operations [8]. The most straightforward of those subtract the average, median
or running average within a certain time window from static views. Others utilize
kernel density estimators and mean-shift based estimation [9, 10].

A very popular approach [11] that achieves great performance defines each
image pixel’s appearance model as a mixture of Gaussian components. This
method is able to model complex background variations. Targeted at systems
operating in relatively controlled environments (i.e., indoor environments with
controlled lighting conditions) this work is based on the parallelization of the
background modeling and foreground detection work of [12] which considers the
appearance of a background pixel to be modeled by a single Gaussian distribu-
tion. This reduces substantially both the memory requirements and the overall
computational complexity of the resulting process. Moreover, the assumption
that pixels are independent, indicates the inherent parallelism of this algorithm.
In addition, our implementation incorporates a technique for shadow detection
that is also used in [13] and described thoroughly in [14]. Detected shadows are
always labeled as background.

Formally, let I(t) correspond to an image of the multiframe acquired at times-
tamp t, and let x(t) be a pixel of this image represented in some colorspace. The
background model is initialized by the first image of the sequence (i.e. I(0)) and
is given by

p̂(x|x(0), BG) = N(x; µ̂, σ̂2I), (1)

with µ̂ and σ̂2 being the estimates of mean and variance of the Gaussian, respec-
tively. In order to compensate for gradual global light variation, the estimations
of µ and σ are updated at every time step through the following equations:

µ̂(t+1) ← µ̂(t) + o(t)αµδµ
(t) (2)

σ(t+1) ← σ(t) + o(t)ασδσ
(t), (3)

where δµ = x(t) − µ(t), δσ = |µ(t) − x(t)|2 − σ(t) and aµ, aσ are the update
factors for mean and standard deviation, respectively, and

o(t) =

{
1 if x(t) ∈ BG
0 if x(t) ∈ FG.

(4)

A newly arrived sample is considered as background if the sample’s distance to
the background mode is less than four standard deviations. If this does not hold,
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an additional condition is examined to determine whether the sample belongs
to the foreground or it is a shadow on the background:

T1 ≤
µ · x(t)

|µ|2
≤ 1 and

∣∣∣∣∣
(
µ · x(t)

|µ|2

)
µ− x

∣∣∣∣∣
2

< σ2T2

(
µ · x(t)

|µ|2

)2

, (5)

where T1, T2, are empirically defined thresholds that are set to T1 = 0.25, T2 =
150.0.

The above described foreground detection method has been parallelized in a
per pixel basis. In addition, because there is a need to preserve the background
model for each view, this is stored and updated on GPU during the entire life-
time of the reconstruction process. In order to keep the memory requirements
low and to meet the GPU alignment constrains, the background model of each
pixel is stored in a 4-byte structure. This representation leads to a reduction
of precision. Nevertheless, it has been verified experimentally that this does not
affect noticeably the quality of the produced silhouettes.

3.2 Visual Hull Computation

The idea of volume intersection for the computation of a volumetric object
description was introduced in the early 80’s [15] and has been revisited in several
subsequent works [16–18]. The term visual hull, is defined as the maximal shape
that projects to the same silhouettes as the observed object on all views that
lay outside the convex hull of the object [19].

To compute the visual hull, every silhouette image acquired from a given mul-
tiframe, is back-projected and intersected into the common 3D space along with
all others, resulting to the inferred visual hull, i.e. a voxel representation contain-
ing occupancy information. In this 3D space, a fixed size volume is defined and
sampled to produce a 3D grid, G =

{
G0, G1, . . . , Gn

}
where Gc = (Xc, Yc, Zc).

Let Ci be the calibration matrix of camera i and Ri, Ti the corresponding rota-
tion matrix and translation vector respectively, in relation to the global world-
centered coordinate system. The general perspective projection of a point G
expressed in homogeneous coordinates (i.e. (Xc, Yc, Zc, 1) ) to the ith view plane
is described through the following equation

(xc, yc, fc)
T

= Ci [Ri|Ti] (Xc, Yc, Zc, 1)
T
, (6)

where Pi = Ci [Ri|Ti] is the projection matrix of the corresponding view. Each
point can be considered to be the mass center of some voxel on the defined 3D
volume. We also define two additional functions. The first, labels projections
falling inside the FOV of camera i as

Li(x, y) =

{
1 1 ≤ x ≤ wi ∧ 1 ≤ y ≤ hi
0 otherwise,

(7)

where wi and hi denote the width and height of the corresponding view plane,
respectively. The second function measures the occupancy scores of each voxel
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Fig. 4. Each figure presents a xy plane slice of the voxel space. (a) The intersection
of the projected silhouettes in slice Zslice = 90cm. (b) The voxel space defined in this
example is much larger than the previous, visibility factor variations are shown with
different colors. Dark red denotes an area visible by all views.

via its projected center of mass, as

O(Xk, Yk, Zk) =

{
1 s = l > |C|

2

0 otherwise
, ∀k ∈ [0, n], (8)

where |C| is the number of views. l is the visibility factor, s the intersection
factor and are defined as

l =
∑
i∈C

Li

(
xik
f ik
,
yik
f ik

)
, s =

∑
i∈C

Si

(
xik
f ik
,
yik
f ik

)
, (9)

with
(
xik/f

i
k, y

i
k/f

i
k

)
be the projection of (Xk, Yk, Zk) at view i and Si(x, y) is the

function that takes value 1 if at view i the pixel (x, y) is a foreground pixel and
0 otherwise (i.e. background pixel). Figure 4 illustrates graphically the notion of
l and s.

The output of the above process is the set O(Xk, Yk, Zk) of occupancy val-
ues that represent the visual hull of the reconstructed objects. It can also be
conceived as the estimation of a 3D density function. Optionally, the visual hull
can be convolved with a 3D mean filter to smooth out the result. Due to its
high computational requirements, this method targets the offline mode of 3D
reconstruction.

The above described 3D reconstruction process has been parallelized on a
per 3D point basis. More specifically, each grid point is assigned to a single GPU
thread responsible for executing the above mentioned calculations. To speed
up the process, shared memory is utilized for storing the static per thread block
calibration information, silhouette images are preserved in GPU texture memory
in a compact bit-per-pixel format and occupancy scores are mapped to single
bytes.
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Fig. 5. (a) Marching Cubes fundamental states. (b) Byte representation and indexing.

3.3 Marching Cubes

Marching cubes [20, 21] is a popular algorithm for calculating isosurface descrip-
tions out of density function estimates. Due to its inherent and massive data
parallelism it is ideal for GPU implementation. Over the last few years, a lot
of isosurface calculation variates that utilize GPUs have been proposed [22–26].
In this work we employ a slightly modified version of the marching cubes im-
plementation found at [27] due to its simplicity and speed. More specifically,
the occupancy grid resulting from 3D visual hull estimation is mapped into a
CUDA 3D texture. Each voxel is assigned to a GPU thread. During calculations,
each thread samples the density function (i.e. CUDA 3D texture) at the vertices
of it’s corresponding voxel. The normalized (in the range [0, 1]), bilinearly in-
terpolated, single precision values returned by this step, represent whether the
voxel vertices are located inside or outside a certain volume. We consider the
isosurface level to be at 0.5. Values between 0 and 1, also show how close a voxel
vertex is to the isosurface level. Using this information, a voxel can be described
by a single byte, where each bit corresponds to a vertex and is set to 1 or to 0 if
this vertex lays inside or outside a volume, respectively. There are 256 discrete
generic states in which a voxel can be intersected by an isosurface fragment,
produced from the 15 fundamental cases illustrated in Fig. 5a.

Parallel marching cubes uses two constant lookup tables for its operation.
The first lookup table is indexed by the voxel byte representation and is utilized
for determining the number of triangles the intersecting surface consists of. The
second table is a 2D array, where its first dimension is indexed by the byte
descriptor and the second by an additional index trI ∈ [0, 3Niso − 1] where Niso
is the number of triangles returned by the first lookup. Given a byte index,
sequential triplets accessed through successive trI values, contain the indices of
voxel vertices intersected by a single surface triangle. An example of how the
voxel byte descriptor is formed is shown in Fig. 5b. This figure also presents the
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vertex and edge indexing along with an example of an intersecting isosurface
fragment that consists of a single triangle.

To avoid applying this process to all voxels, our implementation determines
the voxels that are intersected by the iso-surface and then, using the CUDA data
parallel primitives library [28], applies stream compaction through the exclusive
sum-scan algorithm [29] to produce the minimal voxel set containing only in-
tersected voxels. Finally, lookup tables are mapped to texture memory for fast
access.

3.4 Texture Mapping

Due to the fact that the employed camera setup provides multiple texture
sources, texture mapping of a single triangle can be seen as a three step proce-
dure: a) determine the views from which the triangle is visible, b) compute the
corresponding texture coordinates and c) apply a policy for resolving multitex-
turing ambiguities (i.e. texture selection). The current implementation carries
out the first two steps in a per view manner i.e.: a) determines the subset of
triangles that are visible by a certain view and b) computes their projections on
view plane. The third step is applied either on a per pixel basis through a pixel
shader during the visualization stage, or is explicitly computed by the consumer
of the offline dataset.

Specifically, given the calibration data for a view and the reconstructed mesh,
a first step is the calculation of the triangle normals. Then, the direction of each
camera’s principal axis vector is used to cull triangles back-facing the camera
or having an orientation (near-)parallel to the camera’s view plane. The trian-
gle stream is compacted excluding culled polygons and the process continues
by computing the view plane projections of the remaining triangles. Projec-
tions falling outside the plane’s bounds are also removed through culling and
stream compaction. Subsequently, the mean vertex distance from the camera
center is computed for each remaining triangle and a depth testing procedure
(Z-buffering) is applied to determine the final triangle set. The procedure is
shown schematically in Fig. 6. This figure also shows the granularity of the de-
composition in independent GPU threads. During depth testing, CUDA atomics
are used for issuing writes on the depth map. The reason for the multiple culling
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Image resolution Multiframe acquisition Foreground segmentation

320× 240 30 mfps 22.566, 3 fps / 2.820, 8 mfps

640× 480 13 mfps 6.773, 9 fps / 846, 4 mfps

800× 600 9 mfps 4.282, 6 fps / 535, 3 mfps

1280× 960 3, 3 mfps 1.809, 9 fps / 226, 2 mfps
Table 1. Performance of acquisition and segmentation for various image resolutions.

iterations prior to depth testing is for keeping the thread execution queues length
minimal during serialization of depth map writes.

There is a number of approaches that one can use to resolve multitextur-
ing conflicts. Two different strategies have been implemented in this work. The
first assigns to each triangle the texture source at which the projection area is
maximal among all projections. The second blends all textures according to a
weighting factor, proportional to the size of the projected area. A special case
is the one where all weights are equal. This last approach is used during online
experiments to avoid the additional overhead of computing and comparing the
projection areas, while the others are used in offline mode for producing better
quality results. In online mode the process is applied through a pixel shader im-
plemented using HLSL and shader model 3.0. Visualizations of a resulted mesh
are shown in Fig. 7. The supplemental material attached to this paper shows
representative videos obtained from both online and offline experiments.

4 Performance

Given a fixed number of cameras, the overall performance is determined by
the network bandwidth, the size of transferred data, the GPU execution time
and the quality of the reconstruction. In online experiments, camera images are
preprocessed, transferred through network and finally collected at the central
workstation to construct a synchronized multiframe. This is performed at a rate
of 30 multiframes per second (mfps). To achieve this performance, original images
(i.e. 1280 × 960) are resized during the CPU preprocessing stage to a size of
320× 240. Further reduction of image resolution increases the framerate beyond
real-time (i.e. ≥ 30mfps) at the cost of reducing the 3D reconstruction quality.
Table 1 shows the achieved multiframe acquisition speed.

Table 1 also shows that, as expected, foreground segmentation speed is lin-
early proportional to image size. These last reported measurements do not in-
clude CPU/GPU memory transfers.

The number of voxels that constitute the voxel space is the primary factor
that affects the quality of the reconstruction and overall performance. Given a
bounded voxel space (i.e., observed volume), smaller voxel sizes, produce more
accurate estimates of the 3D density function leading to a reconstruction out-
put of higher accuracy. Moreover, higher voxel space resolutions issue greater
numbers of GPU threads and produce more triangles for the isosurface that, in
turn, leads to an increased overhead during texture mapping. The performance
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(a) (b) (c)

Fig. 7. 3D reconstruction of a single multiframe: (a) no smoothing, (b) smoothed re-
construction and (c) smoothed and textured output.

graph of Fig. 8a shows the overall performance impact of voxel space resolution
increment in the cases of a) no smoothing of the visual hull, b) smoothed hull
utilizing a 33 kernel and c) smoothed hull utilizing a 53 kernel. The graph in Fig.
8b presents computational performance as a function of smoothing kernel size.
In both graphs, multiframe processing rate corresponds at the processing rate
of the entire GPU pipeline including the CPU/GPU memory transfer times. It
is worth mentioning that although image resolution affects the quality of the re-
construction and introduces additional computational costs due to the increased
memory transfer and foreground segmentation overheads, it does not have a
significant impact on the performance of the rest of the GPU reconstruction
pipeline.

Table 2 presents quantitative performance results obtained from executed ex-
periments. In the 3rd and 4th columns, the performance of 3D reconstruction and
texture mapping are shown independently. The 3D reconstruction column corre-
sponds to the processes of computing the visual hull, smoothing the occupancy
volume and creating the mesh, while texture mapping column corresponds to the

Voxels Smoothing 3D reconst. Text. mapping Output

Online Experiments

120× 140× 70 No 136, 8 mfps 178, 0 mfps 64, 0 mfps

100× 116× 58 No 220, 5 mfps 209, 9 mfps 84, 5 mfps

Offline Experiments

277× 244× 222 Kernel: 33 7, 7 mfps 27, 5 mfps 5, 0 mfps

277× 244× 222 Kernel : 53 4, 7 mfps 28, 9 mfps 3, 5 mfps

277× 244× 222 No 11, 4 mfps 25, 3 mfps 6, 2 mfps
Table 2. Quantitative performance results obtained from representative experiments.
Image resolution is set to 320× 240 for online and 1280× 960 for offline experiments.
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Fig. 8. Performance graphs. Image resolution is set to 640 × 480 in all experiments.
(a) Performance impact of voxel space descretization resolution. (b) The performance
effect of 3D smoothing kernel size.

performance of the process depicted in Fig. 6. Finally, in the output column, as in
the previous experiments, the performance of the entire reconstruction pipeline
is measured including foreground segmentation and memory transfers. It can be
seen that keeping the voxel space resolution at a fixed size, the multiframe pro-
cessing rate of 3D reconstruction drops significantly when the smoothing process
is activated. On the contrary, texture mapping is actually accelerated due to the
fact that the smoothed surface is described by less triangles than the original
one. Online experiments present clearly the effect of the voxel space resolution
in overall performance.

5 Conclusions - Future Work

In this paper, we presented the design and implementation of an integrated,
GPU-powered, multicamera vision system that is capable of performing fore-
ground image segmentation, silhouette-based 3D reconstruction, 3D mesh com-
putation and texture mapping in real-time. In online mode, the developed system
can support higher level processes that are responsible for activity monitoring
and interpretation. In offline mode, it enables the acquisition of high quality 3D
datasets. Experimental results provide a quantitative assessment of the system’s
performance. Additionally, the supplementary material provides qualitative ev-
idence regarding the quality of the obtained results.

The current implementation utilizes a single GPU. A future work direction
is the incorporation of more GPUs either on central or satellite workstations,
to increase the system’s overall raw computational power in terms of GFlops.
In this case, an intelligent method for distributing the computations over the
entire GPU set must be adopted, while various difficult concurrency and syn-
chronization issues that this approach raises must be addressed. Furthermore,
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performance gains could be achieved by transferring the image post-acquisition
CPU processes of Bayer Tile-to-RGB conversion and distortion correction to
GPUs as they also encompass a high degree of parallelism. Finally, mesh defor-
mation techniques instead of density function smoothing and advanced texture
source disambiguation/blending strategies that incorporate additional informa-
tion (e.g. edges) can be utilized in order to further augment the quality of the
results.
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Abstract. We introduce a new method for integrated tracking and seg-
mentation of a single non-rigid object in an monocular video, captured
by a possibly moving camera. A closed-loop interaction between EM-like
color-histogram-based tracking and Random Walker-based image seg-
mentation is proposed, which results in reduced tracking drifts and in
fine object segmentation. More specifically, pixel-wise spatial and color
image cues are fused using Bayesian inference to guide object segmenta-
tion. The spatial properties and the appearance of the segmented objects
are exploited to initialize the tracking algorithm in the next step, closing
the loop between tracking and segmentation. As confirmed by experi-
mental results on a variety of image sequences, the proposed approach
efficiently tracks and segments previously unseen objects of varying ap-
pearance and shape, under challenging environmental conditions.

1 Introduction

The vision-based tracking and the segmentation of an object of interest in an
image sequence are two challenging computer vision problems. Each of them
has its own importance and challenges and can be considered as “chicken-and-
egg” problems. By solving the segmentation problem, a solution to the tracking
problem can easily be obtained. At the same time, tracking provides important
input to segmentation.

In a recent and thorough review on the state-of-the-art tracking techniques [1],
tracking methods are divided into three categories: point tracking, silhouette
tracking and kernel tracking. Silhouette-based tracking methods usually evolve
an initial contour to its new position in the current frame. This can be done using
a state space model [2] defined in terms of shape and motion parameters [3]
of the contour or by the minimization of a contour-based energy function [4,
5], providing an accurate representation of the tracked object. Point-tracking
algorithms [6, 7] can also combine tracking and fine object segmentation using
multiple image cues. Towards a more reliable and drift-free tracking, some point
tracking algorithms utilize energy minimization techniques, such as Graph-Cuts
or Belief Propagation on a Markov Random Field (MRF) [8] or on a Conditional
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Random Field (CRF) [9, 10]. Most of the kernel-based tracking algorithms [11–
13] provide a coarse representation of the tracked object based on a bounding
box or an ellipsoid region.

Despite the many important research efforts devoted to the problem, the de-
velopment of algorithms for tracking objects in unconstrained videos constitutes
an open research problem. Moving cameras, appearance and shape variability of
the tracked objects, varying illumination conditions and cluttered backgrounds
constitute some of the challenges that a robust tracking algorithm needs to cope
with. To this end, in this work we consider the combined tracking and segmen-
tation of previously unseen objects in monocular videos captured by a possibly
moving camera. No strong constraints are imposed regarding the appearance
and the texture of the target object or the rigidity of its shape. All of the above
may dynamically vary over time under challenging illumination conditions and
changing background appearance. The basic aim of this work is to preclude track-
ing failures by enhancing its target localization performance through fine object
segmentation that is appropriately integrated with tracking in a closed-loop al-
gorithmic scheme. A kernel-based tracking algorithm [14], a natural extension
of the popular mean-shift tracker [11, 15], is efficiently combined with Random
Walker-based image segmentation [16, 17]. Explicit segmentation of the target
region of interest in an image sequence enables reliable tracking and reduces
drifting by exploiting static image cues and temporal coherence.

The key benefits of the proposed method are (i) close-loop interaction between
tracking and segmentation (ii) enhanced tracking performance under challeng-
ing conditions (iii) fine object segmentation (iv) capability to track objects from
a moving camera (v) increased tolerance to extensive changes of object’s ap-
pearance and shape and, (vi) continual refinement of both the object and the
background appearance models.

The rest of the paper is organized as follows. The proposed method is pre-
sented in Sec. 2. Experimental results are presented in Sec. 3. Finally, Sec. 4
summarizes the main conclusions from this work and future work perspectives.

2 Proposed Method

For each input video frame, the proposed framework encompasses a number of
algorithmic steps, tightly interconnected in a closed-loop which is illustrated
schematically in Fig.1. To further ease understanding, Fig.2 provides sample
intermediate results of the most important algorithmic steps.

The method assumes that at a certain moment t in time, a new image frame
It becomes available and that a fine object segmentation mask Mt−1 is available
as the result of the previous time step t − 1. For time t = 0, Mt−1 should be
provided for initialization purposes. Essentially, Mt−1 is a binary image where
foreground/background pixels have a value of 1/0, respectively (see Fig.2). The
goal of the method is to produce the current object segmentation mask Mt.
Towards this end, the spatial mean and covariance matrix of the foreground re-
gion of Mt−1 is computed, thus defining an ellipsoid region coarsely representing
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Fig. 1. Outline of the proposed method

the object at t − 1. Additionally, a color-histogram-based appearance model of
the segmented object (i.e., the one corresponding to the foreground of Mt−1) is
computed using a Gaussian weighting kernel function. The iterative (EM-like)
tracking algorithm in [14] is initialized based on the computed ellipsoid and ap-
pearance models. The tracking thus performed, results in a prediction of the
position and covariance of the ellipsoid representing the tracked object. Based
on the transformation parameters of the ellipsoid between t− 1 and t, a 2D spa-
tial affine transformation of the foreground object mask Mt−1 is performed. The
propagated object mask M

′
t indicates the predicted position and shape of the

object in the new frame It. The Hausdorff distance between the contour points
of Mt−1 and M

′
t masks is then computed and a shape band, as in [4, 9], around

the M
′
t contour points is determined, denoted as Bt. The width of Bt is equal

to the computed Hausdorff distance of the two contours. This is performed to
guarantee that the shape band contains the actual contour pixels of the tracked
object in the new frame. Additionally, the pixel-wise Distance Transform like-
lihoods for the object and background areas are computed together with the
pixel-wise color likelihoods based on region-based color histograms. Pixel-wise
Bayesian inference is applied to fuse spatial and color image cues, in order to
compute the probability distribution for the object and the background regions.
Given the estimated Probability Density Functions (PDFs) for each region, a
Random Walker-based segmentation algorithm is finally employed to obtain Mt

in It.
In the following sections, the components of the proposed method are de-

scribed in more detail.
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Fig. 2. Sample intermediate results of the proposed method. To avoid clutter, results
related to the processing of the scene background are omitted.

2.1 Object Tracking

This section presents the tracking part of the proposed combined tracking and
segmentation method (see the bottom-left part of Fig.1).

EM-Like Color Based Object Tracking: The tracking method [14] used in
this work is closely related to the widely-used mean-shift tracking method [11,
15]. More specifically, this algorithm coarsely represents the objects’ shape by
a 2D ellipsoid region, modeled by its center θ and covariance matrix Σ. The
appearance model of the tracked object is represented by the color histogram of
the image pixels under the 2D ellipsoid region corresponding to θ and Σ, and
is computed using a Gaussian weighting kernel function. Provided Mt−1 and
It−1, θt−1, Σt−1 the object appearance model can be computed for time t− 1.
Given a new image frame It where the tracked object is to be localized, the
tracking algorithm evolves the ellipsoid region in order to determine the image
area in It that best matches the appearance of the tracked object in terms of a
Bhattacharrya coefficient-based color similarity measure. This gives rise to the
parameters θt andΣt that represent the predicted object position and covariance
in It.

Affine Propagation of Object Shape: The tracking algorithm presented
above assumes that the shape of an object can be accurately represented as
an ellipse. In the general case, this is a quite limiting assumption, therefore
the objects’ appearance model is forced to include background pixels, causing
tracking to drift. The goal of this work is to prevent tracking drifts by integrating
tracking with fine object segmentation.
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To accomplish that, the contour Ct−1 of the object mask in Mt−1 is prop-
agated to the current frame It based on the transformation suggested by the
parameters θt−1, θt, Σt−1 and Σt. A 2D spatial, affine transformation is de-
fined between the corresponding ellipses. Exploiting the obtained Σt−1 and Σt

covariance matrices, a linear 2 × 2 affine transformation matrix At can be com-
puted based on the square root (Σ1/2) of each of these matrices. It is known
that a covariance matrix is a square, symmetric and positive semidefinite ma-
trix. The square root of any 2 × 2 covariance matrix Σ can be calculated by
diagonalization as

Σ1/2 = QΛ1/2Q−1, (1)

where Q is the square 2 × 2 matrix whose ith column is the eigenvector qi of Σ
and Λ1/2 is the diagonal matrix whose diagonal elements are the square values
of the corresponding eigenvalues. Since Σ is a covariance matrix, the inverse of
its Q matrix is equal to the transposed matrix QT , therefore Σ1/2 = QΛ1/2QT .
Accordingly, we compute the transformation matrix At by:

At = QtΛ
1/2
t Λ

−1/2
t−1 QT

t−1. (2)

Finally, C′
t is derived from Ct based on the following transformation

C′
t = At(Ct − θt−1) + θt. (3)

The result indicates a propagated contour C′
t, practically a propagated object

mask M
′
t that serves as a prediction of the position and the shape of the tracked

object in the new frame It.

2.2 Object Segmentation

This section presents how the pixel-wise posterior values on spatial and color
image cues are computed and fused using Bayesian inference in order to guide
the segmentation of the tracked foreground object (see the right part of Fig.1).

Object Shape Band: An object shape band Bt is determined around the
predicted object contour C′

t. Our notion of shape band is similar to those used
in [4, 9]. Bt can be regarded as an area of uncertainty, where the true object
contour lies in image It. The width of Bt is determined by the Euclidean, 2D
Hausdorff distance between contours Ct−1 and C

′
t regarded as two point sets.

Spatial Image Cues: We use the Euclidean 2D Distance Transform to compute
the probability of a pixel xi in image It to belong to either the object Lo or
the background Lb region, based on its 2D location xi = (x, y) on the image
plane. As a first step, the shape band Bt of the propagated object contour
C′

t is considered and its inner and outer contours are extracted. The Distance
Transform is then computed starting from the outer contour of Bt towards the
inner part of the object. The probability P (Lo|xi) of a pixel to belong to the
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object given its image location is set proportional to its normalized distance
from the outer contour of the shape band. For pixels that lie outside the outer
contour of Bt, it holds that P (Lo|xi) = ε, where ε is a small constant.

Similarly, we compute the Euclidean Distance Transform measure starting
from the inner contour of Bt towards the exterior part of the object. The proba-
bility P (Lb|xi) of a pixel to belong to the background given its image location is
set proportional to its normalized distance from the inner contour of the shape
band. For pixels that lie inside the inner contour ofBt, it holds that P (Lb|xi) = ε.

Color Based Image Cues: Based on the segmentation Mt−1 of the image
frame It−1, we define a partition of image pixels Ω into sets Ωo and Ωb indicating
the object and background image pixels, respectively. The appearance model of
the tracked object is represented by the color histogram Ho computed on the Ωo

set of pixels. The normalized value in a histogram bin c encodes the conditional
probability P (c|Lo). Similarly, the appearance model of the background region is
represented by the color histogram Hb, computed over pixels in Ωb and encoding
the conditional probability P (c|Lb).

Probabilistic Fusion of Image Cues: Image segmentation can be considered
as a pixel-wise classification problem for a number of classes/labels. Our goal
is to generate the posterior probability distribution for each of the labels Lo

and Lb, which will be further utilized to guide the Random Walker-based image
segmentation. Using Bayesian inference, we formulate a probabilistic framework
to efficiently fuse the available prior image cues, based on the pixel color and
position information, as described earlier. Considering the pixel color c as the
evidence and conditioning on pixel position xi in image frame It, the posterior
probability distribution for label Ll is given by

P (Ll | c, xi) =
P (c | Ll, xi)P (Ll | xi)∑N
l=0 P (c | Ll, xi)P (Ll | xi)

, (4)

where N = 2 in our case. The probability distribution P (c | Ll, xi) encodes the
conditional probability of color c taking the pixel label Ll as the evidence and
conditioning on its location xi. We assume that knowing the pixel position xi,
does not affect our belief about its color c. Thus, the probability of color c is only
conditioned on the prior knowledge of its class Ll following that P (c | Ll, xi) =
P (c | Ll). Given this, Eq.(4) transforms to

P (Ll | c, xi) =
P (c | Ll)P (Ll | xi)∑N
l=0 P (c | Ll)P (Ll | xi)

. (5)

The conditional color probability P (c | Ll) for the class Ll is obtained by the
color histogram Hl. The conditional spatial probability P (Ll | xi) is obtained
by the Distance-Transform measure calculation. Both of these calculations have
been presented earlier in this section.
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Random Walker Based Object Fine Segmentation: The resulting poste-
rior distribution P (Ll | c, xi) for each of the two labels Lo and Lb on pixels xi

guides the Random Walker-based image segmentation towards an explicit and
accurate segmentation of the tracked object in It.

Random Walks for image segmentation was introduced in [18] as a method
to perform K-way graph-based image segmentation given a number of pixels
with user (or automatically) defined labels, indicating the K disjoint regions in
a new image that is to be segmented. The principal idea behind the method is
that one can analytically determine the real-valued probability that a random
walker starting at each unlabeled image pixel will first reach one of the pre-
labeled pixels. The random walker-based framework bears some resemblance to
the popular graph-cuts framework for image segmentation, as they are both
related to the spectral clustering family of algorithms [19], but they also exhibit
significant differences concerning their properties, as described in [17].

The algorithm is formulated on a discrete weighted undirected graph G =
(V,E), where nodes u ∈ V represent the image pixels and the positive-weighted
edges e ∈ E ⊆ V xV indicate their local connectivity. The solution is calculated
analytically by solving K-1 sparse, symmetric, positive-definite linear systems of
equations, for K labels. For each graph node, the resulting probabilities of the
potential labels sum up to 1.

In order to represent the image structure by random walker biases, we map
the edge weights to positive weighting scores computed by the Gaussian weight-
ing function on the normalized Euclidean distance of the color intensities be-
tween two adjacent pixels, practically the color contrast. The Gaussian weighting
function is

wi,j = e−
β
ρ (‖ci−cj‖)2 + ε, (6)

where ci stands for the vector containing the color channel values of pixel/node
i, ε is a small constant (i.e ε = 10−6) and ρ is a normalizing scalar ρ =
max(‖ci − cj‖), ∀i, j ∈ E. The parameter β is user-defined and modulates the
spatial random walker biases, in terms of image edgeness. The posterior proba-
bility distribution P (Ll | c, xi) computed over the pixels xi of the current image
It suggest the probability of the pixels to be assigned to the label Ll. Therefore,
we consider the pixels of highest posterior probability values for the label Ll as
pre-labeled/seeds nodes of that label in the formulated graph.

An alternative formulation of the Random Walker-based image segmentation
method is presented in [16]. This method incorporates non-parametric probabil-
ity models, that is, prior belief on label assignments. In [16], the sparse linear
systems of equations that need to be solved to obtain a real-valued density-
based multilabel image segmentation are also presented. The two modalities of
this alternative formulation suggest for using only prior knowledge on the belief
of a graph node toward each of the potential labels, or using prior knowledge in
conjunction with pre-labeled/seed graph nodes. The γ scalar weight parameter
is introduced in these formulations, controlling the degree of effectiveness of the
prior belief values towards the belief information obtained by the random walks.
This extended formulation of using both seeds and prior beliefs on graph nodes
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is compatible with our approach considering the obtained posterior probabil-
ity distributions P (Ll | c, xi) for the two segmentation labels. The two Random
Walker formulations that use prior models, suggest for a graph construction sim-
ilar to the graph-cut algorithm [20], where the edge weights of the constructed
graph can be seen as the N-links or link-terms and the prior belief values of the
graph nodes for any of the potential labels can be considered as the T-links or
the data-terms, in graph cuts terminology.

Regardless of the exact formulation used, the primary output of the algorithm
consists of K probability maps, that is a soft image segmentation per label. By
assigning each pixel to the label for which the greatest probability is calculated,
a K-way segmentation is obtained. This process gives rise to object mask Mt for
image frame It.

3 Experimental Results and Implementation Issues

The proposed method was extensively tested on a variety of image sequences.
Due to space limitations, results on eight representative image sequences are
presented in this paper. The objects tracked in these sequences go through ex-
tensive appearance, shape and pose changes. Additionally, these sequences differ
with respect to the camera motion and to the lighting conditions during image
acquisition which affects the appearance of the tracked objects.

We compare the proposed joint tracking and segmentation method with the
tracking-only approach of [14]. The parameters of this algorithm were kept iden-
tical in the stand-alone run and in the run within the proposed framework. It
is important to note that stand-alone tracking based on [14] is initialized with
the appearance model extracted in the first frame of the sequence and that this
appearance model is not updated over time. This is done because in all the
challenging sequences we used as the basis of our evaluation, updating the ap-
pearance model based on the results of tracking, soon causes tracking drifts and
total loss of the tracked object.

Figure 3 illustrates representative tracking results (i.e., five frames for each
of the eight sequences). In the first sequence, a human hand undergoes complex
articulations, whereas the lighting conditions significantly affect its skin color
tone. In the second sequence, a human head is tracked despite its abrupt scale
changes and the lighting variations. In the third sequence the articulations of a
human hand are observed by a moving camera in the context of a continuously
varying cluttered background. The green book tracked in the fourth sequence
undergoes significant changes regarding its pose and shape, whereas light reflec-
tions on its glossy surface significantly affect its appearance. The fifth sequence
is an example of a low quality video captured by a moving camera, illustrating
the inherently deformable body of a caterpillar in motion. The sixth and seventh
sequences show a human head and hand, respectively, which both go through
extended pose variations in front of a complex background. Finally, the last, low
resolution sequence has been captured by a medical endoscope. In this sequence,
a target object is successfully tracked within a low-contrast background.
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Each of the image sequences in Fig.(3) illustrating human hands or faces as
well as the green book sequence consists of 400 frames of resolution 640 × 480
pixels, captured at a frame rate of 5-10 fps. The resolution of each frame of
the image sequences illustrated in the second and the fifth row is 320 × 240
pixels. The last image sequence depicted in the Fig.(3), captured by a medical
endoscope consists of 20 image frames of size 256 × 256 pixels each.

The reported experiments were generated based on a Matlab implementation,
running on a PC equipped with an Intel i7 CPU and 4 GB of RAM memory.
The runtime performance of the current implementation varies between 4 to 6
seconds per frame for 640 × 480 images. A near real-time runtime performance
is feasible by optimizing both the EM-like component of the tracking method
and the solution of the large sparse linear system of equations of the Random
Walker formulation in the segmentation procedure.

Each frame shown in Fig.(3) is annotated with the results of the proposed
algorithm and the results of the tracking method proposed in [14]. More specif-
ically, the blue solid ellipse shows the expected position and coarse orientation
of the tracked object as this results from the tracking part of the proposed
methodology. The green solid object contour is the main result of the proposed
algorithm which shows the fine object segmentation. Finally, the result of [14]
is shown for comparison as a red dotted ellipse. Experimental results on the full
video datasets are available online1.

In all sequences, the appearance models of the tracked objects have been built
based on the RGB color space. The object and background appearance models
used to compute the prior color cues are color histograms with 32 bins per
histogram for both the object and the background. Preserving the parameter
configuration of the object tracking algorithm as described in [14], the target
appearance model of the tracker is implemented by a color histogram of 8 bins
per dimension.

The Random Walker segmentation method involves three different formula-
tions to obtain the probabilities of each pixel to belong to each of the labels of
the segmentation problem, as described in Sec. 2.2. The three options refer to the
usage of seed pixels (pre-labeled graph nodes), prior values (probabilities/beliefs
on label assignments for some graph nodes), or a combination of them. For the
last option, the edge weights of the graph are computed by the Eq.(6), where
the β scalar parameter controls the scale of the edgeness (color contrast) be-
tween adjacent graph nodes. The pixel-wise posterior values are computed using
Bayesian inference as described in Sec. 2.2 and are exploited to guide segmenta-
tion as seed and prior values in terms of Random Walker terminology. Each pixel
xi of posterior value P (Ll | xi) greater or equal to 0.9 is considered as a seed
pixel for the label Ll, thus as a seed node on the graph G. Any other pixel of
posterior value P (Ll | xi) less than 0.9 is considered as a prior value for label Ll.
In the case of prior values, the γ parameter is introduced to adjust the degree of
authority of the prior beliefs towards the definite label-assignments expressed by

1 http://www.ics.forth.gr/~argyros/research/trackingsegmentation.htm

http://www.ics.forth.gr/~argyros/research/trackingsegmentation.htm
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Fig. 3. Experimental results and qualitative comparison between the proposed frame-
work providing tracking and segmentation results (blue solid ellipse and green solid
object contour, respectively) and the tracking algorithm of [14] (red dotted ellipse).
See text for details.
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Table 1. Quantitative assessment of segmentation accuracy. See text for details.

Segmentation option Precision Recall F-measure

Priors 93,5% 92,9% 93,1%

Seeds 97,5% 99,1% 98,3%

Priors and Seeds 97,5% 99,1% 98,3%

the seed nodes of the graph. In our experiments, the β parameter was selected
within the interval of [10− 50], whereas the γ ranges within [0.05 − 0.5].

In order to assess quantitatively the influence of the three different options
regarding the operation of the Random Walker on the quality of segmentation
results, the three different variants have been tested independently on an image
sequence consisting of 1, 000 video frames. For each and every of these frames
ground truth information is available in the form of a manually segmented fore-
ground object mask. Table 1 summarizes the average (per frame) precision, recall
and F-measure performance of the proposed algorithm compared to the ground
truth. As it can be verified, although all three options perform satisfactorily, the
use of seeds improves the segmentation performance.

4 Summary

In this paper we presented a method for online, joint tracking and segmenta-
tion of an non-rigid object in a monocular video, captured by a possibly moving
camera. The proposed approach aspires to relax several limiting assumptions
regarding the appearance and shape of the tracked object, the motion of the
camera and the lighting conditions. The key contribution of the proposed frame-
work is the efficient combination of an appearance-based tracking with Random
Walker-based segmentation that jointly enables enhanced tracking performance
and fine segmentation of the target object. A 2D affine transformation is com-
puted to propagate the segmented object shape of the previous frame to the new
frame exploiting the information provided by the ellipse region capturing the seg-
mented object and the ellipse region predicted by the tracker in the new frame.
A shape-band area is computed indicating an area of uncertainty where the
true object boundaries lie in the new frame. Static image cues including pixel-
wise color and spatial likelihoods are fused using Bayesian inference to guide
the Random Walker-based object segmentation in conjunction with the color-
contrast (edgeness) likelihoods between neighboring pixels. The performance of
the proposed method is demonstrated in a series of challenging videos and in
comparison with the results of the tracking method presented in [14].
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